Deep Learning for Simultaneous Inference of Hydraulic and Transport Properties

Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation. These two goals are achieved by combining model predictions with sparse and noisy hydraulic head and concentration measurements. Solution of this invers...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research Vol. 58; no. 10
Main Authors: Zhou, Zitong, Zabaras, Nicholas, Tartakovsky, Daniel M.
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01.10.2022
American Geophysical Union (AGU)
Subjects:
ISSN:0043-1397, 1944-7973
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation. These two goals are achieved by combining model predictions with sparse and noisy hydraulic head and concentration measurements. Solution of this inverse problem is notoriously difficult due to, in part, high dimensionality of the parameter space and high computational cost of repeated forward solves. We use a convolutional adversarial autoencoder (CAAE) to parameterize a heterogeneous non‐Gaussian conductivity field via a low‐dimensional latent representation. A three‐dimensional dense convolutional encoder‐decoder (DenseED) network serves as a forward surrogate of the flow and transport model. The CAAE‐DenseED surrogate is fed into the ensemble smoother with multiple data assimilation (ESMDA) algorithm to sample from the Bayesian posterior distribution of the unknown parameters, forming a CAAE‐DenseED‐ESMDA inversion framework. The resulting CAAE‐DenseED‐ESMDA inversion strategy is used to identify a three‐dimensional contaminant source and conductivity field. A comparison of the inversion results from CAAE‐ESMDA with physical flow and transport simulator and from CAAE‐DenseED‐ESMDA shows that the latter yields accurate reconstruction results at the fraction of the computational cost of the former. Plain Language Summary Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation. These two goals are achieved by combining model predictions with sparse and noisy hydraulic head and concentration measurements. Solution of this inverse problem is notoriously difficult due to, in part, high dimensionality of the parameter space and high computational cost of repeated forward solves. We develop a deep‐learning strategy to identify a three‐dimensional contaminant source and conductivity field from sparse observations. Key Points Our deep‐learning strategy reconstructs three‐dimensional conductivity field and contaminant release history Conductivity parameterization with convolutional adversarial autoencoder reduces the inverse problem's dimensionality Convolutional encoder‐decoder acts as a surrogate of forward models; ensemble smoother approximates parameters' posterior distribution
AbstractList Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation. These two goals are achieved by combining model predictions with sparse and noisy hydraulic head and concentration measurements. Solution of this inverse problem is notoriously difficult due to, in part, high dimensionality of the parameter space and high computational cost of repeated forward solves. We use a convolutional adversarial autoencoder (CAAE) to parameterize a heterogeneous non‐Gaussian conductivity field via a low‐dimensional latent representation. A three‐dimensional dense convolutional encoder‐decoder (DenseED) network serves as a forward surrogate of the flow and transport model. The CAAE‐DenseED surrogate is fed into the ensemble smoother with multiple data assimilation (ESMDA) algorithm to sample from the Bayesian posterior distribution of the unknown parameters, forming a CAAE‐DenseED‐ESMDA inversion framework. The resulting CAAE‐DenseED‐ESMDA inversion strategy is used to identify a three‐dimensional contaminant source and conductivity field. A comparison of the inversion results from CAAE‐ESMDA with physical flow and transport simulator and from CAAE‐DenseED‐ESMDA shows that the latter yields accurate reconstruction results at the fraction of the computational cost of the former.
Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation. These two goals are achieved by combining model predictions with sparse and noisy hydraulic head and concentration measurements. Solution of this inverse problem is notoriously difficult due to, in part, high dimensionality of the parameter space and high computational cost of repeated forward solves. We use a convolutional adversarial autoencoder (CAAE) to parameterize a heterogeneous non‐Gaussian conductivity field via a low‐dimensional latent representation. A three‐dimensional dense convolutional encoder‐decoder (DenseED) network serves as a forward surrogate of the flow and transport model. The CAAE‐DenseED surrogate is fed into the ensemble smoother with multiple data assimilation (ESMDA) algorithm to sample from the Bayesian posterior distribution of the unknown parameters, forming a CAAE‐DenseED‐ESMDA inversion framework. The resulting CAAE‐DenseED‐ESMDA inversion strategy is used to identify a three‐dimensional contaminant source and conductivity field. A comparison of the inversion results from CAAE‐ESMDA with physical flow and transport simulator and from CAAE‐DenseED‐ESMDA shows that the latter yields accurate reconstruction results at the fraction of the computational cost of the former. Plain Language Summary Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation. These two goals are achieved by combining model predictions with sparse and noisy hydraulic head and concentration measurements. Solution of this inverse problem is notoriously difficult due to, in part, high dimensionality of the parameter space and high computational cost of repeated forward solves. We develop a deep‐learning strategy to identify a three‐dimensional contaminant source and conductivity field from sparse observations. Key Points Our deep‐learning strategy reconstructs three‐dimensional conductivity field and contaminant release history Conductivity parameterization with convolutional adversarial autoencoder reduces the inverse problem's dimensionality Convolutional encoder‐decoder acts as a surrogate of forward models; ensemble smoother approximates parameters' posterior distribution
Abstract Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation. These two goals are achieved by combining model predictions with sparse and noisy hydraulic head and concentration measurements. Solution of this inverse problem is notoriously difficult due to, in part, high dimensionality of the parameter space and high computational cost of repeated forward solves. We use a convolutional adversarial autoencoder (CAAE) to parameterize a heterogeneous non‐Gaussian conductivity field via a low‐dimensional latent representation. A three‐dimensional dense convolutional encoder‐decoder (DenseED) network serves as a forward surrogate of the flow and transport model. The CAAE‐DenseED surrogate is fed into the ensemble smoother with multiple data assimilation (ESMDA) algorithm to sample from the Bayesian posterior distribution of the unknown parameters, forming a CAAE‐DenseED‐ESMDA inversion framework. The resulting CAAE‐DenseED‐ESMDA inversion strategy is used to identify a three‐dimensional contaminant source and conductivity field. A comparison of the inversion results from CAAE‐ESMDA with physical flow and transport simulator and from CAAE‐DenseED‐ESMDA shows that the latter yields accurate reconstruction results at the fraction of the computational cost of the former.
Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation. These two goals are achieved by combining model predictions with sparse and noisy hydraulic head and concentration measurements. Solution of this inverse problem is notoriously difficult due to, in part, high dimensionality of the parameter space and high computational cost of repeated forward solves. We use a convolutional adversarial autoencoder (CAAE) to parameterize a heterogeneous non‐Gaussian conductivity field via a low‐dimensional latent representation. A three‐dimensional dense convolutional encoder‐decoder (DenseED) network serves as a forward surrogate of the flow and transport model. The CAAE‐DenseED surrogate is fed into the ensemble smoother with multiple data assimilation (ESMDA) algorithm to sample from the Bayesian posterior distribution of the unknown parameters, forming a CAAE‐DenseED‐ESMDA inversion framework. The resulting CAAE‐DenseED‐ESMDA inversion strategy is used to identify a three‐dimensional contaminant source and conductivity field. A comparison of the inversion results from CAAE‐ESMDA with physical flow and transport simulator and from CAAE‐DenseED‐ESMDA shows that the latter yields accurate reconstruction results at the fraction of the computational cost of the former. Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation. These two goals are achieved by combining model predictions with sparse and noisy hydraulic head and concentration measurements. Solution of this inverse problem is notoriously difficult due to, in part, high dimensionality of the parameter space and high computational cost of repeated forward solves. We develop a deep‐learning strategy to identify a three‐dimensional contaminant source and conductivity field from sparse observations. Our deep‐learning strategy reconstructs three‐dimensional conductivity field and contaminant release history Conductivity parameterization with convolutional adversarial autoencoder reduces the inverse problem's dimensionality Convolutional encoder‐decoder acts as a surrogate of forward models; ensemble smoother approximates parameters' posterior distribution
Author Tartakovsky, Daniel M.
Zhou, Zitong
Zabaras, Nicholas
Author_xml – sequence: 1
  givenname: Zitong
  surname: Zhou
  fullname: Zhou, Zitong
  organization: Stanford University
– sequence: 2
  givenname: Nicholas
  orcidid: 0000-0003-3144-8388
  surname: Zabaras
  fullname: Zabaras, Nicholas
  organization: University of Notre Dame
– sequence: 3
  givenname: Daniel M.
  orcidid: 0000-0001-9019-8935
  surname: Tartakovsky
  fullname: Tartakovsky, Daniel M.
