Chemically Stable Metal-Organic Frameworks: Rational Construction and Application Expansion

Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated pro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Accounts of chemical research Ročník 54; číslo 15; s. 3083
Hlavní autori: He, Tao, Kong, Xiang-Jing, Li, Jian-Rong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 03.08.2021
ISSN:1520-4898, 1520-4898
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications.Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications.
AbstractList Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications.Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications.
Author He, Tao
Li, Jian-Rong
Kong, Xiang-Jing
Author_xml – sequence: 1
  givenname: Tao
  surname: He
  fullname: He, Tao
– sequence: 2
  givenname: Xiang-Jing
  surname: Kong
  fullname: Kong, Xiang-Jing
– sequence: 3
  givenname: Jian-Rong
  surname: Li
  fullname: Li, Jian-Rong
BookMark eNpNj8tOwzAURC1UJNrCH7Dwkk2KX3ESdlXUAlJRJR4rFpV9ewsB1w6xI-DvCY8FqzkjjY40EzLywSMhp5zNOBP83ECcGYDQ-xRnHBgTJTsgY54LlqmyKkf_-IhMYnxhw0bpYkwe62fcN2Cc-6R3yViH9AaTcdm6ezK-AbrszB7fQ_caL-itSU3wxtE6-Ji6Hr4rNX5L523rBstPX3y0xseBjsnhzriIJ385JQ_LxX19la3Wl9f1fJUZWfGUCS35AFJYDaUqWY4yt1tVaLutLBMord1BZYsKpCoU8J2SukRdIHCoUIGYkrNfb9uFtx5j2uybCOic8Rj6uBH5cF6zQjHxBU4qXDE
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215301
crossref_primary_10_1016_j_cscm_2024_e03586
crossref_primary_10_1016_j_jssc_2022_122964
crossref_primary_10_1002_anie_202318115
crossref_primary_10_1016_j_cej_2023_145949
crossref_primary_10_1016_j_cej_2025_159319
crossref_primary_10_1016_j_cej_2022_138215
crossref_primary_10_3390_molecules29153700
crossref_primary_10_1016_j_ccr_2022_214967
crossref_primary_10_1155_er_8856604
crossref_primary_10_1016_j_gee_2022_06_002
crossref_primary_10_1016_j_molstruc_2023_136847
crossref_primary_10_1021_jacs_5c05507
crossref_primary_10_1016_j_ccr_2025_216888
crossref_primary_10_1016_j_ijhydene_2023_06_006
crossref_primary_10_1016_j_carbpol_2023_121645
crossref_primary_10_1002_smll_202502708
crossref_primary_10_1021_acs_cgd_5c01018
crossref_primary_10_1039_D3NR03302C
crossref_primary_10_3390_org5040028
crossref_primary_10_1007_s11705_022_2278_4
crossref_primary_10_1007_s11356_024_34761_1
crossref_primary_10_1016_j_trac_2025_118211
crossref_primary_10_1016_j_chempr_2023_02_016
crossref_primary_10_1016_j_jddst_2025_107444
crossref_primary_10_1002_adfm_202500708
crossref_primary_10_1016_j_cej_2022_137381
crossref_primary_10_1007_s11243_023_00522_1
crossref_primary_10_1016_j_microc_2025_112816
crossref_primary_10_1007_s10008_024_05815_8
crossref_primary_10_1039_D3QM00468F
crossref_primary_10_1016_j_inoche_2024_112915
crossref_primary_10_1016_j_micromeso_2025_113609
crossref_primary_10_3897_j_moem_10_2_126396
crossref_primary_10_1016_j_seppur_2024_127955
crossref_primary_10_1016_j_apmt_2024_102224
crossref_primary_10_1016_j_cej_2023_142094
crossref_primary_10_1016_j_inoche_2025_114320
crossref_primary_10_1039_D2QI01175A
crossref_primary_10_1007_s12598_025_03519_0
crossref_primary_10_1021_jacs_3c12679
crossref_primary_10_1021_acsanm_5c02616
crossref_primary_10_1002_adma_202200465
crossref_primary_10_1016_j_ccr_2024_216361
crossref_primary_10_1016_j_ccr_2024_216004
crossref_primary_10_1039_D2QI00291D
crossref_primary_10_1002_adfm_202214388
crossref_primary_10_1039_D3EN00332A
crossref_primary_10_1007_s11426_025_2609_4
crossref_primary_10_1016_j_molstruc_2024_139631
crossref_primary_10_1016_j_micromeso_2023_112825
crossref_primary_10_1016_j_jece_2025_119276
crossref_primary_10_1016_j_jtice_2024_105390
crossref_primary_10_1002_aoc_70256
crossref_primary_10_1021_acs_cgd_4c01172
crossref_primary_10_1002_smtd_202500277
crossref_primary_10_1016_j_poly_2022_116144
crossref_primary_10_1021_jacs_3c05585
crossref_primary_10_1016_j_biortech_2023_130288
crossref_primary_10_1016_j_molstruc_2024_139809
crossref_primary_10_1039_D1NR06530K
crossref_primary_10_1002_anie_202513165
crossref_primary_10_1186_s40580_023_00390_6
crossref_primary_10_1016_j_ccr_2022_214930
crossref_primary_10_1007_s44169_022_00020_y
crossref_primary_10_1039_D4SC07144A
crossref_primary_10_1038_s41467_022_32678_2
crossref_primary_10_1016_j_ccr_2025_217124
crossref_primary_10_1016_j_seppur_2025_134518
crossref_primary_10_1002_ange_202215985
crossref_primary_10_1016_j_seppur_2024_128588
crossref_primary_10_1002_smll_202410518
crossref_primary_10_1007_s11426_024_2277_2
crossref_primary_10_1002_cnma_202100400
crossref_primary_10_1007_s42114_022_00432_3
crossref_primary_10_1038_s43586_024_00320_8
crossref_primary_10_1016_j_cclet_2024_110593
crossref_primary_10_1016_j_cclet_2024_110473
crossref_primary_10_1007_s11705_023_2320_1
crossref_primary_10_1016_j_clema_2025_100314
crossref_primary_10_1016_j_chemosphere_2023_138160
crossref_primary_10_1002_smtd_202300468
crossref_primary_10_1016_j_actbio_2023_06_039
crossref_primary_10_1038_s41467_024_53385_0
crossref_primary_10_1016_j_ccr_2024_215690
crossref_primary_10_1002_cplu_202100426
crossref_primary_10_1002_smsc_202400132
crossref_primary_10_1016_j_seppur_2025_132203
crossref_primary_10_1016_j_seppur_2025_132689
crossref_primary_10_1007_s12274_024_6429_4
crossref_primary_10_1016_j_microc_2025_113847
crossref_primary_10_1016_j_seppur_2024_128453
crossref_primary_10_1016_j_inoche_2022_109347
crossref_primary_10_1021_acs_inorgchem_5c01349
crossref_primary_10_1039_D4QI01366B
crossref_primary_10_1016_j_cej_2025_161163
crossref_primary_10_1016_j_cis_2025_103444
crossref_primary_10_1039_D5NA00279F
crossref_primary_10_1039_D5SC03065J
crossref_primary_10_1016_j_electacta_2025_146416
crossref_primary_10_1007_s11356_024_35501_1
crossref_primary_10_1016_j_jpcs_2025_113062
crossref_primary_10_1039_D3EE02705H
crossref_primary_10_1002_cjoc_202200571
crossref_primary_10_1002_ange_202301764
crossref_primary_10_1021_acs_iecr_5c01161
crossref_primary_10_1016_j_jece_2022_108930
crossref_primary_10_1016_j_susmat_2021_e00354
crossref_primary_10_1016_j_cis_2024_103178
crossref_primary_10_1016_j_ccr_2023_215615
crossref_primary_10_1016_j_ccr_2025_217158
crossref_primary_10_1016_j_fuel_2025_134609
crossref_primary_10_1007_s10904_024_03078_4
crossref_primary_10_1016_j_ccr_2025_216864
crossref_primary_10_1016_j_jics_2025_101905
crossref_primary_10_1016_j_dt_2025_02_019
crossref_primary_10_1016_j_molliq_2022_119976
crossref_primary_10_1039_D3SC06076D
crossref_primary_10_1002_anie_202301764
crossref_primary_10_1016_j_cis_2025_103469
crossref_primary_10_1021_jacs_4c09173
crossref_primary_10_1016_j_matt_2025_101958
crossref_primary_10_1016_j_ijrefrig_2024_10_009
crossref_primary_10_1016_j_ccr_2022_214692
crossref_primary_10_1016_j_cej_2023_147605
crossref_primary_10_1016_j_inoche_2025_114752
crossref_primary_10_1021_jacs_5c01434
crossref_primary_10_1016_j_cclet_2021_10_042
crossref_primary_10_1007_s12274_023_5935_0
crossref_primary_10_1016_j_talanta_2024_125937
crossref_primary_10_1002_adfm_202500568
crossref_primary_10_1038_s41467_024_51522_3
crossref_primary_10_1021_jacs_4c09742
crossref_primary_10_1002_chem_202203792
crossref_primary_10_3390_app15116097
crossref_primary_10_1016_j_cej_2025_164199
crossref_primary_10_1016_j_jwpe_2024_105530
crossref_primary_10_1016_j_ccr_2022_214561
crossref_primary_10_1039_D5RA01388G
crossref_primary_10_1039_D5CC01092F
crossref_primary_10_1002_ejic_202400789
crossref_primary_10_3390_sym16081049
crossref_primary_10_1016_j_microc_2024_111888
crossref_primary_10_1007_s00604_024_06534_7
crossref_primary_10_1007_s13538_025_01746_5
crossref_primary_10_1021_acs_jpcc_5c01487
crossref_primary_10_1016_j_marpolbul_2024_116188
crossref_primary_10_1007_s12274_023_6061_8
crossref_primary_10_1016_j_jcis_2025_02_096
crossref_primary_10_1002_adma_202300943
crossref_primary_10_1002_chem_202301325
crossref_primary_10_1002_smll_202405533
crossref_primary_10_1016_j_psep_2023_01_072
crossref_primary_10_1002_ange_202513165
crossref_primary_10_1016_j_jece_2023_111219
crossref_primary_10_1038_s41545_025_00514_x
crossref_primary_10_1016_j_jwpe_2025_108096
crossref_primary_10_1016_j_jcis_2025_01_043
crossref_primary_10_1002_smm2_1091
crossref_primary_10_1021_jacs_2c02598
crossref_primary_10_1016_j_cis_2025_103651
crossref_primary_10_1016_j_ccr_2024_216405
crossref_primary_10_1002_chem_202200835
crossref_primary_10_1002_est2_70258
crossref_primary_10_1016_j_inoche_2024_113174
crossref_primary_10_1016_j_seppur_2022_122213
crossref_primary_10_1134_S1070328422050049
crossref_primary_10_1016_j_seppur_2022_122211
crossref_primary_10_1038_s41467_024_54493_7
crossref_primary_10_1016_j_jmst_2024_11_081
crossref_primary_10_3389_fchem_2024_1386311
crossref_primary_10_1021_acs_cgd_5c00584
crossref_primary_10_1007_s10904_024_03474_w
crossref_primary_10_1002_adfm_202302265
crossref_primary_10_1007_s12274_022_4301_y
crossref_primary_10_1002_chem_202200034
crossref_primary_10_1002_anie_202215985
crossref_primary_10_1016_j_inoche_2024_113616
crossref_primary_10_3390_molecules28237908
crossref_primary_10_1016_j_cej_2022_139189
crossref_primary_10_1039_D5NJ01353D
crossref_primary_10_1002_tcr_202400257
crossref_primary_10_3390_inorganics13050131
crossref_primary_10_3390_pharmaceutics17040512
crossref_primary_10_1007_s00289_025_05986_y
crossref_primary_10_1016_j_seppur_2023_124144
crossref_primary_10_1016_j_mtchem_2023_101577
crossref_primary_10_1002_anie_202414650
crossref_primary_10_1016_j_jssc_2024_124956
crossref_primary_10_1016_j_cherd_2024_06_042
crossref_primary_10_1021_jacs_4c05879
crossref_primary_10_1016_j_ccr_2023_215117
crossref_primary_10_1002_adma_202300177
crossref_primary_10_1002_chem_202500015
crossref_primary_10_1016_j_jece_2023_111696
crossref_primary_10_1002_ange_202108364
crossref_primary_10_3390_su151712923
crossref_primary_10_1016_j_ccr_2025_216680
crossref_primary_10_1039_D5NA00300H
crossref_primary_10_1021_jacs_4c06046
crossref_primary_10_1016_j_cej_2025_163987
crossref_primary_10_1016_j_jcat_2024_115308
crossref_primary_10_1002_smll_202504212
crossref_primary_10_1021_acs_inorgchem_5c01769
crossref_primary_10_1002_advs_202310025
crossref_primary_10_1002_anie_202108364
crossref_primary_10_1021_acs_accounts_4c00774
crossref_primary_10_1021_jacs_1c10008
crossref_primary_10_1007_s11051_024_06156_3
crossref_primary_10_1016_j_seppur_2024_130006
crossref_primary_10_1021_acs_langmuir_5c02041
crossref_primary_10_1016_j_jece_2023_109469
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1007_s12274_023_6077_0
crossref_primary_10_1016_j_cej_2025_161533
crossref_primary_10_1016_j_chphi_2025_100864
crossref_primary_10_1039_D5TA02338F
crossref_primary_10_1016_j_poly_2022_116078
crossref_primary_10_1021_acs_langmuir_5c01627
crossref_primary_10_1002_ange_202509275
crossref_primary_10_1002_sus2_154
crossref_primary_10_1016_j_matt_2022_10_004
crossref_primary_10_1002_ange_202318115
crossref_primary_10_3390_bios12110928
crossref_primary_10_1016_j_ccr_2025_216464
crossref_primary_10_1016_j_hybadv_2025_100406
crossref_primary_10_1002_smll_202410922
crossref_primary_10_1016_j_cej_2023_143091
crossref_primary_10_3390_analytica5040040
crossref_primary_10_1016_j_microc_2023_108956
crossref_primary_10_1002_anie_202509275
crossref_primary_10_1002_ange_202414650
ContentType Journal Article
DBID 7X8
DOI 10.1021/acs.accounts.1c00280
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
GroupedDBID ---
-DZ
-~X
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
6P2
7X8
7~N
85S
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ABUFD
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
ZCA
~02
ID FETCH-LOGICAL-a391t-263139132b6c84805e35bd476bd9b02e3bbfc9b79c3474c1f4368e67ec1c9e4c2
IEDL.DBID 7X8
ISICitedReferencesCount 334
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683355900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-4898
IngestDate Sun Nov 09 10:15:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a391t-263139132b6c84805e35bd476bd9b02e3bbfc9b79c3474c1f4368e67ec1c9e4c2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2552060740
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2552060740
PublicationCentury 2000
PublicationDate 2021-08-03
PublicationDateYYYYMMDD 2021-08-03
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-03
  day: 03
PublicationDecade 2020
PublicationTitle Accounts of chemical research
PublicationYear 2021
SSID ssj0002467
Score 2.7125835
Snippet Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous...
SourceID proquest
SourceType Aggregation Database
StartPage 3083
Title Chemically Stable Metal-Organic Frameworks: Rational Construction and Application Expansion
URI https://www.proquest.com/docview/2552060740
Volume 54
WOSCitedRecordID wos000683355900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEA1qBb34LX4TwWtousnmw4uU0uJBi4hKwUNJJgkIZatuFf33JttdevAieN9DdjaZeTvz8h5CFzoYYXkAokxwhMtcEC10iAfPcGUgB1qJPT_dyOFQjUb6rm64lTWtssmJVaJ2U0g98naEvhkVseDRq9c3klyj0nS1ttBYRi0WoUza1XK0UAvPeOUgG0sUJVxp1VydyzptA2VccOXHkMhH1YTxVzquasxg87-r20IbNbrE3fl22EZLvthBa73G1G0XPTcCAZNvHHGmnXh86yP-JvM7mYAHDVmrvMT3daMQJ1fPRmcWm8Lh7mLsjftfMaGkntseehz0H3rXpPZXIIbpzoxkIgUt_o5aAYormnuWW8elsE5bmnlmbQBtpQbGJYdOSGr1XkgPHdCeQ7aPVopp4Q8QBrCaJbqiC5xLLaxQOXVKMsk9dZ4eovMmbuP4xmkoYQo__SjHi8gd_eGZY7SeJVJJ4mywE9QK8Yz6U7QKn7OX8v2s-vw_Vhq7kg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemically+Stable+Metal-Organic+Frameworks%3A+Rational+Construction+and+Application+Expansion&rft.jtitle=Accounts+of+chemical+research&rft.au=He%2C+Tao&rft.au=Kong%2C+Xiang-Jing&rft.au=Li%2C+Jian-Rong&rft.date=2021-08-03&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=54&rft.issue=15&rft.spage=3083&rft_id=info:doi/10.1021%2Facs.accounts.1c00280&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon