Chemically Stable Metal-Organic Frameworks: Rational Construction and Application Expansion
Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated pro...
Uložené v:
| Vydané v: | Accounts of chemical research Ročník 54; číslo 15; s. 3083 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
03.08.2021
|
| ISSN: | 1520-4898, 1520-4898 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications.Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications. |
|---|---|
| AbstractList | Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications.Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous inherent merits and big progress in the fundamental research (synthesizing new compounds, discovering new structures, testing associated properties, etc.), poor chemical stability of most MOFs severely hinders their involvement in practical applications, which is the final goal for developing new materials. Therefore, constructing new stable MOFs or stabilizing extant labile MOFs is quite important. As with them, some "potential" applications would come true and a lot of new applications under harsh conditions can be explored. Efficient strategies are being pursued to solve the stability problem of MOFs and thereby achieve and expand their applications.In this Account, we summarize the research advance in the design and synthesis of chemically stable MOFs, particularly those stable in acidic, basic, and aqueous systems, as well as in the exploration of their applications in several expanding fields of environment, energy, and food safety, which have been dedicated in our lab over the past decade. The strategies for accessing stable MOFs can be classified into: (a) assembling high-valent metals (hard acid, such as Zr4+, Al3+) with carboxylate ligands (hard base) for acid-stable MOFs; (b) combining low-valent metals (soft acid, such as Co2+, Ni2+) and azolate ligands (soft base, such as pyrazolate) for alkali-resistant MOFs; (c) enhancing the connectivity of the building unit; (d) contracting or rigidifying the ligand; (e) increasing the hydrophobicity of the framework; and (f) substituting liable building units with stable ones (such as metal metathesis) to obtain robust MOFs. In addition, other factors, including the geometry and symmetry of building units, framework-framework interaction, and so forth, have also been taken into account in the design and synthesis of stable MOFs. On the basis of these approaches, the stability of resulting MOFs under corresponding conditions has been remarkably enhanced.With high chemical stability achieved, the MOFs have found many new and significant applications, aiming at addressing global challenges related to environmental pollution, energy shortage, and food safety.A series of stable MOFs have been constructed for detecting and eliminating contaminations. Various fluorescent MOFs were rationally customized to be powerful platforms for sensing hazardous targets in food and water, such as dioxins, antibiotics, veterinary drugs, and heavy metal ions. Some hydrophobic MOFs even showed effective and specific capture of low-concentration volatile organic compounds.Novel MOFs with record-breaking acid/base/nucleophilic regent resistance have expanded their application scope under harsh conditions. BUT-8(Cr)A, as the most acid-stable MOF yet, showed reserved structural integrity in concentrated H2SO4 and recorded high proton conductivity; the most alkali-resistant MOF, PCN-601, retained crystallinity even in boiling saturated NaOH aqueous solution, and such base-stable MOFs composed of non-noble metal clusters and poly pyrazolate ligands also demonstrated great potential in heterogeneous catalysis in alkaline/nucleophilic systems for the first time.It is believed that this Account will provide valuable references on stable MOFs' construction as well as application expansion toward harsh conditions, thereby being helpful to promote MOF materials to step from fundamental research to practical applications. |
| Author | He, Tao Li, Jian-Rong Kong, Xiang-Jing |
| Author_xml | – sequence: 1 givenname: Tao surname: He fullname: He, Tao – sequence: 2 givenname: Xiang-Jing surname: Kong fullname: Kong, Xiang-Jing – sequence: 3 givenname: Jian-Rong surname: Li fullname: Li, Jian-Rong |
| BookMark | eNpNj8tOwzAURC1UJNrCH7Dwkk2KX3ESdlXUAlJRJR4rFpV9ewsB1w6xI-DvCY8FqzkjjY40EzLywSMhp5zNOBP83ECcGYDQ-xRnHBgTJTsgY54LlqmyKkf_-IhMYnxhw0bpYkwe62fcN2Cc-6R3yViH9AaTcdm6ezK-AbrszB7fQ_caL-itSU3wxtE6-Ji6Hr4rNX5L523rBstPX3y0xseBjsnhzriIJ385JQ_LxX19la3Wl9f1fJUZWfGUCS35AFJYDaUqWY4yt1tVaLutLBMord1BZYsKpCoU8J2SukRdIHCoUIGYkrNfb9uFtx5j2uybCOic8Rj6uBH5cF6zQjHxBU4qXDE |
| CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215301 crossref_primary_10_1016_j_cscm_2024_e03586 crossref_primary_10_1016_j_jssc_2022_122964 crossref_primary_10_1002_anie_202318115 crossref_primary_10_1016_j_cej_2023_145949 crossref_primary_10_1016_j_cej_2025_159319 crossref_primary_10_1016_j_cej_2022_138215 crossref_primary_10_3390_molecules29153700 crossref_primary_10_1016_j_ccr_2022_214967 crossref_primary_10_1155_er_8856604 crossref_primary_10_1016_j_gee_2022_06_002 crossref_primary_10_1016_j_molstruc_2023_136847 crossref_primary_10_1021_jacs_5c05507 crossref_primary_10_1016_j_ccr_2025_216888 crossref_primary_10_1016_j_ijhydene_2023_06_006 crossref_primary_10_1016_j_carbpol_2023_121645 crossref_primary_10_1002_smll_202502708 crossref_primary_10_1021_acs_cgd_5c01018 crossref_primary_10_1039_D3NR03302C crossref_primary_10_3390_org5040028 crossref_primary_10_1007_s11705_022_2278_4 crossref_primary_10_1007_s11356_024_34761_1 crossref_primary_10_1016_j_trac_2025_118211 crossref_primary_10_1016_j_chempr_2023_02_016 crossref_primary_10_1016_j_jddst_2025_107444 crossref_primary_10_1002_adfm_202500708 crossref_primary_10_1016_j_cej_2022_137381 crossref_primary_10_1007_s11243_023_00522_1 crossref_primary_10_1016_j_microc_2025_112816 crossref_primary_10_1007_s10008_024_05815_8 crossref_primary_10_1039_D3QM00468F crossref_primary_10_1016_j_inoche_2024_112915 crossref_primary_10_1016_j_micromeso_2025_113609 crossref_primary_10_3897_j_moem_10_2_126396 crossref_primary_10_1016_j_seppur_2024_127955 crossref_primary_10_1016_j_apmt_2024_102224 crossref_primary_10_1016_j_cej_2023_142094 crossref_primary_10_1016_j_inoche_2025_114320 crossref_primary_10_1039_D2QI01175A crossref_primary_10_1007_s12598_025_03519_0 crossref_primary_10_1021_jacs_3c12679 crossref_primary_10_1021_acsanm_5c02616 crossref_primary_10_1002_adma_202200465 crossref_primary_10_1016_j_ccr_2024_216361 crossref_primary_10_1016_j_ccr_2024_216004 crossref_primary_10_1039_D2QI00291D crossref_primary_10_1002_adfm_202214388 crossref_primary_10_1039_D3EN00332A crossref_primary_10_1007_s11426_025_2609_4 crossref_primary_10_1016_j_molstruc_2024_139631 crossref_primary_10_1016_j_micromeso_2023_112825 crossref_primary_10_1016_j_jece_2025_119276 