  email: tartakovsky@stanford.edu
  organization: Stanford University
BackLink https://www.osti.gov/biblio/1894737$$D View this record in Osti.gov
BookMark eNp90U1v1DAQBmALFYlt4cYPsODCgYDHdmL7iJaPVloBWop6tLzOGFxl7WAnQvvvSRUOVSU4zeWZj1dzTs5STkjIc2BvgHHzljMON3smQAr9iGzASNkoo8QZ2TAmRQPCqCfkvNZbxkC2ndqQz-8RR7pDV1JMP2jIhX6Lx3mYXMI8V3qVAhZMHmkO9PLUFzcP0VOXenpdXKpjLhP9WvKIZYpYn5LHwQ0Vn_2tF-T7xw_X28tm9-XT1fbdrnHCMGg06IPSkitnehB9q0J3ACfa0HuvsAsC1KFrtWamdY457aFzB-U0OOQBOIoL8mKdm-sUbfVxQv_T55TQTxa0kUqoBb1a0VjyrxnrZI-xehyGNZvlGsAoAKYX-vIBvc1zSUsEyxXXUknD5aJer8qXXGvBYMcSj66cLDB79wF7_wML5w_4cqebYk5TcXH4V5NYm37HAU__XWBv9ts977gA8Qf0iJfv
CitedBy_id crossref_primary_10_1016_j_jenvman_2025_124708
crossref_primary_10_1016_j_jhydrol_2024_130727
crossref_primary_10_1016_j_ecolind_2025_113839
crossref_primary_10_1016_j_wroa_2025_100367
crossref_primary_10_1029_2023WR034939
crossref_primary_10_1016_j_jcp_2024_113052
crossref_primary_10_3390_w17020255
crossref_primary_10_1016_j_energy_2024_131713
crossref_primary_10_1029_2023WR035408
crossref_primary_10_1016_j_jhydrol_2025_133654
crossref_primary_10_1016_j_jhydrol_2025_133797
crossref_primary_10_1029_2022WR033644
crossref_primary_10_1029_2024WR038468
crossref_primary_10_1007_s00477_024_02800_5
crossref_primary_10_1016_j_scitotenv_2023_161734
crossref_primary_10_3390_pr13061834
crossref_primary_10_1016_j_enggeo_2025_107998
crossref_primary_10_1016_j_jhydrol_2025_133202
crossref_primary_10_1029_2023WR036893
crossref_primary_10_1016_j_jhydrol_2024_131540
crossref_primary_10_1016_j_jconhyd_2024_104394
crossref_primary_10_1016_j_camwa_2025_07_022
Cites_doi 10.1002/2017wr020906
10.1016/j.cma.2020.113636
10.1002/2017wr022135
10.1029/2020wr027627
10.3389/fams.2019.00047
10.1029/94jc00572
10.1029/96wr03753
10.1615/JMachLearnModelComput.2021038925
10.1016/j.jhydrol.2016.04.008
10.1016/j.advwatres.2017.12.011
10.1007/s10596-020-10014-1
10.1016/j.cageo.2019.104333
10.1061/(asce)1084-0699(2001)6:3(225)
10.1016/j.cageo.2020.104456
10.1016/j.advwatres.2015.09.019
10.1016/j.advwatres.2013.10.014
10.1016/j.advwatres.2018.03.010
10.1016/j.jcp.2006.01.047
10.1175/1520-0493(1996)124<2898:daaimi>2.0.co;2
10.1016/j.petrol.2019.02.037
10.1061/(asce)1084-0699(2008)13:1(37)
10.1002/2014wr015740
10.1023/a:1022277418570
10.1029/2018wr024638
10.1080/23311835.2015.1118219
10.3389/fenvs.2019.00149
10.1098/rspa.2020.0213
10.1016/j.jcp.2022.111438
10.1007/s11004-014-9541-2
10.1201/9781482296426
10.1016/j.cageo.2021.104762
10.1016/j.cageo.2012.03.011
10.1016/j.cageo.2020.104567
10.1155/2019/3280961
10.1007/978-3-7908-2604-3_16
10.1016/j.advwatres.2018.10.023
10.1007/s11004-019-09794-9
10.1016/j.ijggc.2020.103223
10.1029/2020wr028538
10.1029/2019WR026082
10.1007/s11004-007-9131-7
10.1016/j.jcp.2022.111008
10.1002/2016wr019111
10.2118/56855-pa
10.1029/2020WR027643
10.2118/90058-MS
10.1002/2017wr022148
10.1007/s10236-003-0036-9
10.1007/s00477-020-01888-9
10.2307/3318737
10.1111/gwat.12413
10.1007/s11222-006-9438-0
10.1029/2005wr004731
10.1109/ICCV.2015.123
10.1007/s10040-019-01962-9
10.1016/j.jhydrol.2020.125266
10.1061/(ASCE)HZ.2153-5515.0000431
10.1029/2011wr010412
10.1016/j.jhydrol.2015.09.006
10.1137/19m1260773
10.1016/j.advwatres.2017.09.029
10.1016/j.jhydrol.2021.126903
ContentType Journal Article
Copyright 2022. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2022. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
OTOTI
DOI 10.1029/2021WR031438
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 1894737
10_1029_2021WR031438
WRCR26231
Genre article
GrantInformation_xml – fundername: TotalEnergies
– fundername: DOE Advanced Research Projects Agency ‐ Energy
  funderid: DE‐AR0001204
– fundername: National Science Foundation
  funderid: EAR‐2100927
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
AAPBV
ABHUG
ADAWD
ADDAD
AEUQT
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-a3901-818b78427a9d13d57f6b1a35fdcc7e6f317b6588095aa0a8c16ab7a81ae2f12e3
IEDL.DBID WIN
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863034200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Mon Sep 25 05:37:39 EDT 2023
Fri Sep 05 17:31:43 EDT 2025
Wed Aug 13 03:48:52 EDT 2025
Tue Nov 18 22:20:11 EST 2025
Sat Nov 29 01:36:50 EST 2025
Wed Jan 22 16:22:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3901-818b78427a9d13d57f6b1a35fdcc7e6f317b6588095aa0a8c16ab7a81ae2f12e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0001-9019-8935
0000-0003-3144-8388
0000000190198935
0000000331448388
PQID 2728474924
PQPubID 105507
PageCount 20
ParticipantIDs osti_scitechconnect_1894737
proquest_miscellaneous_2811971108
proquest_journals_2728474924
crossref_primary_10_1029_2021WR031438
crossref_citationtrail_10_1029_2021WR031438
wiley_primary_10_1029_2021WR031438_WRCR26231
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: United States
PublicationTitle Water resources research
PublicationYear 2022
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References e_1_2_9_2_4_1
e_1_2_9_1_15_1
e_1_2_9_1_36_1
e_1_2_9_1_13_1
e_1_2_9_1_34_1
e_1_2_9_1_11_1
e_1_2_9_1_32_1
e_1_2_9_1_30_1
e_1_2_9_1_2_1
e_1_2_9_1_4_1
Bedekar V. (e_1_2_9_1_6_1) 2016
e_1_2_9_1_60_1
e_1_2_9_1_62_1
e_1_2_9_1_64_1
e_1_2_9_1_66_1
e_1_2_9_1_29_1
e_1_2_9_1_27_1
e_1_2_9_1_25_1
e_1_2_9_1_48_1
e_1_2_9_1_46_1
e_1_2_9_1_21_1
e_1_2_9_1_44_1
e_1_2_9_1_42_1
e_1_2_9_1_40_1
e_1_2_9_1_8_1
e_1_2_9_1_50_1
e_1_2_9_1_52_1
e_1_2_9_1_54_1
e_1_2_9_1_18_1
e_1_2_9_1_56_1
e_1_2_9_1_16_1
e_1_2_9_1_39_1
e_1_2_9_1_58_1
e_1_2_9_1_14_1
e_1_2_9_1_37_1
e_1_2_9_1_12_1
e_1_2_9_1_35_1
e_1_2_9_2_3_1
e_1_2_9_1_10_1
e_1_2_9_1_33_1
e_1_2_9_1_31_1
e_1_2_9_1_3_1
e_1_2_9_1_5_1
e_1_2_9_1_61_1
Goodfellow I. (e_1_2_9_2_2_1) 2016
e_1_2_9_1_63_1
e_1_2_9_1_65_1
e_1_2_9_1_67_1
e_1_2_9_1_28_1
e_1_2_9_1_49_1
e_1_2_9_1_26_1
e_1_2_9_1_47_1
e_1_2_9_1_24_1
e_1_2_9_1_45_1
e_1_2_9_1_22_1
e_1_2_9_1_43_1
e_1_2_9_1_20_1
e_1_2_9_1_41_1
e_1_2_9_1_7_1
e_1_2_9_1_9_1
e_1_2_9_1_51_1
e_1_2_9_1_53_1
e_1_2_9_1_55_1
e_1_2_9_1_19_1
e_1_2_9_1_57_1
Harbaugh A. W. (e_1_2_9_1_23_1) 2005
e_1_2_9_1_17_1
e_1_2_9_1_38_1
e_1_2_9_1_59_1
References_xml – ident: e_1_2_9_1_64_1
  doi: 10.1002/2017wr020906
– ident: e_1_2_9_1_49_1
  doi: 10.1016/j.cma.2020.113636
– ident: e_1_2_9_1_25_1
  doi: 10.1002/2017wr022135
– ident: e_1_2_9_1_29_1
  doi: 10.1029/2020wr027627
– ident: e_1_2_9_1_16_1
  doi: 10.3389/fams.2019.00047
– ident: e_1_2_9_1_14_1
  doi: 10.1029/94jc00572
– ident: e_1_2_9_1_47_1
  doi: 10.1029/96wr03753
– ident: e_1_2_9_1_48_1
  doi: 10.1615/JMachLearnModelComput.2021038925
– volume-title: Deep Learning
  year: 2016
  ident: e_1_2_9_2_2_1
– ident: e_1_2_9_1_40_1
– ident: e_1_2_9_1_3_1
  doi: 10.1016/j.jhydrol.2016.04.008
– ident: e_1_2_9_1_61_1
  doi: 10.1016/j.advwatres.2017.12.011
– ident: e_1_2_9_1_26_1
  doi: 10.1007/s10596-020-10014-1
– ident: e_1_2_9_1_34_1
  doi: 10.1016/j.cageo.2019.104333
– ident: e_1_2_9_1_2_1
  doi: 10.1061/(asce)1084-0699(2001)6:3(225)
– ident: e_1_2_9_1_42_1
  doi: 10.1016/j.cageo.2020.104456
– ident: e_1_2_9_1_37_1
  doi: 10.1016/j.advwatres.2015.09.019
– ident: e_1_2_9_1_66_1
  doi: 10.1016/j.advwatres.2013.10.014
– volume-title: MT3D‐USGS version 1: A US Geological Survey release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW (Tech. Rep.)
  year: 2016
  ident: e_1_2_9_1_6_1
– ident: e_1_2_9_1_27_1
  doi: 10.1016/j.advwatres.2018.03.010
– ident: e_1_2_9_1_56_1
  doi: 10.1016/j.jcp.2006.01.047
– ident: e_1_2_9_1_52_1
  doi: 10.1175/1520-0493(1996)124<2898:daaimi>2.0.co;2
– ident: e_1_2_9_1_11_1
  doi: 10.1016/j.petrol.2019.02.037
– ident: e_1_2_9_1_50_1
  doi: 10.1061/(asce)1084-0699(2008)13:1(37)
– ident: e_1_2_9_1_65_1
  doi: 10.1002/2014wr015740
– ident: e_1_2_9_2_4_1
– ident: e_1_2_9_1_57_1
  doi: 10.1023/a:1022277418570
– ident: e_1_2_9_1_43_1
  doi: 10.1029/2018wr024638
– ident: e_1_2_9_1_55_1
  doi: 10.1080/23311835.2015.1118219
– ident: e_1_2_9_1_5_1
  doi: 10.3389/fenvs.2019.00149
– ident: e_1_2_9_1_8_1
  doi: 10.1098/rspa.2020.0213
– volume-title: MODFLOW‐2005, the US Geological Survey modular ground‐water model: The ground‐water flow process
  year: 2005
  ident: e_1_2_9_1_23_1
– ident: e_1_2_9_1_9_1
  doi: 10.1016/j.jcp.2022.111438
– ident: e_1_2_9_1_53_1
  doi: 10.1007/s11004-014-9541-2
– ident: e_1_2_9_1_17_1
  doi: 10.1201/9781482296426
– ident: e_1_2_9_1_39_1
  doi: 10.1016/j.cageo.2021.104762
– ident: e_1_2_9_1_13_1
  doi: 10.1016/j.cageo.2012.03.011
– ident: e_1_2_9_1_45_1
  doi: 10.1016/j.cageo.2020.104567
– ident: e_1_2_9_1_30_1
  doi: 10.1155/2019/3280961
– ident: e_1_2_9_1_10_1
  doi: 10.1007/978-3-7908-2604-3_16
– ident: e_1_2_9_1_12_1
  doi: 10.1016/j.advwatres.2018.10.023
– ident: e_1_2_9_1_38_1
  doi: 10.1007/s11004-019-09794-9
– ident: e_1_2_9_1_54_1
  doi: 10.1016/j.ijggc.2020.103223
– ident: e_1_2_9_1_28_1
  doi: 10.1029/2020wr028538
– ident: e_1_2_9_1_44_1
  doi: 10.1029/2019WR026082
– ident: e_1_2_9_1_46_1
  doi: 10.1007/s11004-007-9131-7
– ident: e_1_2_9_1_59_1
  doi: 10.1016/j.jcp.2022.111008
– ident: e_1_2_9_1_60_1
  doi: 10.1002/2016wr019111
– ident: e_1_2_9_1_58_1
  doi: 10.2118/56855-pa
– ident: e_1_2_9_1_62_1
  doi: 10.1029/2020WR027643
– ident: e_1_2_9_1_18_1
  doi: 10.2118/90058-MS
– ident: e_1_2_9_1_32_1
  doi: 10.1002/2017wr022148
– ident: e_1_2_9_1_15_1
  doi: 10.1007/s10236-003-0036-9
– ident: e_1_2_9_1_67_1
  doi: 10.1007/s00477-020-01888-9
– ident: e_1_2_9_1_22_1
  doi: 10.2307/3318737
– ident: e_1_2_9_1_4_1
  doi: 10.1111/gwat.12413
– ident: e_1_2_9_1_21_1
  doi: 10.1007/s11222-006-9438-0
– ident: e_1_2_9_1_63_1
  doi: 10.1029/2005wr004731
– ident: e_1_2_9_2_3_1
  doi: 10.1109/ICCV.2015.123
– ident: e_1_2_9_1_20_1
– ident: e_1_2_9_1_24_1
  doi: 10.1007/s10040-019-01962-9
– ident: e_1_2_9_1_19_1
  doi: 10.1016/j.jhydrol.2020.125266
– ident: e_1_2_9_1_31_1
– ident: e_1_2_9_1_35_1
  doi: 10.1061/(ASCE)HZ.2153-5515.0000431
– ident: e_1_2_9_1_41_1
  doi: 10.1029/2011wr010412
– ident: e_1_2_9_1_36_1
  doi: 10.1016/j.jhydrol.2015.09.006
– ident: e_1_2_9_1_7_1
  doi: 10.1137/19m1260773
– ident: e_1_2_9_1_33_1
  doi: 10.1016/j.advwatres.2017.09.029
– ident: e_1_2_9_1_51_1
  doi: 10.1016/j.jhydrol.2021.126903
SSID ssj0014567
Score 2.524289
Snippet Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation. These two...
Abstract Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation....
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms adversarial
Algorithms
Bayesian analysis
Bayesian theory
Coders
Computational efficiency
Computer applications
Computing costs
Conductivity
Contaminants
Data assimilation
Data collection
Deep learning
History
Hydraulics
Identification
inverse problem
Inverse problems
Machine learning
Mathematical models
neural network
Parameters
Piezometric head
Probability theory
Reconstruction
Remediation
Simulators
Simultaneous discrimination learning
source indentification
subsurface
Transport
Transport properties
water
Title Deep Learning for Simultaneous Inference of Hydraulic and Transport Properties
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021WR031438
https://www.proquest.com/docview/2728474924
https://www.proquest.com/docview/2811971108
https://www.osti.gov/biblio/1894737
Volume 58
WOSCitedRecordID wos000863034200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231213
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7KttBekj6JmwcqtKfWNJK1ln0sSZcEwhK2DZubkPVoF4I3rHcL-feZsWWzOaRQejNYMkKj8XyaxzcAHytR5l44lwZeqlS6YNIq5zbNjDDSlurYd5T5F2o6La6vy8vocKNamI4fYnC4kWa0_2tScFM1kWyAODLx1s7nM2Jfz6jWl8tWL-fn0yGIgNhA9QFmAjox7x2nf92e_MAijZaoWQ_Q5jZmbY3OZPd_l_sSdiLcZN-68_EKnvj6NTzvq5EbfI5d0H_fvYHpqfe3LDKu_mIIZ9mPBWUcmtovNw0774sD2TKwszu3MpubhWWmdmzgSGeX5N1fEU3rW7iafP95cpbGfgupIc9Hira7UoUUypSOZ26sQl5xk42Ds1b5PCDUqBCwFIjKjDk2heW5qZQpuPEicOGzdzCql7XfAxYcd5lDcY9dJR2aPGnyID1-Bu8vhRIJfO73XNtIRk49MW50GxQXpd7erwQ-DaNvOxKOR8btk_g0ggdiwLWUKmTXmhelVJlK4KCXqo6K2mihyD5LvIUm8GF4jSpGcZNud7UoKNZK9RIJfGll_NdV6PnsZCYQVvL3_zZ8H14IKq5oUwUPYLRebfwhPLN_1otmdQRPT2eTq4uj9ozfA9I59_4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aTSG59F3iJm1VaE-taSRrLflYki4bul3CNiG5CVmS24XgDfso5N93xpbN5tBC6c1gWQiNxvNpHt8AvCtFkQfhfVrxQqXSVzYtc-7SzAorXaGOQkuZP1HTqb66Ks5in1OqhWn5IXqHG2lG878mBSeHdGQbIJJMvLbzyxnRr2f6PuxIPEnDAeyczEYXkz6QgPhAdUFmAjsx9x1n-LT9_R2rNFigdt1BnNu4tTE8o0f_veTH8DBiTva5PSRP4F6on8JuV5K8wufYCv3n7TOYnoRwwyLt6g-GmJZ9n1Paoa3DYrNip12FIFtUbHzrl3ZzPXfM1p71ROnsjFz8S-JqfQ4Xoy_nx-M0Nl1ILbk_UjTgpdJSKFt4nvmhqvKS22xYeedUyCvEGyWiFo3QzNojqx3Pbams5jaIiouQvYBBvajDPrDKc595lPnQl9Kj3ZM2r2TAafASo5VI4EO36cZFRnJqjHFtmsi4KMz2fiXwvh990zJx_GHcAcnPIIIgGlxH-UJubbgupMpUAoedWE3U1pURioy0xKtoAm_716hnFDxpd9cITQFXKppI4GMj5L-uwlzOjmcCsSV_-W_D38Du-PzbxExOp18PYE9QtUWTO3gIg_VyE17BA_drPV8tX8ej_hubbPuq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB90T9QXv8V6p0bQJy1e0m6TPsqtyx0uy7J63L2FNB-6cHSX_RDuv3emTcveg4L4Vug0hEym80tm5jcA7ypRFl44lwZeyjR3waRVwW2aGWFyW8pj31LmT-R0qi4vy1nsc0q1MC0_RH_hRpbR_K_JwP3Khcg2QCSZeGznF3OiX8_UbTjIh2WBlnkwmo_PJ30gAfGB7ILMBHZi7juO8Gn_-xteabBE67qBOPdxa-N4xg__e8qP4EHEnOxzu0kewy1fP4F7XUnyBp9jK_Sf109hOvJ-xSLt6g-GmJZ9W1Daoan9crdhZ12FIFsGdnrt1mZ3tbDM1I71ROlsRlf8a-JqfQbn4y_fT07T2HQhNXT9kaIDr6TKhTSl45kbylBU3GTD4KyVvgiINypELQqhmTHHRllemEoaxY0XgQufPYdBvaz9C2DBcZc51PnQVblDv5ebIuQeh8FDjJIigQ_domsbGcmpMcaVbiLjotT765XA-1561TJx_EHukPSnEUEQDa6lfCG71VyVucxkAkedWnW01o0Wkpx0jkfRBN72r9HOKHjSrq4WigKuVDSRwMdGyX-dhb6Yn8wFYkv-8t_E38Dd2WisJ2fTr4dwX1CxRZM6eASD7XrnX8Ed-2u72Kxfx53-Gypw-yU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Simultaneous+Inference+of+Hydraulic+and+Transport+Properties&rft.jtitle=Water+resources+research&rft.au=Zhou%2C+Zitong&rft.au=Zabaras%2C+Nicholas&rft.au=Tartakovsky%2C+Daniel+M.&rft.date=2022-10-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=58&rft.issue=10&rft_id=info:doi/10.1029%2F2021WR031438&rft.externalDocID=1894737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon