In vitro activity of antibiotic monotherapy and combination therapy with bacteriophages against Staphylococcus aureus LVAD-driveline infections

Current treatment strategies for S. aureus LVAD-driveline infections are based on in vitro antibiotic susceptibility of planktonic bacteria. However, LVAD infections are most often biofilm-related, which decreases antibiotic susceptibility significantly, resulting in discrepancies between in vitro a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of clinical microbiology Ročník 63; číslo 11; s. e0027225
Hlavní autori: Molendijk, Michèle M., Verkaik, Nelianne J., de Vogel, Corné P., Lemmens-den Toom, Nicole, Knight, Gwenan M., Caliskan, Kadir, Bode, Lonneke G. M., Verbon, Annelies, Koopmans, Marion P. G., de Graaf, Miranda, van Wamel, Willem J. B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Society for Microbiology 12.11.2025
Predmet:
ISSN:0095-1137, 1098-660X, 1098-660X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Current treatment strategies for S. aureus LVAD-driveline infections are based on in vitro antibiotic susceptibility of planktonic bacteria. However, LVAD infections are most often biofilm-related, which decreases antibiotic susceptibility significantly, resulting in discrepancies between in vitro antibiotic susceptibility and in vivo treatment success. Here, we have developed a novel in vitro assay to determine antibiotic susceptibility of S. aureus biofilm, grown in conditions relevant to LVAD-driveline infections. Next to antibiotic susceptibility, the susceptibility of this biofilm to bacteriophage mono- and combination treatment with antibiotics was evaluated as an alternative treatment strategy. In the future, this assay can be used to provide a better insight in in vivo antibiotic- and bacteriophage susceptibility of LVAD-driveline biofilms. Thereby improving in vivo treatment strategies for LVAD-driveline infections.
AbstractList Left-ventricular assist devices (LVADs) are increasingly used as a bridge to heart transplantation and destination therapy. These devices, especially the driveline, are susceptible to difficult-to-treat infections, associated with high morbidity and mortality rates. Staphylococcus aureus (S. aureus) is a major causative pathogen of LVAD infections. Antibiotic resistance and biofilm formation can complicate the treatment of these infections. A novel in vitro assay was developed to study the antibiotic susceptibility of S. aureus biofilm grown on LVAD drivelines. Besides antibiotic monotherapy, the effect of various antibiotics combined with rifampicin was studied. Additionally, we explored the efficacy of four individual phages and phage-antibiotic combinations as potential treatment strategies. Our data showed a decrease of susceptibility of the S. aureus biofilms to antibiotic monotherapy compared to planktonic S. aureus. With only rifampicin and erythromycin monotherapy resulting in full bacterial clearance. Combining antibiotics with rifampicin showed similar antimicrobial efficacy against S. aureus biofilms as rifampicin monotherapy. While both individual phages and a phage cocktail were effective against planktonic bacteria, phage efficacy was limited against S. aureus in biofilm. Combining phages with antibiotics did not clearly improve treatment efficacy, compared to antibiotic monotherapy. Contrarily, it even increased bacterial growth when phage administration preceded antibiotic treatment. Here, both antibiotic- and phage monotherapy showed reduced efficacy on LVAD-driveline biofilms. Additionally, phages did not show an additive value to antibiotic treatment of LVAD driveline infections. Further studies are needed to elucidate optimal treatment strategies for LVAD-driveline infections.IMPORTANCECurrent treatment strategies for S. aureus LVAD-driveline infections are based on in vitro antibiotic susceptibility of planktonic bacteria. However, LVAD infections are most often biofilm-related, which decreases antibiotic susceptibility significantly, resulting in discrepancies between in vitro antibiotic susceptibility and in vivo treatment success. Here, we have developed a novel in vitro assay to determine antibiotic susceptibility of S. aureus biofilm, grown in conditions relevant to LVAD-driveline infections. Next to antibiotic susceptibility, the susceptibility of this biofilm to bacteriophage mono- and combination treatment with antibiotics was evaluated as an alternative treatment strategy. In the future, this assay can be used to provide a better insight in in vivo antibiotic- and bacteriophage susceptibility of LVAD-driveline biofilms. Thereby improving in vivo treatment strategies for LVAD-driveline infections.Left-ventricular assist devices (LVADs) are increasingly used as a bridge to heart transplantation and destination therapy. These devices, especially the driveline, are susceptible to difficult-to-treat infections, associated with high morbidity and mortality rates. Staphylococcus aureus (S. aureus) is a major causative pathogen of LVAD infections. Antibiotic resistance and biofilm formation can complicate the treatment of these infections. A novel in vitro assay was developed to study the antibiotic susceptibility of S. aureus biofilm grown on LVAD drivelines. Besides antibiotic monotherapy, the effect of various antibiotics combined with rifampicin was studied. Additionally, we explored the efficacy of four individual phages and phage-antibiotic combinations as potential treatment strategies. Our data showed a decrease of susceptibility of the S. aureus biofilms to antibiotic monotherapy compared to planktonic S. aureus. With only rifampicin and erythromycin monotherapy resulting in full bacterial clearance. Combining antibiotics with rifampicin showed similar antimicrobial efficacy against S. aureus biofilms as rifampicin monotherapy. While both individual phages and a phage cocktail were effective against planktonic bacteria, phage efficacy was limited against S. aureus in biofilm. Combining phages with antibiotics did not clearly improve treatment efficacy, compared to antibiotic monotherapy. Contrarily, it even increased bacterial growth when phage administration preceded antibiotic treatment. Here, both antibiotic- and phage monotherapy showed reduced efficacy on LVAD-driveline biofilms. Additionally, phages did not show an additive value to antibiotic treatment of LVAD driveline infections. Further studies are needed to elucidate optimal treatment strategies for LVAD-driveline infections.IMPORTANCECurrent treatment strategies for S. aureus LVAD-driveline infections are based on in vitro antibiotic susceptibility of planktonic bacteria. However, LVAD infections are most often biofilm-related, which decreases antibiotic susceptibility significantly, resulting in discrepancies between in vitro antibiotic susceptibility and in vivo treatment success. Here, we have developed a novel in vitro assay to determine antibiotic susceptibility of S. aureus biofilm, grown in conditions relevant to LVAD-driveline infections. Next to antibiotic susceptibility, the susceptibility of this biofilm to bacteriophage mono- and combination treatment with antibiotics was evaluated as an alternative treatment strategy. In the future, this assay can be used to provide a better insight in in vivo antibiotic- and bacteriophage susceptibility of LVAD-driveline biofilms. Thereby improving in vivo treatment strategies for LVAD-driveline infections.
Left-ventricular assist devices (LVADs) are increasingly used as a bridge to heart transplantation and destination therapy. These devices, especially the driveline, are susceptible to difficult-to-treat infections, associated with high morbidity and mortality rates. ( ) is a major causative pathogen of LVAD infections. Antibiotic resistance and biofilm formation can complicate the treatment of these infections. A novel assay was developed to study the antibiotic susceptibility of biofilm grown on LVAD drivelines. Besides antibiotic monotherapy, the effect of various antibiotics combined with rifampicin was studied. Additionally, we explored the efficacy of four individual phages and phage-antibiotic combinations as potential treatment strategies. Our data showed a decrease of susceptibility of the biofilms to antibiotic monotherapy compared to planktonic . With only rifampicin and erythromycin monotherapy resulting in full bacterial clearance. Combining antibiotics with rifampicin showed similar antimicrobial efficacy against biofilms as rifampicin monotherapy. While both individual phages and a phage cocktail were effective against planktonic bacteria, phage efficacy was limited against in biofilm. Combining phages with antibiotics did not clearly improve treatment efficacy, compared to antibiotic monotherapy. Contrarily, it even increased bacterial growth when phage administration preceded antibiotic treatment. Here, both antibiotic- and phage monotherapy showed reduced efficacy on LVAD-driveline biofilms. Additionally, phages did not show an additive value to antibiotic treatment of LVAD driveline infections. Further studies are needed to elucidate optimal treatment strategies for LVAD-driveline infections.IMPORTANCECurrent treatment strategies for LVAD-driveline infections are based on antibiotic susceptibility of planktonic bacteria. However, LVAD infections are most often biofilm-related, which decreases antibiotic susceptibility significantly, resulting in discrepancies between antibiotic susceptibility and treatment success. Here, we have developed a novel assay to determine antibiotic susceptibility of biofilm, grown in conditions relevant to LVAD-driveline infections. Next to antibiotic susceptibility, the susceptibility of this biofilm to bacteriophage mono- and combination treatment with antibiotics was evaluated as an alternative treatment strategy. In the future, this assay can be used to provide a better insight in antibiotic- and bacteriophage susceptibility of LVAD-driveline biofilms. Thereby improving treatment strategies for LVAD-driveline infections.
Left-ventricular assist devices (LVADs) are increasingly used as a bridge to heart transplantation and destination therapy. These devices, especially the driveline, are susceptible to difficult-to-treat infections, associated with high morbidity and mortality rates. Staphylococcus aureus (S. aureus) is a major causative pathogen of LVAD infections. Antibiotic resistance and biofilm formation can complicate the treatment of these infections. A novel in vitro assay was developed to study the antibiotic susceptibility of S. aureus biofilm grown on LVAD drivelines. Besides antibiotic monotherapy, the effect of various antibiotics combined with rifampicin was studied. Additionally, we explored the efficacy of four individual phages and phage-antibiotic combinations as potential treatment strategies. Our data showed a decrease of susceptibility of the S. aureus biofilms to antibiotic monotherapy compared to planktonic S. aureus. With only rifampicin and erythromycin monotherapy resulting in full bacterial clearance. Combining antibiotics with rifampicin showed similar antimicrobial efficacy against S. aureus biofilms as rifampicin monotherapy. While both individual phages and a phage cocktail were effective against planktonic bacteria, phage efficacy was limited against S. aureus in biofilm. Combining phages with antibiotics did not clearly improve treatment efficacy, compared to antibiotic monotherapy. Contrarily, it even increased bacterial growth when phage administration preceded antibiotic treatment. Here, both antibiotic- and phage monotherapy showed reduced efficacy on LVAD-driveline biofilms. Additionally, phages did not show an additive value to antibiotic treatment of LVAD driveline infections. Further studies are needed to elucidate optimal treatment strategies for LVAD-driveline infections.IMPORTANCECurrent treatment strategies for S. aureus LVAD-driveline infections are based on in vitro antibiotic susceptibility of planktonic bacteria. However, LVAD infections are most often biofilm-related, which decreases antibiotic susceptibility significantly, resulting in discrepancies between in vitro antibiotic susceptibility and in vivo treatment success. Here, we have developed a novel in vitro assay to determine antibiotic susceptibility of S. aureus biofilm, grown in conditions relevant to LVAD-driveline infections. Next to antibiotic susceptibility, the susceptibility of this biofilm to bacteriophage mono- and combination treatment with antibiotics was evaluated as an alternative treatment strategy. In the future, this assay can be used to provide a better insight in in vivo antibiotic- and bacteriophage susceptibility of LVAD-driveline biofilms. Thereby improving in vivo treatment strategies for LVAD-driveline infections.
Current treatment strategies for S. aureus LVAD-driveline infections are based on in vitro antibiotic susceptibility of planktonic bacteria. However, LVAD infections are most often biofilm-related, which decreases antibiotic susceptibility significantly, resulting in discrepancies between in vitro antibiotic susceptibility and in vivo treatment success. Here, we have developed a novel in vitro assay to determine antibiotic susceptibility of S. aureus biofilm, grown in conditions relevant to LVAD-driveline infections. Next to antibiotic susceptibility, the susceptibility of this biofilm to bacteriophage mono- and combination treatment with antibiotics was evaluated as an alternative treatment strategy. In the future, this assay can be used to provide a better insight in in vivo antibiotic- and bacteriophage susceptibility of LVAD-driveline biofilms. Thereby improving in vivo treatment strategies for LVAD-driveline infections.
ABSTRACT Left-ventricular assist devices (LVADs) are increasingly used as a bridge to heart transplantation and destination therapy. These devices, especially the driveline, are susceptible to difficult-to-treat infections, associated with high morbidity and mortality rates. Staphylococcus aureus (S. aureus) is a major causative pathogen of LVAD infections. Antibiotic resistance and biofilm formation can complicate the treatment of these infections. A novel in vitro assay was developed to study the antibiotic susceptibility of S. aureus biofilm grown on LVAD drivelines. Besides antibiotic monotherapy, the effect of various antibiotics combined with rifampicin was studied. Additionally, we explored the efficacy of four individual phages and phage-antibiotic combinations as potential treatment strategies. Our data showed a decrease of susceptibility of the S. aureus biofilms to antibiotic monotherapy compared to planktonic S. aureus. With only rifampicin and erythromycin monotherapy resulting in full bacterial clearance. Combining antibiotics with rifampicin showed similar antimicrobial efficacy against S. aureus biofilms as rifampicin monotherapy. While both individual phages and a phage cocktail were effective against planktonic bacteria, phage efficacy was limited against S. aureus in biofilm. Combining phages with antibiotics did not clearly improve treatment efficacy, compared to antibiotic monotherapy. Contrarily, it even increased bacterial growth when phage administration preceded antibiotic treatment. Here, both antibiotic- and phage monotherapy showed reduced efficacy on LVAD-driveline biofilms. Additionally, phages did not show an additive value to antibiotic treatment of LVAD driveline infections. Further studies are needed to elucidate optimal treatment strategies for LVAD-driveline infections.IMPORTANCECurrent treatment strategies for S. aureus LVAD-driveline infections are based on in vitro antibiotic susceptibility of planktonic bacteria. However, LVAD infections are most often biofilm-related, which decreases antibiotic susceptibility significantly, resulting in discrepancies between in vitro antibiotic susceptibility and in vivo treatment success. Here, we have developed a novel in vitro assay to determine antibiotic susceptibility of S. aureus biofilm, grown in conditions relevant to LVAD-driveline infections. Next to antibiotic susceptibility, the susceptibility of this biofilm to bacteriophage mono- and combination treatment with antibiotics was evaluated as an alternative treatment strategy. In the future, this assay can be used to provide a better insight in in vivo antibiotic- and bacteriophage susceptibility of LVAD-driveline biofilms. Thereby improving in vivo treatment strategies for LVAD-driveline infections.
Author Caliskan, Kadir
van Wamel, Willem J. B.
de Vogel, Corné P.
Verkaik, Nelianne J.
Bode, Lonneke G. M.
de Graaf, Miranda
Verbon, Annelies
Knight, Gwenan M.
Koopmans, Marion P. G.
Molendijk, Michèle M.
Lemmens-den Toom, Nicole
Author_xml – sequence: 1
  givenname: Michèle M.
  orcidid: 0000-0001-8225-7384
  surname: Molendijk
  fullname: Molendijk, Michèle M.
– sequence: 2
  givenname: Nelianne J.
  surname: Verkaik
  fullname: Verkaik, Nelianne J.
– sequence: 3
  givenname: Corné P.
  surname: de Vogel
  fullname: de Vogel, Corné P.
– sequence: 4
  givenname: Nicole
  surname: Lemmens-den Toom
  fullname: Lemmens-den Toom, Nicole
– sequence: 5
  givenname: Gwenan M.
  surname: Knight
  fullname: Knight, Gwenan M.
– sequence: 6
  givenname: Kadir
  surname: Caliskan
  fullname: Caliskan, Kadir
– sequence: 7
  givenname: Lonneke G. M.
  surname: Bode
  fullname: Bode, Lonneke G. M.
– sequence: 8
  givenname: Annelies
  surname: Verbon
  fullname: Verbon, Annelies
– sequence: 9
  givenname: Marion P. G.
  surname: Koopmans
  fullname: Koopmans, Marion P. G.
– sequence: 10
  givenname: Miranda
  orcidid: 0000-0002-7831-0098
  surname: de Graaf
  fullname: de Graaf, Miranda
– sequence: 11
  givenname: Willem J. B.
  orcidid: 0000-0001-9145-9121
  surname: van Wamel
  fullname: van Wamel, Willem J. B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41065359$$D View this record in MEDLINE/PubMed
BookMark eNptkUlvFDEQhS0URCaBG2fkI0h08NrLMUpYRhqJA4u4WV5nPOq2G9sdNL-Cv4wnk-TEqUpPrz7V07sAZyEGC8BrjK4wJv2HvZ6uECIdaQh_BlYYDX3TtujXGVghNPAGY9qdg4uc9whhxjh_Ac4ZRi2nfFiBv-sA73xJEUpdfN0OMDooQ_HKx-I1nGKIZWeTnA9VNlDHSfkgi48BPup_fNlBVQE2-Tjv5NZmKLfSh1zgtyLn3WGMOmq9VHlJto7Nz-vbxiR_Z0cfLPTBWX1E5pfguZNjtq8e5iX48enj95svzebr5_XN9aaRtO9LMxCHB9vhGsL0FCnGFJUKW9ca3jOjDcMMd5IQ65jrlDWI8U6xeoU06xSnl2B94poo92JOfpLpIKL04l6IaStkqvlHK4xSFBvVEqUJM1JLNzhDEcEtax3hprLenlhzir8Xm4uYfNZ2HGWwccmCEj6gAXNOq_XdySrzRMQ-LinUlAIjcexS1C7FfZeCHF9884Bd1GTN05OP5VXD-5NBp5hzsu7J8l_eP1tGreg
Cites_doi 10.1093/cid/ciad335
10.1111/j.1751-7915.2011.00259.x
10.1007/s12272-020-01246-x
10.3390/antibiotics11101310
10.1371/journal.pone.0200064
10.1111/j.1472-765X.2012.03205.x
10.1016/j.healun.2022.01.018
10.1007/s10096-023-04638-1
10.1038/s44259-024-00046-3
10.1371/journal.pone.0024418
10.3390/microorganisms10050845
10.1073/pnas.2014920118
10.1186/1749-8090-9-63
10.1111/1574-6968.12007
10.3390/v14071490
10.1016/j.healun.2019.01.001
10.1038/s41579-018-0070-8
10.1093/ejcts/ezz295
10.1016/j.ijid.2022.03.022
10.1128/JB.188.4.1310-1315.2006
10.1128/CMR.00084-16
10.7759/cureus.23777
10.3390/antibiotics10020165
10.3390/v11040352
10.7150/ijbs.60551
10.1128/spectrum.00411-22
10.3390/antibiotics9110749
10.2106/JBJS.21.00958
10.1371/journal.pone.0260272
10.3389/fmed.2022.835765
10.3389/fmicb.2020.00327
10.1016/j.jinf.2021.05.027
10.3389/fcimb.2022.907314
10.1016/j.mib.2017.09.004
10.1093/ofid/ofaa389
10.3389/fmicb.2020.00110
10.3978/j.issn.2072-1439.2015.11.06
10.1016/j.ijantimicag.2018.09.006
10.3390/antibiotics9050232
10.3390/v15010014
10.1128/aac.01728-23
10.1016/j.ijmm.2006.02.005
10.1128/spectrum.00615-22
10.1093/ofid/ofaa124
10.1016/j.phrp.2013.09.001
10.1128/AEM.01789-14
10.1128/JB.186.9.2862-2871.2004
10.3390/pathogens13050424
10.3390/microorganisms9091853
10.1371/journal.pbio.3002205
10.1016/j.coviro.2021.11.005
10.1186/s12929-022-00806-1
10.1371/journal.pcbi.1010746
10.26717/BJSTR.2019.18.003195
10.15420/ecr.2019.29.2
10.3389/fmicb.2020.602057
10.1038/s41598-019-39929-1
10.1371/journal.pone.0168615
10.1128/AAC.02071-21
10.1089/vim.2013.0128
10.1002/phar.2806
10.1093/jac/43.1.113
10.3390/antibiotics10070849
10.1016/j.jss.2021.10.010
10.3390/v15051210
10.1101/2020.02.27.967034
10.1016/j.ymeth.2024.01.014
10.3390/jcm8111853
ContentType Journal Article
Copyright Copyright © 2025 Molendijk et al.
Copyright_xml – notice: Copyright © 2025 Molendijk et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1128/jcm.00272-25
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-660X
Editor Mellmann, Alexander
Editor_xml – sequence: 1
  givenname: Alexander
  surname: Mellmann
  fullname: Mellmann, Alexander
ExternalDocumentID oai_doaj_org_article_dbb31db62bc24dacaf9fd3021646f25d
jcm00272-25
41065359
10_1128_jcm_00272_25
Genre Journal Article
GroupedDBID ---
.55
0R~
18M
2WC
39C
4.4
5GY
5RE
5VS
AAGFI
AAYXX
ABOCM
ABPPZ
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
F5P
FRP
GROUPED_DOAJ
GX1
H13
HZ~
KQ8
L7B
O9-
OK1
P2P
P6G
RHI
RNS
RPM
RSF
TR2
WOQ
X7M
ZCA
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a388t-92f19e71535d830b44b3ab1ef6d584dcd41417a22ef4f7bed0457b42f10c47b53
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001589750700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0095-1137
1098-660X
IngestDate Mon Nov 17 19:36:59 EST 2025
Thu Oct 09 19:00:58 EDT 2025
Wed Nov 12 18:20:19 EST 2025
Sat Nov 15 01:41:53 EST 2025
Thu Nov 20 00:49:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords LVAD driveline infection
Staphylococcus aureus
bacteriophages
biofilm
isothermal microcalorimetry
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a388t-92f19e71535d830b44b3ab1ef6d584dcd41417a22ef4f7bed0457b42f10c47b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7831-0098
0000-0001-9145-9121
0000-0001-8225-7384
OpenAccessLink https://doaj.org/article/dbb31db62bc24dacaf9fd3021646f25d
PMID 41065359
PQID 3259091553
PQPubID 23479
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_dbb31db62bc24dacaf9fd3021646f25d
proquest_miscellaneous_3259091553
asm2_journals_10_1128_jcm_00272_25
pubmed_primary_41065359
crossref_primary_10_1128_jcm_00272_25
PublicationCentury 2000
PublicationDate 2025-11-12
PublicationDateYYYYMMDD 2025-11-12
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of clinical microbiology
PublicationTitleAbbrev J Clin Microbiol
PublicationTitleAlternate J Clin Microbiol
PublicationYear 2025
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_71_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
Rose T (e_1_3_3_70_2) 2014
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_53_2
e_1_3_3_72_2
Duplessis CA (e_1_3_3_30_2) 2019; 5
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
Elizabeth K (e_1_3_3_15_2) 2005
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
B22
Racenis, K, Lacis, J, Rezevska, D, Mukane, L, Vilde, A, Putnins, I, Djebara, S, Merabishvili, M, Pirnay, JP, Kalnina, M, Petersons, A, Stradins, P, Maurins, S, Kroica, J (B4) 2023; 15
Mulzer, J, Trampuz, A, Potapov, EV (B35) 2020; 57
O’Flaherty, S, Coffey, A, Edwards, R, Meaney, W, Fitzgerald, GF, Ross, RP (B44) 2004; 186
Astasov-Frauenhoffer, M, Braissant, O, Hauser-Gerspach, I, Daniels, AU, Weiger, R, Waltimo, T (B13) 2012; 337
Plumet, L, Ahmad-Mansour, N, Dunyach-Remy, C, Kissa, K, Sotto, A, Lavigne, JP, Costechareyre, D, Molle, V (B48) 2022; 12
Simon, K, Pier, W, Krüttgen, A, Horz, HP (B72) 2021; 10
Nobrega, FL, Vlot, M, de Jonge, PA, Dreesens, LL, Beaumont, HJE, Lavigne, R, Dutilh, BE, Brouns, SJJ (B18) 2018; 16
Püschel, A, Skusa, R, Bollensdorf, A, Gross, J (B31) 2022; 11
Huemer, M, Mairpady Shambat, S, Bergada-Pijuan, J, Söderholm, S, Boumasmoud, M, Vulin, C, Gómez-Mejia, A, Antelo Varela, M, Tripathi, V, Götschi, S, Marques Maggio, E, Hasse, B, Brugger, SD, Bumann, D, Schuepbach, RA, Zinkernagel, AS (B59) 2021; 118
Łusiak-Szelachowska, M, Zaczek, M, Weber-Dąbrowska, B, Międzybrodzki, R, Kłak, M, Fortuna, W, Letkiewicz, S, Rogóż, P, Szufnarowski, K, Jończyk-Matysiak, E, Owczarek, B, Górski, A (B63) 2014; 27
Rose, T, Verbeken, G, Vos, D, Merabishvili, M, Vaneechoutte, M, Lavigne, R, Jennes, S, Zizi, M, Pirnay, J-P (B69) 2014
Mistretta, N, Brossaud, M, Telles, F, Sanchez, V, Talaga, P, Rokbi, B (B65) 2019; 9
Tran, NN, Morrisette, T, Jorgensen, SCJ, Orench-Benvenutti, JM, Kebriaei, R (B10) 2023; 43
Baede, VO, Tavakol, M, Vos, MC, Knight, GM, van Wamel, WJB (B71) 2022; 10
Wang, L, Tkhilaishvili, T, Trampuz, A, Gonzalez Moreno, M (B16) 2020; 11
Duplessis, CA, Stockelman, M, Hamilton, T, Merril, G, Brownstein, M, Bishop-lilly, K, Schooley, R, Henry, M, Horne, A, Sisson, BM, Quinones, J, Aslam, S, Lavergne, S, Nir-Paz, R, Merril, C, Biswas, B (B29) 2019; 5
Tkhilaishvili, T, Potapov, E, Starck, C, Mulzer, J, Falk, V, Trampuz, A, Schoenrath, F (B33) 2022; 41
DePalma, BJ, Nandi, S, Chaudhry, W, Lee, M, Johnson, AJ, Doub, JB (B67) 2022; 104
Liu, HY, Prentice, EL, Webber, MA (B39) 2024; 2
Aslam, S, Roach, D, Nikolich, MP, Biswas, B, Schooley, RT, Lilly-Bishop, KA, Rice, GK, Cer, RZ, Hamilton, T, Henry, M (B27) 2024; 68
Zinoviev, R, Lippincott, CK, Keller, SC, Gilotra, NA (B2) 2020; 7
Fauconnier, A (B56) 2019; 11
Meneses, L, Brandão, AC, Coenye, T, Braga, AC, Pires, DP, Azeredo, J (B19) 2023; 42
Łusiak-Szelachowska, M, Międzybrodzki, R, Drulis-Kawa, Z, Cater, K, Knežević, P, Winogradow, C, Amaro, K, Jończyk-Matysiak, E, Weber-Dąbrowska, B, Rękas, J, Górski, A (B50) 2022; 29
Chaudhry, WN, Concepción-Acevedo, J, Park, T, Andleeb, S, Bull, JJ, Levin, BR (B54) 2017; 12
Shinde, P, Stamatos, N, Doub, JB (B64) 2022; 14
Parmar, D, Rosado-Rosa, JM, Shrout, JD, Sweedler, JV (B61) 2024; 224
B37
Glonti, T, Pirnay, JP (B7) 2022; 14
Kelly, D, McAuliffe, O, Ross, RP, Coffey, A (B42) 2012; 54
Sultan, AR, Tavakol, M, Lemmens-den Toom, NA, Croughs, PD, Verkaik, NJ, Verbon, A, van Wamel, WJB (B8) 2022; 17
Aslam, S, Pretorius, V, Lehman, SM, Morales, S, Schooley, RT (B28) 2019; 38
Kvachadze, L, Balarjishvili, N, Meskhi, T, Tevdoradze, E, Skhirtladze, N, Pataridze, T, Adamia, R, Topuria, T, Kutter, E, Rohde, C, Kutateladze, M (B46) 2011; 4
Sigg, AP, Mariotti, M, Grütter, AE, Lafranca, T, Leitner, L, Bonkat, G, Braissant, O (B36) 2022; 10
van Wamel, WJB, Rooijakkers, SHM, Ruyken, M, van Kessel, KPM, van Strijp, JAG (B68) 2006; 188
Yang, Y, Shen, W, Zhong, Q, Chen, Q, He, X, Baker, JL, Xiong, K, Jin, X, Wang, J, Hu, F, Le, S (B15) 2020; 11
Pires, DP, Melo, LDR, Vilas Boas, D, Sillankorva, S, Azeredo, J (B24) 2017; 39
Molendijk, MM, Phan, MVT, Bode, LGM, Strepis, N, Prasad, DK, Worp, N, Nieuwenhuijse, DF, Schapendonk, CME, Boekema, BKHL, Verbon, A, Koopmans, MPG, Graaf, M de, van Wamel, WJB (B47) 2023; 15
Lade, H, Park, JH, Chung, SH, Kim, IH, Kim, JM, Joo, HS, Kim, JS (B12) 2019; 8
Renz, N, Trampuz, A, Zimmerli, W (B53) 2021; 10
Leclerc, QJ, Lindsay, JA, Knight, GM (B57) 2022; 18
Cha, J-O, Yoo, JI, Yoo, JS, Chung, H-S, Park, S-H, Kim, HS, Lee, YS, Chung, GT (B38) 2013; 4
Verkaik, NJ, Yalcin, YC, Bax, HI, Constantinescu, AA, Brugts, JJ, Manintveld, OC, Birim, O, Croughs, PD, Bogers, AJJC, Caliskan, K (B52) 2022; 9
Chang, JO, Lee, RE, Lee, W (B58) 2020; 43
Bayes-Genis, A, Muñoz-Guijosa, C, Santiago-Vacas, E, Montero, S, García-García, C, Codina, P, Núñez, J, Lupón, J (B1) 2020; 15
Elizabeth, K, Alexander, S (B14) 2005
Biswas, B (B62) 2019; 18
Vandersteegen, K, Mattheus, W, Ceyssens, P-J, Bilocq, F, De Vos, D, Pirnay, J-P, Noben, J-P, Merabishvili, M, Lipinska, U, Hermans, K, Lavigne, R (B70) 2011; 6
Tkhilaishvili, T, Merabishvili, M, Pirnay, JP, Starck, C, Potapov, E, Falk, V, Schoenrath, F (B34) 2021; 83
Walter, V, Stock, UA, Soriano-Romero, M, Schnitzbauer, A, Moritz, A, Beiras-Fernandez, A (B51) 2014; 9
Kamat, I, Lamba, H, Hines-Munson, C, Hudson, S, Liao, K, Muldrew, KL, Green, S, Terwilliger, A, Kaplan, HB, Ramig, RF, Maresso, A, Trautner, BW (B3) 2022; 271
Aslam, S, Lampley, E, Wooten, D, Karris, M, Benson, C, Strathdee, S, Schooley, RT (B26) 2020; 7
Leuck, AM (B5) 2015; 7
Leder, K, Turnidge, JD, Korman, TM, Grayson, ML (B49) 1999; 43
Alves, DR, Gaudion, A, Bean, JE, Perez Esteban, P, Arnot, TC, Harper, DR, Kot, W, Hansen, LH, Enright, MC, Jenkins, ATA (B43) 2014; 80
Tkhilaishvili, T, Lombardi, L, Klatt, A-B, Trampuz, A, Di Luca, M (B21) 2018; 52
Plota, M, Sazakli, E, Giormezis, N, Gkartziou, F, Kolonitsiou, F, Leotsinidis, M, Antimisiaris, SG, Spiliopoulou, I (B41) 2021; 9
Kebriaei, R, Lev, KL, Shah, RM, Stamper, KC, Holger, DJ, Morrisette, T, Kunz Coyne, AJ, Lehman, SM, Rybak, MJ (B45) 2022; 10
B11
Dayton, H, Kiss, J, Wei, M, Chauhan, S, LaMarre, E, Cornell, WC, Morgan, CJ, Janakiraman, A, Min, W, Tomer, R, Price-Whelan, A, Nirody, JA, Dietrich, LEP (B60) 2024; 22
Wang, L, Tkhilaishvili, T, Trampuz, A (B20) 2020; 9
Rubalskii, E, Ruemke, S, Salmoukas, C, Boyle, EC, Warnecke, G, Tudorache, I, Shrestha, M, Schmitto, JD, Martens, A, Rojas, SV, Ziesing, S, Bochkareva, S, Kuehn, C, Haverich, A (B30) 2020; 9
Doub, JB, Urish, K, Lee, M, Fackler, J (B66) 2022; 119
Rasmussen, TB, Givskov, M (B9) 2006; 296
Passerini, M, Petri, F, Suh, GA (B25) 2024; 13
Verbeken, G, Pirnay, JP (B55) 2022; 52
Suh, GA, Lodise, TP, Tamma, PD, Knisely, JM, Alexander, J, Aslam, S, Barton, KD, Bizzell, E, Totten, KMC, Campbell, JL, Chan, BK, Cunningham, SA, Goodman, KE, Greenwood-Quaintance, KE, Harris, AD, Hesse, S, Maresso, A, Nussenblatt, V, Pride, D, Rybak, MJ, Sund, Z, van Duin, D, Van Tyne, D, Patel, R (B6) 2022; 66
Tasse, J, Trouillet-Assant, S, Josse, J, Martins-Simões, P, Valour, F, Langlois-Jacques, C, Badel-Berchoux, S, Provot, C, Bernardi, T, Ferry, T, Laurent, F (B40) 2018; 13
Tkhilaishvili, T, Wang, L, Tavanti, A, Trampuz, A, Di Luca, M (B17) 2020; 11
Green, SI, Clark, JR, Santos, HH, Weesner, KE, Salazar, KC, Aslam, S, Campbell, JW, Doernberg, SB, Blodget, E, Morris, MI, Suh, GA, Obeid, K, Silveira, FP, Filippov, AA, Whiteson, KL, Trautner, BW, Terwilliger, AL, Maresso, A (B32) 2023; 77
Li, X, He, Y, Wang, Z, Wei, J, Hu, T, Si, J, Tao, G, Zhang, L, Xie, L, Abdalla, AE, Wang, G, Li, Y, Teng, T (B23) 2021; 17
References_xml – ident: e_1_3_3_33_2
  doi: 10.1093/cid/ciad335
– ident: e_1_3_3_47_2
  doi: 10.1111/j.1751-7915.2011.00259.x
– ident: e_1_3_3_59_2
  doi: 10.1007/s12272-020-01246-x
– ident: e_1_3_3_32_2
  doi: 10.3390/antibiotics11101310
– ident: e_1_3_3_41_2
  doi: 10.1371/journal.pone.0200064
– ident: e_1_3_3_43_2
  doi: 10.1111/j.1472-765X.2012.03205.x
– ident: e_1_3_3_34_2
  doi: 10.1016/j.healun.2022.01.018
– ident: e_1_3_3_20_2
  doi: 10.1007/s10096-023-04638-1
– ident: e_1_3_3_40_2
  doi: 10.1038/s44259-024-00046-3
– ident: e_1_3_3_71_2
  doi: 10.1371/journal.pone.0024418
– ident: e_1_3_3_37_2
  doi: 10.3390/microorganisms10050845
– ident: e_1_3_3_60_2
  doi: 10.1073/pnas.2014920118
– ident: e_1_3_3_52_2
  doi: 10.1186/1749-8090-9-63
– ident: e_1_3_3_14_2
  doi: 10.1111/1574-6968.12007
– ident: e_1_3_3_8_2
  doi: 10.3390/v14071490
– ident: e_1_3_3_29_2
  doi: 10.1016/j.healun.2019.01.001
– ident: e_1_3_3_19_2
  doi: 10.1038/s41579-018-0070-8
– ident: e_1_3_3_36_2
  doi: 10.1093/ejcts/ezz295
– ident: e_1_3_3_67_2
  doi: 10.1016/j.ijid.2022.03.022
– ident: e_1_3_3_69_2
  doi: 10.1128/JB.188.4.1310-1315.2006
– ident: e_1_3_3_12_2
  doi: 10.1128/CMR.00084-16
– ident: e_1_3_3_65_2
  doi: 10.7759/cureus.23777
– ident: e_1_3_3_54_2
  doi: 10.3390/antibiotics10020165
– ident: e_1_3_3_57_2
  doi: 10.3390/v11040352
– ident: e_1_3_3_24_2
  doi: 10.7150/ijbs.60551
– ident: e_1_3_3_46_2
  doi: 10.1128/spectrum.00411-22
– ident: e_1_3_3_21_2
  doi: 10.3390/antibiotics9110749
– ident: e_1_3_3_68_2
  doi: 10.2106/JBJS.21.00958
– ident: e_1_3_3_9_2
  doi: 10.1371/journal.pone.0260272
– ident: e_1_3_3_53_2
  doi: 10.3389/fmed.2022.835765
– ident: e_1_3_3_16_2
  doi: 10.3389/fmicb.2020.00327
– ident: e_1_3_3_35_2
  doi: 10.1016/j.jinf.2021.05.027
– ident: e_1_3_3_49_2
  doi: 10.3389/fcimb.2022.907314
– ident: e_1_3_3_38_2
– ident: e_1_3_3_25_2
  doi: 10.1016/j.mib.2017.09.004
– ident: e_1_3_3_27_2
  doi: 10.1093/ofid/ofaa389
– ident: e_1_3_3_18_2
  doi: 10.3389/fmicb.2020.00110
– ident: e_1_3_3_6_2
  doi: 10.3978/j.issn.2072-1439.2015.11.06
– ident: e_1_3_3_22_2
  doi: 10.1016/j.ijantimicag.2018.09.006
– ident: e_1_3_3_31_2
  doi: 10.3390/antibiotics9050232
– ident: e_1_3_3_48_2
  doi: 10.3390/v15010014
– ident: e_1_3_3_28_2
  doi: 10.1128/aac.01728-23
– ident: e_1_3_3_10_2
  doi: 10.1016/j.ijmm.2006.02.005
– volume: 5
  start-page: 11
  year: 2019
  ident: e_1_3_3_30_2
  article-title: A case series of emergency investigational new drug applications for bacteriophages treating recalcitrant multi-drug resistant bacterial infections: confirmed safety and a signal of efficacy
  publication-title: J Intensive Crit Care
– ident: e_1_3_3_72_2
  doi: 10.1128/spectrum.00615-22
– ident: e_1_3_3_3_2
  doi: 10.1093/ofid/ofaa124
– ident: e_1_3_3_39_2
  doi: 10.1016/j.phrp.2013.09.001
– ident: e_1_3_3_44_2
  doi: 10.1128/AEM.01789-14
– ident: e_1_3_3_45_2
  doi: 10.1128/JB.186.9.2862-2871.2004
– ident: e_1_3_3_26_2
  doi: 10.3390/pathogens13050424
– start-page: 66
  year: 2014
  ident: e_1_3_3_70_2
  article-title: Experimental phage therapy of burn wound infection - difficult first steps
  publication-title: Int J Burn Trauma
– ident: e_1_3_3_42_2
  doi: 10.3390/microorganisms9091853
– ident: e_1_3_3_61_2
  doi: 10.1371/journal.pbio.3002205
– ident: e_1_3_3_56_2
  doi: 10.1016/j.coviro.2021.11.005
– ident: e_1_3_3_51_2
  doi: 10.1186/s12929-022-00806-1
– ident: e_1_3_3_58_2
  doi: 10.1371/journal.pcbi.1010746
– ident: e_1_3_3_63_2
  doi: 10.26717/BJSTR.2019.18.003195
– ident: e_1_3_3_2_2
  doi: 10.15420/ecr.2019.29.2
– ident: e_1_3_3_17_2
  doi: 10.3389/fmicb.2020.602057
– ident: e_1_3_3_66_2
  doi: 10.1038/s41598-019-39929-1
– ident: e_1_3_3_55_2
  doi: 10.1371/journal.pone.0168615
– ident: e_1_3_3_7_2
  doi: 10.1128/AAC.02071-21
– ident: e_1_3_3_64_2
  doi: 10.1089/vim.2013.0128
– ident: e_1_3_3_11_2
  doi: 10.1002/phar.2806
– ident: e_1_3_3_50_2
  doi: 10.1093/jac/43.1.113
– ident: e_1_3_3_73_2
  doi: 10.3390/antibiotics10070849
– ident: e_1_3_3_4_2
  doi: 10.1016/j.jss.2021.10.010
– ident: e_1_3_3_5_2
  doi: 10.3390/v15051210
– volume-title: Bacteriophages: biology and applications
  year: 2005
  ident: e_1_3_3_15_2
– ident: e_1_3_3_23_2
  doi: 10.1101/2020.02.27.967034
– ident: e_1_3_3_62_2
  doi: 10.1016/j.ymeth.2024.01.014
– ident: e_1_3_3_13_2
  doi: 10.3390/jcm8111853
– volume: 186
  start-page: 2862
  year: 2004
  end-page: 2871
  ident: B44
  article-title: Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G+C content
  publication-title: J Bacteriol
  doi: 10.1128/JB.186.9.2862-2871.2004
– volume: 118
  start-page: 1
  year: 2021
  end-page: 12
  ident: B59
  article-title: Molecular reprogramming and phenotype switching in Staphylococcus aureus lead to high antibiotic persistence and affect therapy success
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2014920118
– volume: 271
  start-page: 73
  year: 2022
  end-page: 81
  ident: B3
  article-title: Identifying causative microorganisms in left ventricular assist device infections as a guide for developing bacteriophage therapy
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2021.10.010
– volume: 43
  start-page: 630
  year: 2020
  end-page: 638
  ident: B58
  article-title: A pursuit of Staphylococcus aureus continues: a role of persister cells
  publication-title: Arch Pharm Res
  doi: 10.1007/s12272-020-01246-x
– volume: 15
  year: 2023
  ident: B47
  article-title: Microcalorimetry: a novel application to measure in vitro phage susceptibility of Staphylococcus aureus in human serum
  publication-title: Viruses
  doi: 10.3390/v15010014
– volume: 43
  start-page: 816
  year: 2023
  end-page: 832
  ident: B10
  article-title: Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections
  publication-title: Pharmacotherapy
  doi: 10.1002/phar.2806
– volume: 54
  start-page: 286
  year: 2012
  end-page: 291
  ident: B42
  article-title: Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives
  publication-title: Lett Appl Microbiol
  doi: 10.1111/j.1472-765X.2012.03205.x
– volume: 13
  year: 2018
  ident: B40
  article-title: Association between biofilm formation phenotype and clonal lineage in Staphylococcus aureus strains from bone and joint infections
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0200064
– volume: 10
  year: 2021
  ident: B72
  article-title: Synergy between phage sb-1 and oxacillin against methicillin-resistant Staphylococcus aureus
  publication-title: Antibiotics (Basel)
  doi: 10.3390/antibiotics10070849
– volume: 188
  start-page: 1310
  year: 2006
  end-page: 1315
  ident: B68
  article-title: The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-converting bacteriophages
  publication-title: J Bacteriol
  doi: 10.1128/JB.188.4.1310-1315.2006
– volume: 80
  start-page: 6694
  year: 2014
  end-page: 6703
  ident: B43
  article-title: Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01789-14
– volume: 12
  year: 2022
  ident: B48
  article-title: Bacteriophage therapy for Staphylococcus aureus infections: a review of animal models, treatments, and clinical trials
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2022.907314
– volume: 66
  year: 2022
  ident: B6
  article-title: Considerations for the use of phage therapy in clinical practice
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02071-21
– volume: 52
  start-page: 24
  year: 2022
  end-page: 29
  ident: B55
  article-title: European regulatory aspects of phage therapy: magistral phage preparations
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2021.11.005
– volume: 5
  start-page: 11
  year: 2019
  ident: B29
  article-title: A case series of emergency investigational new drug applications for bacteriophages treating recalcitrant multi-drug resistant bacterial infections: confirmed safety and a signal of efficacy
  publication-title: J Intensive Crit Care
– volume: 18
  start-page: 11
  year: 2019
  end-page: 13
  ident: B62
  article-title: Propagation of S. aureus phage K in presence of human blood
  publication-title: BJSTR
  doi: 10.26717/BJSTR.2019.18.003195
– volume: 4
  start-page: 643
  year: 2011
  end-page: 650
  ident: B46
  article-title: Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens
  publication-title: Microb Biotechnol
  doi: 10.1111/j.1751-7915.2011.00259.x
– year: 2005
  ident: B14
  publication-title: Bacteriophages: biology and applications ;CRC Press
– volume: 13
  year: 2024
  ident: B25
  article-title: Phage therapy for cardiac implantable electronic devices and vascular grafts: a targeted literature review
  publication-title: Pathogens
  doi: 10.3390/pathogens13050424
– volume: 9
  year: 2022
  ident: B52
  article-title: Single-center experience with protocolized treatment of left ventricular assist device infections
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2022.835765
– volume: 39
  start-page: 48
  year: 2017
  end-page: 56
  ident: B24
  article-title: Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2017.09.004
– volume: 10
  year: 2022
  ident: B45
  article-title: Eradication of biofilm-mediated methicillin-resistant Staphylococcus aureus infections in vitro: bacteriophage-antibiotic combination
  publication-title: Microbiol Spectr
  doi: 10.1128/spectrum.00411-22
– volume: 27
  start-page: 295
  year: 2014
  end-page: 304
  ident: B63
  article-title: Phage neutralization by sera of patients receiving phage therapy
  publication-title: Viral Immunol
  doi: 10.1089/vim.2013.0128
– start-page: 66
  year: 2014
  end-page: 73
  ident: B69
  article-title: Experimental phage therapy of burn wound infection - difficult first steps
  publication-title: Int J Burn Trauma
– volume: 7
  year: 2020
  ident: B2
  article-title: In full flow: left ventricular assist device infections in the modern era
  publication-title: Open Forum Infect Dis
  doi: 10.1093/ofid/ofaa124
– volume: 6
  year: 2011
  ident: B70
  article-title: Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024418
– volume: 17
  start-page: 3573
  year: 2021
  end-page: 3582
  ident: B23
  article-title: A combination therapy of Phages and Antibiotics: Two is better than one
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.60551
– volume: 15
  year: 2020
  ident: B1
  article-title: Destination therapy with left ventricular assist devices in non-transplant centres: the time is right
  publication-title: Eur Cardiol
  doi: 10.15420/ecr.2019.29.2
– volume: 8
  year: 2019
  ident: B12
  article-title: Biofilm formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media
  publication-title: J Clin Med
  doi: 10.3390/jcm8111853
– volume: 224
  start-page: 21
  year: 2024
  end-page: 34
  ident: B61
  article-title: Metabolic insights from mass spectrometry imaging of biofilms: a perspective from model microorganisms
  publication-title: Methods
  doi: 10.1016/j.ymeth.2024.01.014
– volume: 11
  year: 2020
  ident: B16
  article-title: Evaluation of staphylococcal bacteriophage Sb-1 as an adjunctive agent to antibiotics against rifampin-resistant Staphylococcus aureus biofilms
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.602057
– volume: 22
  year: 2024
  ident: B60
  article-title: Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.3002205
– volume: 14
  year: 2022
  ident: B64
  article-title: Human plasma significantly reduces bacteriophage infectivity against Staphylococcus aureus clinical isolates
  publication-title: Cureus
  doi: 10.7759/cureus.23777
– volume: 17
  year: 2022
  ident: B8
  article-title: Real time monitoring of Staphylococcus aureus biofilm sensitivity towards antibiotics with isothermal microcalorimetry
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0260272
– volume: 7
  year: 2020
  ident: B26
  article-title: Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States
  publication-title: Open Forum Infect Dis
  doi: 10.1093/ofid/ofaa389
– volume: 29
  year: 2022
  ident: B50
  article-title: Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far
  publication-title: J Biomed Sci
  doi: 10.1186/s12929-022-00806-1
– volume: 10
  year: 2022
  ident: B71
  article-title: Dehydration tolerance in epidemic versus nonepidemic MRSA demonstrated by isothermal microcalorimetry
  publication-title: Microbiol Spectr
  doi: 10.1128/spectrum.00615-22
– volume: 10
  year: 2022
  ident: B36
  article-title: A method to determine the efficacy of a commercial phage preparation against uropathogens in urine and artificial urine determined by isothermal microcalorimetry
  publication-title: Microorganisms
  doi: 10.3390/microorganisms10050845
– volume: 104
  start-page: 693
  year: 2022
  end-page: 699
  ident: B67
  article-title: Assessment of staphylococcal clinical isolates from periprosthetic joint infections for potential bacteriophage therapy
  publication-title: J Bone Jt Surg
  doi: 10.2106/JBJS.21.00958
– volume: 296
  start-page: 149
  year: 2006
  end-page: 161
  ident: B9
  article-title: Quorum-sensing inhibitors as anti-pathogenic drugs
  publication-title: Int J Med Microbiol
  doi: 10.1016/j.ijmm.2006.02.005
– volume: 57
  start-page: 1003
  year: 2020
  end-page: 1004
  ident: B35
  article-title: Treatment of chronic left ventricular assist device infection with local application of bacteriophages
  publication-title: Eur J Cardiothorac Surg
  doi: 10.1093/ejcts/ezz295
– volume: 52
  start-page: 842
  year: 2018
  end-page: 853
  ident: B21
  article-title: Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2018.09.006
– volume: 11
  year: 2019
  ident: B56
  article-title: Phage therapy regulation: from night to dawn
  publication-title: Viruses
  doi: 10.3390/v11040352
– volume: 9
  start-page: 1
  year: 2020
  end-page: 12
  ident: B20
  article-title: Adjunctive use of phage SB-1 in antibiotics enhances inhibitory biofilm growth activity versus Rifampin-resistant Staphylococcus aureus strains
  publication-title: Antibiotics (Basel)
  doi: 10.3390/antibiotics9110749
– volume: 38
  start-page: 475
  year: 2019
  end-page: 476
  ident: B28
  article-title: Novel bacteriophage therapy for treatment of left ventricular assist device infection
  publication-title: J Heart Lung Transplant
  doi: 10.1016/j.healun.2019.01.001
– volume: 43
  start-page: 113
  year: 1999
  end-page: 118
  ident: B49
  article-title: The clinical efficacy of continuous-infusion flucloxacillin in serious staphylococcal sepsis
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/43.1.113
– volume: 9
  year: 2020
  ident: B30
  article-title: Bacteriophage therapy for critical infections related to cardiothoracic surgery
  publication-title: Antibiotics (Basel)
  doi: 10.3390/antibiotics9050232
– volume: 337
  start-page: 31
  year: 2012
  end-page: 37
  ident: B13
  article-title: Isothermal microcalorimetry provides new insights into biofilm variability and dynamics
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/1574-6968.12007
– volume: 12
  year: 2017
  ident: B54
  article-title: Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0168615
– volume: 9
  year: 2021
  ident: B41
  article-title: In vitro anti-biofilm activity of bacteriophage K (ATCC 19685-B1) and daptomycin against staphylococci
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9091853
– volume: 7
  start-page: 2151
  year: 2015
  end-page: 2157
  ident: B5
  article-title: Left ventricular assist device driveline infections: recent advances and future goals
  publication-title: J Thorac Dis
  doi: 10.3978/j.issn.2072-1439.2015.11.06
– volume: 4
  start-page: 225
  year: 2013
  end-page: 232
  ident: B38
  article-title: Investigation of biofilm formation and its association with the molecular and clinical characteristics of methicillin-resistant Staphylococcus aureus
  publication-title: Osong Public Health Res Perspect
  doi: 10.1016/j.phrp.2013.09.001
– volume: 14
  year: 2022
  ident: B7
  article-title: In vitro techniques and measurements of phage characteristics that are important for phage therapy success
  publication-title: Viruses
  doi: 10.3390/v14071490
– volume: 2
  year: 2024
  ident: B39
  article-title: Mechanisms of antimicrobial resistance in biofilms
  publication-title: NPJ Antimicrob Resist
  doi: 10.1038/s44259-024-00046-3
– volume: 9
  year: 2019
  ident: B65
  article-title: Glycosylation of Staphylococcus aureus cell wall teichoic acid is influenced by environmental conditions
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-39929-1
– ident: B11
  article-title: Magana M , Sereti C , Ioannidis A , Mitchell CA , Ball AR , Magiorkinis E , Chatzipanagiotou S , Hamblin MR , Hadjifrangiskou M , Tegos GP . 2018 . Options and limitations in clinical investigation of bacterial biofilms . Available from : https://doi.org/10.1128/CMR
– volume: 11
  year: 2022
  ident: B31
  article-title: Local treatment of driveline infection with bacteriophages
  publication-title: Antibiotics (Basel)
  doi: 10.3390/antibiotics11101310
– volume: 119
  start-page: 44
  year: 2022
  end-page: 46
  ident: B66
  article-title: Impact of bacterial phenotypic variation with bacteriophage therapy: a pilot study with prosthetic joint infection isolates
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2022.03.022
– volume: 11
  year: 2020
  ident: B15
  article-title: Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00327
– volume: 68
  year: 2024
  ident: B27
  article-title: Pseudomonas aeruginosa ventricular assist device infections: findings from ineffective phage therapies in five cases
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/aac.01728-23
– volume: 11
  year: 2020
  ident: B17
  article-title: Antibacterial efficacy of two commercially available bacteriophage formulations, staphylococcal bacteriophage and PYO bacteriophage, against methicillin-resistant Staphylococcus aureus: prevention and eradication of biofilm formation and control of a systemic infection of Galleria mellonella larvae
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00110
– volume: 42
  start-page: 919
  year: 2023
  end-page: 928
  ident: B19
  article-title: A systematic review of the use of bacteriophages for in vitro biofilm control
  publication-title: Eur J Clin Microbiol Infect Dis
  doi: 10.1007/s10096-023-04638-1
– volume: 83
  start-page: e1
  year: 2021
  end-page: e3
  ident: B34
  article-title: Successful case of adjunctive intravenous bacteriophage therapy to treat left ventricular assist device infection
  publication-title: J Infect
  doi: 10.1016/j.jinf.2021.05.027
– volume: 16
  start-page: 760
  year: 2018
  end-page: 773
  ident: B18
  article-title: Targeting mechanisms of tailed bacteriophages
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-018-0070-8
– volume: 15
  year: 2023
  ident: B4
  article-title: Successful bacteriophage-antibiotic combination therapy against multidrug-resistant Pseudomonas aeruginosa left ventricular assist device driveline infection
  publication-title: Viruses
  doi: 10.3390/v15051210
– volume: 9
  year: 2014
  ident: B51
  article-title: Eradication of a chronic wound and driveline infection after redo-LVAD implantation
  publication-title: J Cardiothorac Surg
  doi: 10.1186/1749-8090-9-63
– ident: B22
  article-title: Liu CG , Green SI , Min L , Clark JR , Salazar KC , Terwilliger AL , Kaplan HB , Trautner BW , Ramig RF , Maresso AW . 2020 . Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry . Microbiology . doi: 10.1101/2020.02.27.967034
– ident: B37
  article-title: Chen F , Yin Y , Chen H , Wang R , Wang S , Wang H , Chen F , Yin Y , Chen H , Wang R , Wang S , Wang H . 2024 . Phylogeographic study of Staphylococcus aureus sequence type 5
– volume: 10
  start-page: 1
  year: 2021
  end-page: 9
  ident: B53
  article-title: Controversy about the role of rifampin in biofilm infections: is it justified?
  publication-title: Antibiotics (Basel)
  doi: 10.3390/antibiotics10020165
– volume: 18
  year: 2022
  ident: B57
  article-title: Modelling the synergistic effect of bacteriophage and antibiotics on bacteria: killers and drivers of resistance evolution
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1010746
– volume: 77
  start-page: 1079
  year: 2023
  end-page: 1091
  ident: B32
  article-title: A retrospective, observational study of 12 cases of expanded-access customized phage therapy: production, characteristics, and clinical outcomes
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciad335
– volume: 41
  start-page: 551
  year: 2022
  end-page: 555
  ident: B33
  article-title: Bacteriophage therapy as a treatment option for complex cardiovascular implant infection: the German Heart Center Berlin experience
  publication-title: J Heart Lung Transplant
  doi: 10.1016/j.healun.2022.01.018
SSID ssj0014455
Score 2.4920833
Snippet Current treatment strategies for S. aureus LVAD-driveline infections are based on in vitro antibiotic susceptibility of planktonic bacteria. However, LVAD...
Left-ventricular assist devices (LVADs) are increasingly used as a bridge to heart transplantation and destination therapy. These devices, especially the...
ABSTRACT Left-ventricular assist devices (LVADs) are increasingly used as a bridge to heart transplantation and destination therapy. These devices, especially...
SourceID doaj
proquest
asm2
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0027225
SubjectTerms Animal Models of Infection
Anti-Bacterial Agents - pharmacology
Antimicrobial Resistance
Bacterial Infections
Bacteriology
Bacteriophage-Pathogen Interactions
Bacteriophages
Bacteriophages - physiology
biofilm
Biofilm-Associated Resistance
Biofilms - drug effects
Biofilms - growth & development
Clinical Microbiology and Infectious Diseases
Heart-Assist Devices - adverse effects
Heart-Assist Devices - microbiology
Humans
isothermal microcalorimetry
LVAD driveline infection
Microbial Pathogenesis and Immunology
Microbial Sensitivity Tests
Outbreak Investigation in Healthcare Facilities
Phage Therapy
Phage Therapy - methods
Prosthesis-Related Infections - microbiology
Prosthesis-Related Infections - therapy
Rifampin - pharmacology
Staphylococcal Infections
Staphylococcal Infections - microbiology
Staphylococcal Infections - therapy
Staphylococcus aureus
Staphylococcus aureus - drug effects
Staphylococcus aureus - physiology
Staphylococcus aureus - virology
Staphylococcus Phages - physiology
Trichinellosis
Vaginal Fungal Infections
Virology
Title In vitro activity of antibiotic monotherapy and combination therapy with bacteriophages against Staphylococcus aureus LVAD-driveline infections
URI https://www.ncbi.nlm.nih.gov/pubmed/41065359
https://journals.asm.org/doi/10.1128/jcm.00272-25
https://www.proquest.com/docview/3259091553
https://doaj.org/article/dbb31db62bc24dacaf9fd3021646f25d
Volume 63
WOSCitedRecordID wos001589750700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1098-660X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014455
  issn: 0095-1137
  databaseCode: DOA
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELbgCVAvqJTtQVsZBMeo8Rbbx7JURSoVB6jezfJagtSkSt6r1F_Rv8w4SwWHigunSBNbiTzjmW884xmE3kmtQ6W8ACfH-oLbWBZO2lCQKnpmwcS7oRnM2Yk8PVWrlf72R6uvnBM2lgceF-4gOMdIcBV1nvJgvU06BQaWqeJVoiJk7QuoZ3ampvgB52LsXaBFQQiTc8o7VQe__EU-RZG0yO2xF7a_oH_ZpKF0_914c7A7R9vo8QQY8eH4o0_QvdjsoIdjC8nrHfTo6xQcf4puvjT4ql53Lc6XFXJPCNwmDCtXu7qF2RgkbrpvdQ3kgEHYwC8eWINnej6XxW4s4dxe_gRt02N7bmtAkRiAKTAFrF_r_QbImy7C4-Ts8FMROtCaGbHiObur6Z-hH0efv388LqZ-C4VlSq0LTRPRUYIOFEGx0nHumHUkpioATAk-cMKJtJTGxJN0MQAclI7DrNJz6QR7jhZN28SXCOf4YEgC3rHEeZDaKxlVGQVzMgCoWaK3eeHNtGF6M_giVBngjhm4Y6hYovczW8zlWHvjjnEfMs9ux-SK2QMB5MhMcmT-JUdL9GbmuIEdlsMmtontpjcMPMQyl9FnS_RiFIXbT3GSa_sK_ep__MJrtEVzd-GcZEh30WLdbeIeeuCv1nXf7aP7cqX2BzH_DfiGAfc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+activity+of+antibiotic+monotherapy+and+combination+therapy+with+bacteriophages+against+Staphylococcus+aureus+LVAD-driveline+infections&rft.jtitle=Journal+of+clinical+microbiology&rft.au=Molendijk%2C+Mich%C3%A8le+M&rft.au=Verkaik%2C+Nelianne+J&rft.au=de+Vogel%2C+Corn%C3%A9+P&rft.au=Lemmens-den+Toom%2C+Nicole&rft.date=2025-11-12&rft.issn=1098-660X&rft.eissn=1098-660X&rft_id=info:doi/10.1128%2Fjcm.00272-25&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-1137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-1137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-1137&client=summon