crossref_primary_10_1016_j_jtice_2024_105390 crossref_primary_10_1002_aoc_70256 crossref_primary_10_1021_acs_cgd_4c01172 crossref_primary_10_1002_smtd_202500277 crossref_primary_10_1016_j_poly_2022_116144 crossref_primary_10_1021_jacs_3c05585 crossref_primary_10_1016_j_biortech_2023_130288 crossref_primary_10_1016_j_molstruc_2024_139809 crossref_primary_10_1039_D1NR06530K crossref_primary_10_1002_anie_202513165 crossref_primary_10_1186_s40580_023_00390_6 crossref_primary_10_1016_j_ccr_2022_214930 crossref_primary_10_1007_s44169_022_00020_y crossref_primary_10_1039_D4SC07144A crossref_primary_10_1038_s41467_022_32678_2 crossref_primary_10_1016_j_ccr_2025_217124 crossref_primary_10_1016_j_seppur_2025_134518 crossref_primary_10_1002_ange_202215985 crossref_primary_10_1016_j_seppur_2024_128588 crossref_primary_10_1002_smll_202410518 crossref_primary_10_1007_s11426_024_2277_2 crossref_primary_10_1002_cnma_202100400 crossref_primary_10_1007_s42114_022_00432_3 crossref_primary_10_1038_s43586_024_00320_8 crossref_primary_10_1016_j_cclet_2024_110593 crossref_primary_10_1016_j_cclet_2024_110473 crossref_primary_10_1007_s11705_023_2320_1 crossref_primary_10_1016_j_clema_2025_100314 crossref_primary_10_1016_j_chemosphere_2023_138160 crossref_primary_10_1002_smtd_202300468 crossref_primary_10_1016_j_actbio_2023_06_039 crossref_primary_10_1038_s41467_024_53385_0 crossref_primary_10_1016_j_ccr_2024_215690 crossref_primary_10_1002_cplu_202100426 crossref_primary_10_1002_smsc_202400132 crossref_primary_10_1016_j_seppur_2025_132203 crossref_primary_10_1016_j_seppur_2025_132689 crossref_primary_10_1007_s12274_024_6429_4 crossref_primary_10_1016_j_microc_2025_113847 crossref_primary_10_1016_j_seppur_2024_128453 crossref_primary_10_1016_j_inoche_2022_109347 crossref_primary_10_1021_acs_inorgchem_5c01349 crossref_primary_10_1039_D4QI01366B crossref_primary_10_1016_j_cej_2025_161163 crossref_primary_10_1016_j_cis_2025_103444 crossref_primary_10_1039_D5NA00279F crossref_primary_10_1039_D5SC03065J crossref_primary_10_1016_j_electacta_2025_146416 crossref_primary_10_1007_s11356_024_35501_1 crossref_primary_10_1016_j_jpcs_2025_113062 crossref_primary_10_1039_D3EE02705H crossref_primary_10_1002_cjoc_202200571 crossref_primary_10_1002_ange_202301764 crossref_primary_10_1021_acs_iecr_5c01161 crossref_primary_10_1016_j_jece_2022_108930 crossref_primary_10_1016_j_susmat_2021_e00354 crossref_primary_10_1016_j_cis_2024_103178 crossref_primary_10_1016_j_ccr_2023_215615 crossref_primary_10_1016_j_ccr_2025_217158 crossref_primary_10_1016_j_fuel_2025_134609 crossref_primary_10_1007_s10904_024_03078_4 crossref_primary_10_1016_j_ccr_2025_216864 crossref_primary_10_1016_j_jics_2025_101905 crossref_primary_10_1016_j_dt_2025_02_019 crossref_primary_10_1016_j_molliq_2022_119976 crossref_primary_10_1039_D3SC06076D crossref_primary_10_1002_anie_202301764 crossref_primary_10_1016_j_cis_2025_103469 crossref_primary_10_1021_jacs_4c09173 crossref_primary_10_1016_j_matt_2025_101958 crossref_primary_10_1016_j_ijrefrig_2024_10_009 crossref_primary_10_1016_j_ccr_2022_214692 crossref_primary_10_1016_j_cej_2023_147605 crossref_primary_10_1016_j_inoche_2025_114752 crossref_primary_10_1021_jacs_5c01434 crossref_primary_10_1016_j_cclet_2021_10_042 crossref_primary_10_1007_s12274_023_5935_0 crossref_primary_10_1016_j_talanta_2024_125937 crossref_primary_10_1002_adfm_202500568 crossref_primary_10_1038_s41467_024_51522_3 crossref_primary_10_1021_jacs_4c09742 crossref_primary_10_1002_chem_202203792 crossref_primary_10_3390_app15116097 crossref_primary_10_1016_j_cej_2025_164199 crossref_primary_10_1016_j_jwpe_2024_105530 crossref_primary_10_1016_j_ccr_2022_214561 crossref_primary_10_1039_D5RA01388G crossref_primary_10_1039_D5CC01092F crossref_primary_10_1002_ejic_202400789 crossref_primary_10_3390_sym16081049 crossref_primary_10_1016_j_microc_2024_111888 crossref_primary_10_1007_s00604_024_06534_7 crossref_primary_10_1007_s13538_025_01746_5 crossref_primary_10_1021_acs_jpcc_5c01487 crossref_primary_10_1016_j_marpolbul_2024_116188 crossref_primary_10_1007_s12274_023_6061_8 crossref_primary_10_1016_j_jcis_2025_02_096 crossref_primary_10_1002_adma_202300943 crossref_primary_10_1002_chem_202301325 crossref_primary_10_1002_smll_202405533 crossref_primary_10_1016_j_psep_2023_01_072 crossref_primary_10_1002_ange_202513165 crossref_primary_10_1016_j_jece_2023_111219 crossref_primary_10_1038_s41545_025_00514_x crossref_primary_10_1016_j_jwpe_2025_108096 crossref_primary_10_1016_j_jcis_2025_01_043 crossref_primary_10_1002_smm2_1091 crossref_primary_10_1021_jacs_2c02598 crossref_primary_10_1016_j_cis_2025_103651 crossref_primary_10_1016_j_ccr_2024_216405 crossref_primary_10_1002_chem_202200835 crossref_primary_10_1002_est2_70258 crossref_primary_10_1016_j_inoche_2024_113174 crossref_primary_10_1016_j_seppur_2022_122213 crossref_primary_10_1134_S1070328422050049 crossref_primary_10_1016_j_seppur_2022_122211 crossref_primary_10_1038_s41467_024_54493_7 crossref_primary_10_1016_j_jmst_2024_11_081 crossref_primary_10_3389_fchem_2024_1386311 crossref_primary_10_1021_acs_cgd_5c00584 crossref_primary_10_1007_s10904_024_03474_w crossref_primary_10_1002_adfm_202302265 crossref_primary_10_1007_s12274_022_4301_y crossref_primary_10_1002_chem_202200034 crossref_primary_10_1002_anie_202215985 crossref_primary_10_1016_j_inoche_2024_113616 crossref_primary_10_3390_molecules28237908 crossref_primary_10_1016_j_cej_2022_139189 crossref_primary_10_1039_D5NJ01353D crossref_primary_10_1002_tcr_202400257 crossref_primary_10_3390_inorganics13050131 crossref_primary_10_3390_pharmaceutics17040512 crossref_primary_10_1007_s00289_025_05986_y crossref_primary_10_1016_j_seppur_2023_124144 crossref_primary_10_1016_j_mtchem_2023_101577 crossref_primary_10_1002_anie_202414650 crossref_primary_10_1016_j_jssc_2024_124956 crossref_primary_10_1016_j_cherd_2024_06_042 crossref_primary_10_1021_jacs_4c05879 crossref_primary_10_1016_j_ccr_2023_215117 crossref_primary_10_1002_adma_202300177 crossref_primary_10_1002_chem_202500015 crossref_primary_10_1016_j_jece_2023_111696 crossref_primary_10_1002_ange_202108364 crossref_primary_10_3390_su151712923 crossref_primary_10_1016_j_ccr_2025_216680 crossref_primary_10_1039_D5NA00300H crossref_primary_10_1021_jacs_4c06046 crossref_primary_10_1016_j_cej_2025_163987 crossref_primary_10_1016_j_jcat_2024_115308 crossref_primary_10_1002_smll_202504212 crossref_primary_10_1021_acs_inorgchem_5c01769 crossref_primary_10_1002_advs_202310025 crossref_primary_10_1002_anie_202108364 crossref_primary_10_1021_acs_accounts_4c00774 crossref_primary_10_1021_jacs_1c10008 crossref_primary_10_1007_s11051_024_06156_3 crossref_primary_10_1016_j_seppur_2024_130006 crossref_primary_10_1021_acs_langmuir_5c02041 crossref_primary_10_1016_j_jece_2023_109469 crossref_primary_10_1002_smll_202207342 crossref_primary_10_1007_s12274_023_6077_0 crossref_primary_10_1016_j_cej_2025_161533 crossref_primary_10_1016_j_chphi_2025_100864 crossref_primary_10_1039_D5TA02338F crossref_primary_10_1016_j_poly_2022_116078 crossref_primary_10_1021_acs_langmuir_5c01627 crossref_primary_10_1002_ange_202509275 crossref_primary_10_1002_sus2_154 crossref_primary_10_1016_j_matt_2022_10_004 crossref_primary_10_1002_ange_202318115 crossref_primary_10_3390_bios12110928 crossref_primary_10_1016_j_ccr_2025_216464 crossref_primary_10_1016_j_hybadv_2025_100406 crossref_primary_10_1002_smll_202410922 crossref_primary_10_1016_j_cej_2023_143091 crossref_primary_10_3390_analytica5040040 crossref_primary_10_1016_j_microc_2023_108956 crossref_primary_10_1002_anie_202509275 crossref_primary_10_1002_ange_202414650 |
| ContentType | Journal Article |
| DBID | 7X8 |
| DOI | 10.1021/acs.accounts.1c00280 |
| DatabaseName | MEDLINE - Academic |
| DatabaseTitle | MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-4898 |
| GroupedDBID | --- -DZ -~X 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 6P2 7X8 7~N 85S AABXI ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ABUFD ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 XSW YZZ ZCA ~02 |
| ID | FETCH-LOGICAL-a391t-263139132b6c84805e35bd476bd9b02e3bbfc9b79c3474c1f4368e67ec1c9e4c2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 334 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683355900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-4898 |
| IngestDate | Sun Nov 09 10:15:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a391t-263139132b6c84805e35bd476bd9b02e3bbfc9b79c3474c1f4368e67ec1c9e4c2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2552060740 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2552060740 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-03 |
| PublicationDateYYYYMMDD | 2021-08-03 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Accounts of chemical research |
| PublicationYear | 2021 |
| SSID | ssj0002467 |
| Score | 2.7125835 |
| Snippet | Metal-organic frameworks (MOFs) have been attracting tremendous attention owing to their great structural diversity and functional tunability. Despite numerous... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 3083 |
| Title | Chemically Stable Metal-Organic Frameworks: Rational Construction and Application Expansion |
| URI | https://www.proquest.com/docview/2552060740 |
| Volume | 54 |
| WOSCitedRecordID | wos000683355900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEA1qBb34LX4TwWtousnmw4uU0uJBi4hKwUNJJgkIZatuFf33JttdevAieN9DdjaZeTvz8h5CFzoYYXkAokxwhMtcEC10iAfPcGUgB1qJPT_dyOFQjUb6rm64lTWtssmJVaJ2U0g98naEvhkVseDRq9c3klyj0nS1ttBYRi0WoUza1XK0UAvPeOUgG0sUJVxp1VydyzptA2VccOXHkMhH1YTxVzquasxg87-r20IbNbrE3fl22EZLvthBa73G1G0XPTcCAZNvHHGmnXh86yP-JvM7mYAHDVmrvMT3daMQJ1fPRmcWm8Lh7mLsjftfMaGkntseehz0H3rXpPZXIIbpzoxkIgUt_o5aAYormnuWW8elsE5bmnlmbQBtpQbGJYdOSGr1XkgPHdCeQ7aPVopp4Q8QBrCaJbqiC5xLLaxQOXVKMsk9dZ4eovMmbuP4xmkoYQo__SjHi8gd_eGZY7SeJVJJ4mywE9QK8Yz6U7QKn7OX8v2s-vw_Vhq7kg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemically+Stable+Metal-Organic+Frameworks%3A+Rational+Construction+and+Application+Expansion&rft.jtitle=Accounts+of+chemical+research&rft.au=He%2C+Tao&rft.au=Kong%2C+Xiang-Jing&rft.au=Li%2C+Jian-Rong&rft.date=2021-08-03&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=54&rft.issue=15&rft.spage=3083&rft_id=info:doi/10.1021%2Facs.accounts.1c00280&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon |