Ensemble learning models with a Bayesian optimization algorithm for mineral prospectivity mapping

[Display omitted] •Bayesian optimization is a powerful optimization tool to find the best hyperparameters of machine learning models.•The optimization results provide references for the empirical hyperparameters setting of ensemble learning models.•XGBoost model outperformed RF model with better pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ore geology reviews Jg. 145; S. 104916
Hauptverfasser: Yin, Jiangning, Li, Nan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2022
Schlagworte:
ISSN:0169-1368
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •Bayesian optimization is a powerful optimization tool to find the best hyperparameters of machine learning models.•The optimization results provide references for the empirical hyperparameters setting of ensemble learning models.•XGBoost model outperformed RF model with better prediction ability and stability in the case area.•XGBoost method shows great potential for MPM, offering a significant improvement with BOA method. Machine learning algorithms have been widely applied in mineral prospectivity mapping (MPM). In this study, we implemented ensemble learning of extreme gradient boosting (XGBoost) and random forest (RF) models to create MPM for magmatic hydrothermal tin polymetallic deposits in Xianghualing District, southern Hunan Province, China. Machine-learning models often require careful adjustment of the learning parameters and model hyperparameters for optimal global performance. However, parameter tuning often entails tedious calculations and sufficient expert experience, which is a time-consuming and labor-intensive process. To obtain the global optimal performance of the XGBoost and RF models, a Bayesian optimization algorithm (BOA) was employed with the aid of 5-fold cross validation to search for the most appropriate hyperparameters of the XGBoost and RF models. After the Bayesian optimization, the AUC values of both models were significantly improved, indicating that the BOA is a powerful optimization tool. The optimization results provide a reference for the empirical hyperparameter setting of ensemble learning models. Through a comparative study, the XGBoost model was shown to be superior to the RF model in terms of accuracy, precision, recall, F1 score, and kappa coefficient. In addition, the receiver operating characteristic curves and prediction–area curves showed that the XGBoost model outperformed the RF model, indicating that the XGBoost model had better prediction ability and stability in the case area. In this study, the XGBoost model shows great potential for MPM, offering a significant improvement over the BOA method.
AbstractList [Display omitted] •Bayesian optimization is a powerful optimization tool to find the best hyperparameters of machine learning models.•The optimization results provide references for the empirical hyperparameters setting of ensemble learning models.•XGBoost model outperformed RF model with better prediction ability and stability in the case area.•XGBoost method shows great potential for MPM, offering a significant improvement with BOA method. Machine learning algorithms have been widely applied in mineral prospectivity mapping (MPM). In this study, we implemented ensemble learning of extreme gradient boosting (XGBoost) and random forest (RF) models to create MPM for magmatic hydrothermal tin polymetallic deposits in Xianghualing District, southern Hunan Province, China. Machine-learning models often require careful adjustment of the learning parameters and model hyperparameters for optimal global performance. However, parameter tuning often entails tedious calculations and sufficient expert experience, which is a time-consuming and labor-intensive process. To obtain the global optimal performance of the XGBoost and RF models, a Bayesian optimization algorithm (BOA) was employed with the aid of 5-fold cross validation to search for the most appropriate hyperparameters of the XGBoost and RF models. After the Bayesian optimization, the AUC values of both models were significantly improved, indicating that the BOA is a powerful optimization tool. The optimization results provide a reference for the empirical hyperparameter setting of ensemble learning models. Through a comparative study, the XGBoost model was shown to be superior to the RF model in terms of accuracy, precision, recall, F1 score, and kappa coefficient. In addition, the receiver operating characteristic curves and prediction–area curves showed that the XGBoost model outperformed the RF model, indicating that the XGBoost model had better prediction ability and stability in the case area. In this study, the XGBoost model shows great potential for MPM, offering a significant improvement over the BOA method.
ArticleNumber 104916
Author Li, Nan
Yin, Jiangning
Author_xml – sequence: 1
  givenname: Jiangning
  surname: Yin
  fullname: Yin, Jiangning
– sequence: 2
  givenname: Nan
  surname: Li
  fullname: Li, Nan
  email: ln20211225@163.com
BookMark eNqNkMtOwzAQRb0oEm3hG_APpDhOmseCRanKQ6rEBtaW44zLVI4d2VZR-XoMRSzYwGZGmplzNTozMrHOAiFXOVvkLK-u9wvnYQepHBaccZ6mZZtXEzJN2zbLi6o5J7MQ9oyxirF8SuTGBhg6A9SA9Bbtjg6uBxPoG8ZXKumtPEJAaakbIw74LiM6S6XZOZ8OBqqdpwNa8NLQ0bswgop4wHikgxzHlHdBzrQ0AS6_-5y83G2e1w_Z9un-cb3aZrJo6pj1rQbdAm9KtuRcQdMXna7LfqmAd5yXvZKq7ljNuqIAWWmla6Y1h6bSvCh1V8zJzSlXpS-CBy0Uxq9vo5doRM7EpyOxFz-OxKcjcXKU-PoXP3ocpD_-g1ydyKQNDgheBIVgFfTokw3RO_wz4wOkpY8n
CitedBy_id crossref_primary_10_1007_s11053_024_10431_4
crossref_primary_10_1016_j_fuel_2023_129284
crossref_primary_10_3390_en18051239
crossref_primary_10_1016_j_istruc_2023_05_136
crossref_primary_10_1016_j_jafrearsci_2022_104606
crossref_primary_10_1016_j_oregeorev_2024_106030
crossref_primary_10_3390_rs15235489
crossref_primary_10_1007_s11004_023_10065_x
crossref_primary_10_3390_s24155030
crossref_primary_10_1016_j_biortech_2025_132393
crossref_primary_10_3390_land14010069
crossref_primary_10_1007_s00521_023_09121_8
crossref_primary_10_1007_s11053_025_10462_5
crossref_primary_10_1016_j_rsase_2024_101316
crossref_primary_10_1061_JHYEFF_HEENG_6214
crossref_primary_10_1134_S1028334X23600275
crossref_primary_10_1016_j_asoc_2022_109976
crossref_primary_10_3390_land13121995
crossref_primary_10_1007_s11053_024_10403_8
crossref_primary_10_1109_LSENS_2022_3228327
crossref_primary_10_1016_j_oregeorev_2023_105651
crossref_primary_10_1016_j_oregeorev_2024_106248
crossref_primary_10_1007_s11053_024_10424_3
crossref_primary_10_1016_j_chemer_2024_126207
crossref_primary_10_1016_j_jaap_2023_106295
crossref_primary_10_3390_app14093725
crossref_primary_10_1016_j_engfailanal_2025_109896
crossref_primary_10_1371_journal_pone_0294759
crossref_primary_10_1007_s00603_024_04375_7
crossref_primary_10_1016_j_envint_2023_107931
crossref_primary_10_1016_j_trgeo_2024_101232
crossref_primary_10_1080_15435075_2023_2297776
crossref_primary_10_3390_jmse13081584
crossref_primary_10_1007_s11053_024_10322_8
crossref_primary_10_1016_j_radphyschem_2025_112693
crossref_primary_10_1360_SSTe_2025_0096
crossref_primary_10_1007_s11430_025_1622_1
crossref_primary_10_1016_j_oregeorev_2023_105567
crossref_primary_10_3390_min15080833
crossref_primary_10_1111_exsy_70075
crossref_primary_10_1016_j_oregeorev_2022_105282
crossref_primary_10_1155_adce_3403677
crossref_primary_10_3390_bioengineering10010069
crossref_primary_10_1007_s11053_024_10451_0
crossref_primary_10_3390_rs16010089
crossref_primary_10_1007_s11053_022_10142_8
crossref_primary_10_1007_s11004_023_10086_6
crossref_primary_10_3390_min13020189
crossref_primary_10_1007_s11837_023_05773_y
crossref_primary_10_1016_j_oregeorev_2024_105918
crossref_primary_10_1007_s11053_024_10390_w
crossref_primary_10_1016_j_biortech_2022_128182
crossref_primary_10_1016_j_energy_2023_126968
crossref_primary_10_1016_j_tra_2023_103875
crossref_primary_10_1016_j_oregeorev_2025_106768
crossref_primary_10_1016_j_oregeorev_2025_106844
crossref_primary_10_3390_su16114755
crossref_primary_10_3390_w16152107
crossref_primary_10_1007_s12667_023_00648_2
crossref_primary_10_1016_j_cageo_2024_105723
crossref_primary_10_1016_j_oregeorev_2023_105390
crossref_primary_10_1109_JSTARS_2025_3601006
crossref_primary_10_1016_j_enggeo_2024_107632
crossref_primary_10_1016_j_segan_2025_101788
crossref_primary_10_3390_min15020113
crossref_primary_10_1093_bib_bbae601
crossref_primary_10_1002_joc_8131
crossref_primary_10_1007_s12145_024_01224_7
Cites_doi 10.1016/j.sedgeo.2012.03.007
10.1016/j.gexplo.2021.106839
10.1016/j.oregeorev.2015.02.016
10.1007/s11430-015-5178-3
10.1016/j.gexplo.2008.03.004
10.1023/B:NARR.0000007804.27450.e8
10.1007/s11053-008-9062-0
10.1016/j.patcog.2015.03.009
10.1109/ACCESS.2017.2766203
10.1016/j.apgeochem.2020.104710
10.5194/bg-7-3019-2010
10.1016/j.sedgeo.2016.01.007
10.1016/S0037-0738(98)00118-3
10.1155/2019/8503252
10.1016/j.cageo.2020.104667
10.1007/978-3-030-05318-5_6
10.1016/j.jhydrol.2015.06.008
10.1007/s00126-006-0084-4
10.1016/j.oregeorev.2017.08.016
10.1023/A:1023818214614
10.1038/s41598-020-65232-5
10.1007/s00126-017-0725-9
10.1016/j.earscirev.2019.02.023
10.1016/j.oregeorev.2019.103028
10.1016/j.gexplo.2015.10.008
10.1016/j.oregeorev.2006.10.002
10.1016/j.oregeorev.2009.01.001
10.1016/j.oregeorev.2016.04.023
10.1016/j.eswa.2008.01.018
10.1016/S0009-2541(03)00187-6
10.1002/widm.1249
10.1007/s12518-018-0229-z
10.1016/j.oregeorev.2015.12.005
10.1109/JPROC.2015.2494218
10.1016/j.oregeorev.2014.10.006
10.1016/j.sedgeo.2007.11.002
10.1007/s11053-020-09668-6
10.1016/j.oregeorev.2018.11.019
10.1016/j.oregeorev.2018.09.005
10.1007/s11053-017-9345-4
10.1016/j.oregeorev.2006.12.001
10.3390/min10020102
10.1016/j.palaeo.2013.04.020
10.3906/yer-1401-9
10.1016/j.gexplo.2014.02.013
10.1007/s11053-019-09564-8
10.1016/j.oregeorev.2018.01.029
10.1007/978-1-4419-9326-7_1
10.1016/j.cageo.2011.12.014
10.1016/j.cageo.2017.10.005
10.1007/s11053-022-10038-7
10.1093/oxfordjournals.pan.a004868
10.1093/biomet/75.1.11
10.1016/j.oregeorev.2014.08.012
10.1016/j.oregeorev.2018.02.019
10.1023/B:MATG.0000041180.34176.65
10.1016/j.oregeorev.2010.02.003
10.1016/j.oregeorev.2020.103611
10.1046/j.1440-0952.2000.00807.x
10.1016/j.gsf.2020.04.014
10.1111/j.1365-2478.2008.00779.x
10.1016/j.lithos.2018.05.001
10.1016/j.ejor.2015.05.030
10.1016/j.oregeorev.2017.11.013
10.1007/s11053-020-09742-z
10.1145/2939672.2939785
10.1016/j.cageo.2014.10.004
10.1016/j.cageo.2005.03.018
10.1007/s11053-010-9112-2
10.1016/j.oregeorev.2010.05.008
10.1016/j.cageo.2010.11.001
10.1016/j.cageo.2016.01.012
10.1016/j.oregeorev.2019.103005
10.1016/j.oregeorev.2014.10.030
10.1016/j.oregeorev.2005.10.002
10.1016/j.apgeochem.2021.104940
10.1007/s11053-015-9268-x
10.1007/s11053-017-9335-6
10.1007/s11053-006-9012-7
10.1093/biomet/80.2.339
10.1016/j.jog.2010.01.018
10.1016/j.apgeochem.2012.10.031
10.1360/03yd0384
10.1016/j.cageo.2011.06.023
10.1109/ACCESS.2018.2818678
10.1016/j.oregeorev.2012.04.001
10.1190/tle40020099.1
10.1016/j.lithos.2006.12.009
10.1016/j.oregeorev.2019.04.003
10.1016/j.apgeochem.2021.105043
10.1080/08120099.2017.1328705
10.1016/j.cageo.2010.09.014
10.1007/s11053-017-9355-2
10.1007/s11053-019-09598-y
10.1016/j.oregeorev.2021.104264
10.1007/s11053-007-9036-7
10.1007/s11053-019-09483-8
10.1016/j.oregeorev.2007.07.001
10.1016/j.cageo.2009.02.008
10.1016/j.gexplo.2013.08.013
10.1111/j.1751-3928.2010.00121.x
10.1080/13658816.2014.885527
10.1007/s00710-014-0355-1
10.1130/G48615.1
10.1023/A:1010933404324
10.1016/j.oregeorev.2015.05.019
10.1016/j.cageo.2015.03.007
10.1130/0091-7613(1992)020<0391:TPUOHH>2.3.CO;2
10.1016/j.lithos.2016.10.010
10.1016/j.lithos.2020.105952
10.1023/A:1025171803637
10.1016/j.oregeorev.2011.09.003
10.1016/j.cageo.2014.10.014
10.1007/s11053-020-09700-9
10.1007/s11053-020-09789-y
10.1016/j.oregeorev.2012.05.004
10.1016/j.gexplo.2013.07.009
10.1007/s11053-018-9375-6
10.1016/j.oregeorev.2021.104213
10.1007/BF02272809
10.1007/s11053-021-09984-5
10.1016/j.geomorph.2006.12.036
10.1080/08120090701581364
10.1126/science.aar5169
10.1016/j.oregeorev.2017.04.029
10.1007/s11053-018-9428-x
10.1111/j.1755-6724.2007.tb00951.x
10.1016/j.cageo.2008.05.003
10.1016/j.apgeochem.2013.02.009
10.1016/j.cageo.2014.09.007
10.1016/j.apgeochem.2020.104747
10.1016/j.oregeorev.2016.06.033
10.1016/j.margeo.2015.01.015
10.1016/j.oregeorev.2017.11.001
10.1016/j.oregeorev.2016.02.010
10.1007/s11004-007-9106-8
10.2113/0100165
10.1007/s11053-019-09510-8
10.1109/IJCNN.2003.1223683
10.1007/s11053-021-09871-z
10.1016/j.cageo.2015.10.006
10.1007/s12583-020-1365-z
10.1080/19475705.2017.1294113
10.1080/0143116021000031791
10.1016/j.oregeorev.2014.08.010
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.oregeorev.2022.104916
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
ExternalDocumentID 10_1016_j_oregeorev_2022_104916
S0169136822002244
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-a387t-d9fef9e2840522ce8d3bf74d5ce2b224dcac7b070b33ea6fcf70ff2e86f234fb3
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798946700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-1368
IngestDate Sat Nov 29 07:25:34 EST 2025
Tue Nov 18 20:44:26 EST 2025
Tue Dec 03 03:44:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mineral prospectivity mapping
Random forest
Ensemble learning
Bayesian optimization
XGBoost
K-fold cross validation
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a387t-d9fef9e2840522ce8d3bf74d5ce2b224dcac7b070b33ea6fcf70ff2e86f234fb3
OpenAccessLink http://dx.doi.org/10.1016/j.oregeorev.2022.104916
ParticipantIDs crossref_citationtrail_10_1016_j_oregeorev_2022_104916
crossref_primary_10_1016_j_oregeorev_2022_104916
elsevier_sciencedirect_doi_10_1016_j_oregeorev_2022_104916
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Ore geology reviews
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Egozcue, Pawlowsky-Glahn, Mateu-Figueras, Barcelo-Vidal (b0240) 2003; 35
Wang, Zuo, Xiong (b9045) 2020; 29
Liu, W., Zhang, M., Luo, Z., Cai, Y., 2017. An ensemble deep learning method for vehicle type classification on visual traffic surveillance sensors. IEEE Access, 5,24417-24425. http://dx.doi.org/10.1109/ACCESS.2017.2766203.
Li, Li, Yuan, Jowitt, Zhang, Zhou, Wu (b0365) 2020; 122
Almasi, Yousefi, Carranza (b0025) 2017; 91
Rigol-Sanchez, Chica-Olmo, Abarca-Hernandez (b0560) 2003; 24
Leite, Desouza (b0335) 2009; 35
Chen, Lu, Li (b0150) 2014; 140
Chung, Fabbri (b0205) 1993; 2
Brochu, E., Cora, V., de Freitas, N. 2010. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599v1 [cs.LG].
Ahneman, Estrada, Lin, Dreher, Doyle (b0005) 2018; 360
Sahin (b0580) 2020; 2
Mao, J.W., Pirajno, F., Cook, N., 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings-an introduction to the special issue. Ore Geol. Rev. 43, 1-7.
Coimbra, Rodriguez-Galiano, Olóriz, Chica-Olmo (b0215) 2014; 73
McCuaig, Beresford, Hronsky (b9035) 2010; 38
Cascalho, Costa, Dawson, Milne, Rocha (b0130) 2016; 334
Carranza, Sadeghi, Billay (b0120) 2015; 71
Pirajno (b0520) 2010; 50
Ford, Blenkinsop (b0255) 2008; 55
Carranza (b0095) 2009; 35
Chen, Zhao (b0170) 2021; 135
Brown, Gedeon, Groves, Barnes (b0065) 2000; 47
Lisitsin, Gonz’alez-Alvarez, Porwal (b0380) 2013; 52
Sevastjanova, Hall, Alderton (b0600) 2012; 280
Peng, Hu, Burnard (b0510) 2003; 200
Li, Huang, Wang, Wang (b0395) 2016; 79
Zuo (b0795) 2017; 26
Hallsworth, Chisholm (b0285) 2008; 203
Kiangala, Wang (b0430) 2021; 4
Li, Wang, Carranza (b0370) 2016; 89
Saljoughi, Hezarkhani (b0590) 2016; 10
Meng (b0455) 1994; 16
Zuo (b0790) 2014; 139
Ziaii, Pouyan, Ziaei (b0745) 2009; 100
Cheng, Bonham-Carter, Wang, Zhang, Li, Xia (b0200) 2011; 37
Amano, Taira (b0030) 1992; 20
Yousefi, Kreuzer, Nykänen, Hronsky (b0720) 2019; 111
Zhang, Zuo, Xiong (b0750) 2016; 59
Xiong, Y., Zuo, R., 2018.GIS-based rare events logistic regression for mineral prospectivity mapping. Comput. Geosci., 111, 18-25.
Chen (b0155) 2015; 71
Budholiya, Shrivastava, Sharma (b0070) 2020
Yousefi, Carranza (b0705) 2015; 74
Abedi, Norouzi, Fathianpour (b0020) 2013; 21
Zuo, Xiong, Wang, Carranza (b0800) 2019; 192
Carranza (b0105) 2010; 60
Zhang, Qian, Mao, Huang, Huang, Si (b0755) 2018; 6
Chen, Li, Sun, Ireland, Tian, Hu, Yang, Chen, Xu (b0140) 2016
Chen, Wu (b9005) 2019; 28
Ding, Ma, Lu, Zhang (b0225) 2018; 95
Chen,T., Guestrin, C., 2016.XGBoost:A Scalable Tree Boosting System. The 22nd ACM SIGKDD International Conference. 2016: 785-794. 10.1145/2939672.2939785.
Yousefi, M., Carranza, E.J.M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M.A., Mihalasky, M.J.,2021. Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. J. Geochem. Explor.,1-12.
Sun, Li, Wu, Chen, Zhu, Hu (b0630) 2020; 10
Lisitsin (b0400) 2015; 71
Yin, Zuo, Xiong (b0695) 2021
Shu (b0610) 2006; 12
Xiong, Zuo (b0680) 2021; 147
Hu, X., Gong, Y., Pi, D., Zhang, Z., Zeng, G., Xiong, S., Yao, S., 2017. Jurassic magmatism related Pb-Zn-W-Mo polymetallic mineralization in the central Nanling range, South China: geochronologic, geochemical, and isotopic evidence from the Huangshaping deposit. Ore Geol. Rev. 10.1016/j.oregeorev.2017.08.016.
Mao, Zheng, Xie, Lehmann, Goldfarb (b0450) 2021; 49
Feurer, M., Klein, A., Eggensperger K, Springenberg JT, Blum M, Hutter F., 2019. Auto-sklearn: efficient and robust automated machine learning, part of the springer series on challenges in machine learning book series (SSCML). 10.1007/978-3-030-05318-5_6.
Xu, Li, Xie, Cai, Niu, Liu (b0685) 2021; 104316
Bonham-Carter (b0045) 1994
Carranza, Laborte (b0115) 2015; 74
Chen, Wu (b0160) 2017; 64
Carranza, E.J.M., Laborte, A.G., 2015. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of Random Forests algorithm. Ore Geol. Rev., 71, 777-787.
Chen, Chen, Wang (b0185) 2008
Oh, Lee (b0495) 2010; 19
Yuan, S.D., Mao, J., Cook, N.J., Wang, X., Liu, X., Yuan, Y., 2015. A Late Cretaceous tin metallogenic event in Nanling W-Sn metallogenic province: constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit, Hunan, China. Ore Geol. Rev. 65, 283-293.
Joly, Porwal, McCuiag (b9025) 2012; 48
Porwal, Carranza, Hale (b0545) 2006; 32
Li, Yan, Zhong, Xia, Wang (b0350) 2015; 363
Liu, Gilbert, Cepeda, Lysdahl, Piciullo, Hefre, Lacasse (b0420) 2020; 12
Brandmeier, Zamora, Nykänen, Middleton (b9000) 2020; 29
Li, Huang, Wang, Wang (b0355) 2016; 79
Hu, X.L., Gong, Y.J., Pi, D.H., Zhang, Z.J., Zeng, G.P., Xiong, S.F., Yao, S.Z., 2017. Jurassic magmatism related Pb-Zn-W-Mo polymetallic mineralization in the central Nanling Range, South China: geochronologic, geochemical, and isotopic evidence from the Huangshaping deposit. Ore Geol. Rev. 91, 877-895.
Polikar, R., 2012.Ensemble learning. In: Ensemble Machine Learning, Springer, pp. 1-34.
Zuo, Kreuzer, Wang, Xiong, Zhang, Wang (b0815) 2021; 30
Chen, Zhou, Zhang, Li, Fan, Sun, Chen, Zhang (b0135) 2005; 48
Chen, Sui (b0175) 2022; 41
Nykäne, Niiranen, Molnar, Lahti, Korhonen, Cook (b0490) 2017; 26
Parsa, Carranza, Ahmadi (b0505) 2022; 31
Zuo (b0805) 2020; 29
Porwal, Carranza, Hale (b0535) 2004; 36
Skabar, A.A., 2003.Mineral potential mapping using feed-forward neural networks. In Proceedings of the international joint conference on neural networks, 3, 1814-1819, Portland, OR, the United States, IEEE Press.
Carranza, Hale, Faassen (b0085) 2008; 33
Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. Int. Joint Conf. Artif. Intel. 14 (2),1137-1145.
Nie, Peng, Pfaff, Möller, Garzanti, Andò, Stevens, Bird, Chang, Song, Liu, Ji (b0480) 2013; 381–382
Harris, Zurcher, Stanley, Marlow, Pan (b0280) 2003; 12
Wang, Lai, Chen, Yang, Zhao, Bai (b0650) 2015; 527
Parsa, Maghsoudi, Yousefi (b0500) 2018; 92
Zuo, R., Xia, Q., Zhang, D., 2013. A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas. Appl. Geochem. 33, 165-172.
Behnia (b0040) 2007; 16
Morton, Hallsworth (b0470) 1999; 124
Rahimi, Abedi, Yousefi, Bahroudi, Elyasi (b0555) 2021; 128
Prado, de Souza Filho, Carranza, Motta (b0550) 2020; 124
Carranza, Hale (b0075) 2001; 10
Chung, Fabbri (b0210) 2008; 94
Zhang, Zuo, Xiong (b0770) 2016; 59
Cheng (b9015) 2007; 32
Liu, Zhou, Xia (b0410) 2018; 27
Peng, Zhou, Hu, Shen, Uan, Bi, Du, Qu (b0515) 2006; 41
Zhang, Zuo (b9070) 2021; 136
Nykänen (b0485) 2008; 17
McMillan, Haber, Peters, Fohring (b0440) 2021; 40
Yang, Zhang, Yang, Hong (b9065) 2022; 31
Chen, Yu, Bi (b0190) 2021; 382-383
Schill, Jockel, Drescher, Timm (b0595) 1993; 80
King, Zeng (b0310) 2001; 9
Lessmann, Baesens, Seow, Thomas (b0340) 2015; 247
Li, Zuo, Xiong, Peng (b0385) 2021; 30
Sagi, Rokach (b0585) 2018; 8
Yin, Lindsay, Teng (b0700) 2020; 120
Yang, Zhang, Yang, Hong, Shi (b0690) 2021
Yousefi, Carranza (b0710) 2015; 79
Abedi, Norouzi, Bahroudi (b0010) 2012; 46
Porwal, Carranza, Hale (b0530) 2003; 12
Breslow, Cain (b0055) 1988; 75
Cheng, Xia, Li, Zhang, Chen, Zuo, Wang (b0195) 2010; 7
Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical Bayesian optimization of machine learning algorithms. In: Shawe-Taylor, J, Zemel, R.S., Bartlett, P.L. (Eds.), Proceedings of the 24th International Conference on Neural Information Processing Systems. Curran Associates Inc., New York, United States, pp. 2951–2959.
Abedi, Torabi, Norouzi (b0015) 2013; 54
Dong, Li, Shen, Dong, Li, Yin, Tang (b0235) 2020; 27
Ji, S.,Wang, X., Zhao, W., Guo, D., 2019. An application of a three-stage XGBoost-based model to sales forecasting of a cross-border e-commerce enterprise. Math. Problems Eng.
Luo, Xiong, Zuo (b0425) 2020; 122
Porwal, Carranza, Hale (b0540) 2006; 15
Guo, Wang, Yuan, Wu, Yin (b0270) 2015; 109
Wu, Mao, Yuan, Dai, Wang (b0665) 2017; 53
Rodriguez-Galiano, Chica-Olmo, Chica-Rivas (b0565) 2014; 28
Skabar (b0620) 2007; 39
Carranza, Sadeghi (b0100) 2010; 38
Wang, Zhao, Cheng (b0640) 2011; 37
Wyborn, L.A.I., Heinrich, C.A., Jaques, A.L., 1994. Australian Proterozoic mineral systems: essential ingredients and mappable criteria. In: The AusIMM Annual Conference, vol. 1994. AusIMM Darwin, pp. 109-115.
Chen, Y.Q., Chen, J.G., Wang, X.Q., et al., 2008.GIS-Based Integrated Quantitative Assessments of Mineral Resources. Geological Publishing House, Beijing.
Yuan, Peng, Shen, Hu, Dai (b0735) 2007; 81
Li, Chen, Liu, Wang (b0375) 2021; 32
Breiman (b0050) 2001; 45
Carranza, Laborte (b0125) 2016; 25
Nanni, Lumini (b0475) 2009; 36
Yu, C.W., N., 2009. Regional metallogenic zonation in Nanling area: time-space synchronization in complex metallogenic system. Beijing: Geological Publishing House.
Lee, Jeong, Lee, Jeong (b0325) 2019; 9
Li, Hu, Yang, Peng, Li, Bi (b0345) 2007; 97
Wang, Zhao, Cheng (b0645) 2013; 134
Wu, Li, Algeo, Jiang, Zhou (b0660) 2018; 102
Xiong, Zuo (b9050) 2016; 86
Rokach (b0570) 2019; 85
Zuo, Wang (b0810) 2020; 29
Shahriari, Swersky, Wang, Adams, De Freitas (b0605) 2015; 104
Yousefi, Nykänen (b0715) 2016; 164
Li, Xia, Zhao, Gui, Leng (b0390) 2020; 29
Li, Wu, Evans, Jiang, Zhou (b0360) 2018; 312–313
Zhang, Carranza, Wei, Xiao, Yang, Xiang, Xu (b0765) 2021; 30
Sun, T., Chen, F., Zhong, L.X., Liu, W.M., Wang, Y., 2019. GIS-based mineral prospectivity mapping using machine learning methods: a case study from Tongling ore district, eastern China. Ore Geol. Rev. 109, 26-49. https://10.1016/j.oregeorev.201 9.04.003.
Zuo, Carranza (b0775) 2011; 37
Hosseiny, Nazari, Smith, Nataraj (b0290) 2020; 10
Ding, Ma, Lu, Zhang (b0230) 2018; 94
Zuo, Xia, Wang (b0780) 2013; 28
Ding, Ma, Lu, Zhang, Zhang (b0220) 2016; 77
Elyasi, Bahroudi, Abedi (b0245) 2019; 28
Tayebi, Tangestani, Vincent (b0635) 2014; 23
Hariharan, Tirodkar, Porwal, Bhattacharya, Joly (b0275) 2017; 26
Luo, Zuo, Xiong, Wang (b9030) 2021; 131
Liu, Zhou, Zhang, Wang (b0405) 2017; 100
Chen, Wu (b0165) 2017; 80
Barak, Bahroudi, Jozanikohan (b0035) 2018; 9
Carranza, E.J.M., 2008.Geochemical Anomaly and Mineral Prosp
Gao (10.1016/j.oregeorev.2022.104916_b0260) 2016; 75
Wang (10.1016/j.oregeorev.2022.104916_b9045) 2020; 29
Yousefi (10.1016/j.oregeorev.2022.104916_b0715) 2016; 164
Zhang (10.1016/j.oregeorev.2022.104916_b0755) 2018; 6
Coimbra (10.1016/j.oregeorev.2022.104916_b0215) 2014; 73
Yuan (10.1016/j.oregeorev.2022.104916_b0735) 2007; 81
Chen (10.1016/j.oregeorev.2022.104916_b0185) 2008
Chung (10.1016/j.oregeorev.2022.104916_b0210) 2008; 94
Chen (10.1016/j.oregeorev.2022.104916_b0170) 2021; 135
10.1016/j.oregeorev.2022.104916_b0110
Chen (10.1016/j.oregeorev.2022.104916_b0165) 2017; 80
Cheng (10.1016/j.oregeorev.2022.104916_b0195) 2010; 7
Bonham-Carter (10.1016/j.oregeorev.2022.104916_b0045) 1994
Porwal (10.1016/j.oregeorev.2022.104916_b0535) 2004; 36
10.1016/j.oregeorev.2022.104916_b0080
Yin (10.1016/j.oregeorev.2022.104916_b0700) 2020; 120
Lessmann (10.1016/j.oregeorev.2022.104916_b0340) 2015; 247
Liu (10.1016/j.oregeorev.2022.104916_b0405) 2017; 100
Elyasi (10.1016/j.oregeorev.2022.104916_b0245) 2019; 28
Nykäne (10.1016/j.oregeorev.2022.104916_b0490) 2017; 26
Zuo (10.1016/j.oregeorev.2022.104916_b0805) 2020; 29
Zhang (10.1016/j.oregeorev.2022.104916_b0765) 2021; 30
Liu (10.1016/j.oregeorev.2022.104916_b0410) 2018; 27
Carranza (10.1016/j.oregeorev.2022.104916_b0100) 2010; 38
Luo (10.1016/j.oregeorev.2022.104916_b0425) 2020; 122
Chen (10.1016/j.oregeorev.2022.104916_b0190) 2021; 382-383
Li (10.1016/j.oregeorev.2022.104916_b0360) 2018; 312–313
10.1016/j.oregeorev.2022.104916_b0525
Harris (10.1016/j.oregeorev.2022.104916_b0280) 2003; 12
Porwal (10.1016/j.oregeorev.2022.104916_b0540) 2006; 15
Breiman (10.1016/j.oregeorev.2022.104916_b0050) 2001; 45
Li (10.1016/j.oregeorev.2022.104916_b0395) 2016; 79
Ding (10.1016/j.oregeorev.2022.104916_b0220) 2016; 77
Zhang (10.1016/j.oregeorev.2022.104916_b0770) 2016; 59
10.1016/j.oregeorev.2022.104916_b0250
Xiong (10.1016/j.oregeorev.2022.104916_b0680) 2021; 147
Chen (10.1016/j.oregeorev.2022.104916_b9005) 2019; 28
Leite (10.1016/j.oregeorev.2022.104916_b0330) 2009; 57
Cheng (10.1016/j.oregeorev.2022.104916_b0200) 2011; 37
Carranza (10.1016/j.oregeorev.2022.104916_b0115) 2015; 74
Guo (10.1016/j.oregeorev.2022.104916_b0270) 2015; 109
Ziaii (10.1016/j.oregeorev.2022.104916_b0745) 2009; 100
Carranza (10.1016/j.oregeorev.2022.104916_b0105) 2010; 60
Yousefi (10.1016/j.oregeorev.2022.104916_b0705) 2015; 74
Brown (10.1016/j.oregeorev.2022.104916_b0065) 2000; 47
Zuo (10.1016/j.oregeorev.2022.104916_b0790) 2014; 139
Wang (10.1016/j.oregeorev.2022.104916_b0645) 2013; 134
Parsa (10.1016/j.oregeorev.2022.104916_b0500) 2018; 92
10.1016/j.oregeorev.2022.104916_b0415
Zuo (10.1016/j.oregeorev.2022.104916_b0815) 2021; 30
Abedi (10.1016/j.oregeorev.2022.104916_b0020) 2013; 21
Li (10.1016/j.oregeorev.2022.104916_b0390) 2020; 29
Xu (10.1016/j.oregeorev.2022.104916_b0685) 2021; 104316
Mao (10.1016/j.oregeorev.2022.104916_b0450) 2021; 49
Mojaddadi (10.1016/j.oregeorev.2022.104916_b0465) 2017; 8
Sevastjanova (10.1016/j.oregeorev.2022.104916_b0600) 2012; 280
Ding (10.1016/j.oregeorev.2022.104916_b0225) 2018; 95
Liu (10.1016/j.oregeorev.2022.104916_b0420) 2020; 12
Budholiya (10.1016/j.oregeorev.2022.104916_b0070) 2020
Zuo (10.1016/j.oregeorev.2022.104916_b0800) 2019; 192
Oh (10.1016/j.oregeorev.2022.104916_b0495) 2010; 19
Wong (10.1016/j.oregeorev.2022.104916_b0655) 2015; 48
Ford (10.1016/j.oregeorev.2022.104916_b0255) 2008; 55
Zuo (10.1016/j.oregeorev.2022.104916_b0810) 2020; 29
10.1016/j.oregeorev.2022.104916_b0305
Chen (10.1016/j.oregeorev.2022.104916_b0140) 2016
10.1016/j.oregeorev.2022.104916_b0145
10.1016/j.oregeorev.2022.104916_b0300
Zuo (10.1016/j.oregeorev.2022.104916_b0775) 2011; 37
10.1016/j.oregeorev.2022.104916_b0785
Yousefi (10.1016/j.oregeorev.2022.104916_b0710) 2015; 79
Kreuzer (10.1016/j.oregeorev.2022.104916_b0320) 2007; 32
Shahriari (10.1016/j.oregeorev.2022.104916_b0605) 2015; 104
Porwal (10.1016/j.oregeorev.2022.104916_b0530) 2003; 12
Li (10.1016/j.oregeorev.2022.104916_b0345) 2007; 97
Skabar (10.1016/j.oregeorev.2022.104916_b0620) 2007; 39
Chen (10.1016/j.oregeorev.2022.104916_b0155) 2015; 71
Schill (10.1016/j.oregeorev.2022.104916_b0595) 1993; 80
Zhao (10.1016/j.oregeorev.2022.104916_b0760) 2019; 112
Prado (10.1016/j.oregeorev.2022.104916_b0550) 2020; 124
Rigol-Sanchez (10.1016/j.oregeorev.2022.104916_b0560) 2003; 24
Carranza (10.1016/j.oregeorev.2022.104916_b0085) 2008; 33
Chen (10.1016/j.oregeorev.2022.104916_b0150) 2014; 140
Wang (10.1016/j.oregeorev.2022.104916_b0640) 2011; 37
Almasi (10.1016/j.oregeorev.2022.104916_b0025) 2017; 91
Joly (10.1016/j.oregeorev.2022.104916_b9025) 2012; 48
Li (10.1016/j.oregeorev.2022.104916_b0350) 2015; 363
10.1016/j.oregeorev.2022.104916_b0315
Kiangala (10.1016/j.oregeorev.2022.104916_b0430) 2021; 4
Ford (10.1016/j.oregeorev.2022.104916_b9020) 2020; 29
Meng (10.1016/j.oregeorev.2022.104916_b0455) 1994; 16
Hariharan (10.1016/j.oregeorev.2022.104916_b0275) 2017; 26
Parsa (10.1016/j.oregeorev.2022.104916_b0505) 2022; 31
Shu (10.1016/j.oregeorev.2022.104916_b0610) 2006; 12
10.1016/j.oregeorev.2022.104916_b0675
10.1016/j.oregeorev.2022.104916_b0670
Brandmeier (10.1016/j.oregeorev.2022.104916_b9000) 2020; 29
Carranza (10.1016/j.oregeorev.2022.104916_b0075) 2001; 10
Saljoughi (10.1016/j.oregeorev.2022.104916_b0590) 2016; 10
Wu (10.1016/j.oregeorev.2022.104916_b0660) 2018; 102
Rahimi (10.1016/j.oregeorev.2022.104916_b0555) 2021; 128
Chen (10.1016/j.oregeorev.2022.104916_b0160) 2017; 64
Cheng (10.1016/j.oregeorev.2022.104916_b9015) 2007; 32
Nie (10.1016/j.oregeorev.2022.104916_b0480) 2013; 381–382
Sun (10.1016/j.oregeorev.2022.104916_b0630) 2020; 10
Yin (10.1016/j.oregeorev.2022.104916_b0695) 2021
Sahin (10.1016/j.oregeorev.2022.104916_b0580) 2020; 2
10.1016/j.oregeorev.2022.104916_b0725
Li (10.1016/j.oregeorev.2022.104916_b0385) 2021; 30
Nykänen (10.1016/j.oregeorev.2022.104916_b0485) 2008; 17
Dong (10.1016/j.oregeorev.2022.104916_b0235) 2020; 27
Hosseiny (10.1016/j.oregeorev.2022.104916_b0290) 2020; 10
10.1016/j.oregeorev.2022.104916_b0445
Carranza (10.1016/j.oregeorev.2022.104916_b0095) 2009; 35
Cascalho (10.1016/j.oregeorev.2022.104916_b0130) 2016; 334
Abedi (10.1016/j.oregeorev.2022.104916_b0010) 2012; 46
McCuaig (10.1016/j.oregeorev.2022.104916_b9035) 2010; 38
Zuo (10.1016/j.oregeorev.2022.104916_b0780) 2013; 28
McMillan (10.1016/j.oregeorev.2022.104916_b0440) 2021; 40
Ding (10.1016/j.oregeorev.2022.104916_b0230) 2018; 94
Zuo (10.1016/j.oregeorev.2022.104916_b0795) 2017; 26
Behnia (10.1016/j.oregeorev.2022.104916_b0040) 2007; 16
Chen (10.1016/j.oregeorev.2022.104916_b0135) 2005; 48
Li (10.1016/j.oregeorev.2022.104916_b0375) 2021; 32
Breslow (10.1016/j.oregeorev.2022.104916_b0055) 1988; 75
Carranza (10.1016/j.oregeorev.2022.104916_b0125) 2016; 25
Lee (10.1016/j.oregeorev.2022.104916_b0325) 2019; 9
Mohebi (10.1016/j.oregeorev.2022.104916_b0460) 2015; 69
Porwal (10.1016/j.oregeorev.2022.104916_b0545) 2006; 32
Peng (10.1016/j.oregeorev.2022.104916_b0515) 2006; 41
10.1016/j.oregeorev.2022.104916_b0615
Yousefi (10.1016/j.oregeorev.2022.104916_b0720) 2019; 111
Leite (10.1016/j.oregeorev.2022.104916_b0335) 2009; 35
Lisitsin (10.1016/j.oregeorev.2022.104916_b0380) 2013; 52
10.1016/j.oregeorev.2022.104916_b0730
Amano (10.1016/j.oregeorev.2022.104916_b0030) 1992; 20
10.1016/j.oregeorev.2022.104916_b0295
Roy (10.1016/j.oregeorev.2022.104916_b0575) 2006; 29
Li (10.1016/j.oregeorev.2022.104916_b0355) 2016; 79
Barak (10.1016/j.oregeorev.2022.104916_b0035) 2018; 9
10.1016/j.oregeorev.2022.104916_b0060
Ahneman (10.1016/j.oregeorev.2022.104916_b0005) 2018; 360
Chung (10.1016/j.oregeorev.2022.104916_b0205) 1993; 2
10.1016/j.oregeorev.2022.104916_b0180
Tayebi (10.1016/j.oregeorev.2022.104916_b0635) 2014; 23
Abedi (10.1016/j.oregeorev.2022.104916_b0015) 2013; 54
Wu (10.1016/j.oregeorev.2022.104916_b0665) 2017; 53
Zhang (10.1016/j.oregeorev.2022.104916_b9070) 2021; 136
Sagi (10.1016/j.oregeorev.2022.104916_b0585) 2018; 8
Yang (10.1016/j.oregeorev.2022.104916_b0690) 2021
Xiong (10.1016/j.oregeorev.2022.104916_b9050) 2016; 86
Li (10.1016/j.oregeorev.2022.104916_b0370) 2016; 89
Peng (10.1016/j.oregeorev.2022.104916_b0510) 2003; 200
10.1016/j.oregeorev.2022.104916_b9040
Yang (10.1016/j.oregeorev.2022.104916_b9065) 2022; 31
10.1016/j.oregeorev.2022.104916_b0625
Carranza (10.1016/j.oregeorev.2022.104916_b0090) 2009; 35
Chen (10.1016/j.oregeorev.2022.104916_b0175) 2022; 41
10.1016/j.oregeorev.2022.104916_b0740
Pirajno (10.1016/j.oregeorev.2022.104916_b0520) 2010; 50
King (10.1016/j.oregeorev.2022.104916_b0310) 2001; 9
Zhang (10.1016/j.oregeorev.2022.104916_b0750) 2016; 59
Morton (10.1016/j.oregeorev.2022.104916_b0470) 1999; 124
Carranza (10.1016/j.oregeorev.2022.104916_b0120) 2015; 71
Lisitsin (10.1016/j.oregeorev.2022.104916_b0400) 2015; 71
Egozcue (10.1016/j.oregeorev.2022.104916_b0240) 2003; 35
Luo (10.1016/j.oregeorev.2022.104916_b9030) 2021; 131
Rokach (10.1016/j.oregeorev.2022.104916_b0570) 2019; 85
Wang (10.1016/j.oregeorev.2022.104916_b0650) 2015; 527
Rodriguez-Galiano (10.1016/j.oregeorev.2022.104916_b0565) 2014; 28
Li (10.1016/j.oregeorev.2022.104916_b0365) 2020; 122
Nanni (10.1016/j.oregeorev.2022.104916_b0475) 2009; 36
Gudiyangada (10.1016/j.oregeorev.2022.104916_b0265) 2020; 590
Hallsworth (10.1016/j.oregeorev.2022.104916_b0285) 2008; 203
References_xml – volume: 36
  start-page: 3028
  year: 2009
  end-page: 3033
  ident: b0475
  article-title: An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
  publication-title: Expert Syst. Appl.
– year: 2008
  ident: b0185
  article-title: GIS-Based Integrated Quantitative Assessments of Mineral Resources
– volume: 104
  start-page: 148
  year: 2015
  end-page: 175
  ident: b0605
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: Proc. IEEE
– volume: 79
  start-page: 69
  year: 2015
  end-page: 81
  ident: b0710
  article-title: Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling
  publication-title: Comput. Geosci.
– volume: 9
  start-page: 19
  year: 2018
  end-page: 39
  ident: b0035
  article-title: Exploration of Kahang porphyry copper deposit using advanced integration of geological, remote sensing, geochemical, and magnetics data
  publication-title: J. Min. Environ.
– volume: 12
  start-page: 155
  year: 2003
  end-page: 171
  ident: b0530
  article-title: Artificial neural networks for mineral potential mapping
  publication-title: Nat. Resour. Res.
– volume: 59
  start-page: 556
  year: 2016
  end-page: 572
  ident: b0750
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Science China, Earth Sciences
– volume: 12
  start-page: 241
  year: 2003
  end-page: 255
  ident: b0280
  article-title: A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression
  publication-title: Nat. Resour. Res.
– volume: 37
  start-page: 1967
  year: 2011
  end-page: 1975
  ident: b0775
  article-title: Support vector machine: A tool for mapping mineral prospectivity
  publication-title: Comput. Geosci.
– volume: 32
  start-page: 327
  year: 2021
  end-page: 347
  ident: b0375
  article-title: Mineral prospectivity prediction via convolutional neural networks based on geological big data
  publication-title: J. Earth Sci.
– volume: 75
  start-page: 16
  year: 2016
  end-page: 28
  ident: b0260
  article-title: Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China
  publication-title: Ore Geol. Rev.
– volume: 36
  start-page: 803
  year: 2004
  end-page: 826
  ident: b0535
  article-title: A hybrid neuro-fuzzy model for mineral potential mapping
  publication-title: Math. Geol.
– year: 2016
  ident: b0140
  article-title: Genera-tion of late meosozic qianlishan A2-type granite in nanling range, South China: implications for shizhuyuan W-Sn mineralization and tectonic evolution
  publication-title: Lithos
– volume: 71
  start-page: 703
  year: 2015
  end-page: 718
  ident: b0120
  article-title: Predictive mapping of prospectivity for orogenic gold, Giyani greenstone belt (South Africa)
  publication-title: Ore Geol. Rev.
– volume: 55
  start-page: 13
  year: 2008
  end-page: 23
  ident: b0255
  article-title: Evaluating geological complexity and complexity gradients as controls on copper mineralization, Mt Isa Inlier
  publication-title: Aust. J. Earth Sci.
– volume: 8
  start-page: 1249
  year: 2018
  ident: b0585
  article-title: Ensemble learning: a survey
  publication-title: WIREs Data Min. Knowledge Discovery
– volume: 91
  start-page: 1066
  year: 2017
  end-page: 1080
  ident: b0025
  article-title: Prospectivity analysis of orogenic gold deposits in saqez-sardasht goldfield, Zagros orogen
  publication-title: Iran. Ore Geol. Rev.
– volume: 10
  start-page: 229
  year: 2016
  end-page: 256
  ident: b0590
  article-title: A comparative analysis of artificial neural network (ANN), wavelet neural network (WNN), and support vector machine (SVM) data-driven models to mineral potential mapping for copper mineralizations in the Shahr-e-Babak region, Kerman, Iran
  publication-title: Appl. Geomatics
– reference: Chen,T., Guestrin, C., 2016.XGBoost:A Scalable Tree Boosting System. The 22nd ACM SIGKDD International Conference. 2016: 785-794. 10.1145/2939672.2939785.
– volume: 27
  start-page: 299
  year: 2018
  end-page: 313
  ident: b0410
  article-title: A MaxEnt model for mineral prospectivity mapping
  publication-title: Nat. Resour. Res.
– volume: 80
  start-page: 200
  year: 2017
  end-page: 213
  ident: b0165
  article-title: Mapping mineral prospectivity using an extreme learning machine regression
  publication-title: Ore Geol. Rev.
– volume: 94
  start-page: 438
  year: 2008
  end-page: 452
  ident: b0210
  article-title: Predicting landslides for risk analysis spatial models tested by a cross-validation technique
  publication-title: Geomorphology
– volume: 122
  year: 2020
  ident: b0365
  article-title: Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian-Zhangbaling area, Anhui Province, China
  publication-title: Appl. Geochem.
– volume: 33
  start-page: 536
  year: 2008
  end-page: 558
  ident: b0085
  article-title: Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping
  publication-title: Ore Geol. Rev.
– year: 2021
  ident: b0695
  article-title: Mineral prospectivity mapping via gated recurrent unit model
  publication-title: Nat. Resour. Res.
– volume: 54
  start-page: 145
  year: 2013
  end-page: 164
  ident: b0015
  article-title: Application of fuzzy-AHP method to integrate geophysical data in a prospect scale, a case study: seridune copper deposit
  publication-title: Boll. Geofis. Teor. Appl.
– volume: 79
  start-page: 1
  year: 2016
  end-page: 25
  ident: b0355
  article-title: Genesis of the huangshaping W-Mo-Cu-Pb-Zn polymetallic deposit in southeastern Hunan Province, China: constraints from fluid inclusions, trace elements, and isotopes
  publication-title: Ore Geol. Rev.
– volume: 140
  start-page: 56
  year: 2014
  end-page: 63
  ident: b0150
  article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly
  publication-title: J. Geochem. Explor.
– reference: Liu, W., Zhang, M., Luo, Z., Cai, Y., 2017. An ensemble deep learning method for vehicle type classification on visual traffic surveillance sensors. IEEE Access, 5,24417-24425. http://dx.doi.org/10.1109/ACCESS.2017.2766203.
– volume: 50
  start-page: 325
  year: 2010
  end-page: 346
  ident: b0520
  article-title: Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia)
  publication-title: J. Geodyn.
– volume: 29
  start-page: 3415
  year: 2020
  end-page: 3424
  ident: b0805
  article-title: Geodata science-based mineral prospectivity mapping: a review
  publication-title: Nat. Resour. Res.
– volume: 94
  start-page: 193
  year: 2018
  end-page: 211
  ident: b0230
  article-title: Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan province, China
  publication-title: Ore Geol. Rev.
– reference: Mao, J.W., Pirajno, F., Cook, N., 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings-an introduction to the special issue. Ore Geol. Rev. 43, 1-7.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0325
  article-title: CPEM: Accurate cancer type classification based on somatic alterations using an ensemble of a random forest and a deep neural network
  publication-title: Sci. Rep.
– volume: 35
  start-page: 2032
  year: 2009
  end-page: 2046
  ident: b0095
  article-title: Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity
  publication-title: Comput. Geosci.
– volume: 28
  start-page: 202
  year: 2013
  end-page: 211
  ident: b0780
  article-title: Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization
  publication-title: Appl. Geochem.
– volume: 97
  start-page: 161
  year: 2007
  end-page: 193
  ident: b0345
  article-title: He, Pb and S isotopic constraints on the relationship between the A-type Qitianling granite and the Furong tin deposit, Hunan Province, China
  publication-title: Lithos
– reference: Carranza, E.J.M., 2008.Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Exploration and Environmental Geochemistry, vol. 11 Elsevier, Amsterdam.
– reference: Polikar, R., 2012.Ensemble learning. In: Ensemble Machine Learning, Springer, pp. 1-34.
– volume: 48
  start-page: 912
  year: 2005
  end-page: 924
  ident: b0135
  article-title: Petrogenesis and significance of early Yanshanian syenite-granite complex in eastern Nanling Range
  publication-title: Sci. China, Ser. D Earth Sci.
– volume: 312–313
  start-page: 1
  year: 2018
  end-page: 20
  ident: b0360
  article-title: Zircon geochronology and geochemistry of the Xianghualing A-type granitic rocks: Insights into multi-stage Sn-polymetallic mineralization
  publication-title: Lithos
– volume: 29
  start-page: 71
  year: 2020
  end-page: 88
  ident: b9000
  article-title: Boosting for mineral prospectivity modeling: A new GIS toolbox
  publication-title: Nat. Resour. Res.
– volume: 79
  start-page: 1
  year: 2016
  end-page: 25
  ident: b0395
  article-title: Genesis of the Huangshaping WMo-Cu-Pb-Zn polymetallic deposit in southeastern Hunan Province, China: constraints from fluid inclusions, trace elements, and isotopes
  publication-title: Ore Geol. Rev.
– volume: 38
  start-page: 219
  year: 2010
  end-page: 241
  ident: b0100
  article-title: Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden)
  publication-title: Ore Geol. Rev.
– volume: 28
  start-page: 31
  year: 2019
  end-page: 46
  ident: b9005
  article-title: Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency
  publication-title: Nat. Resour. Res.
– volume: 10
  start-page: 102
  year: 2020
  ident: b0630
  article-title: Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: a case study from southern Jiangxi Province, China
  publication-title: Minerals
– volume: 35
  start-page: 675
  year: 2009
  end-page: 687
  ident: b0335
  article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil
  publication-title: Comput. Geosci.
– volume: 75
  start-page: 11
  year: 1988
  end-page: 20
  ident: b0055
  article-title: Logistic regression for two stage case-control data
  publication-title: Biometrika
– volume: 74
  start-page: 60
  year: 2015
  end-page: 70
  ident: b0115
  article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)
  publication-title: Comput. Geosci.
– volume: 74
  start-page: 97
  year: 2015
  end-page: 109
  ident: b0705
  article-title: Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping
  publication-title: Comput. Geosci.
– volume: 38
  start-page: 128
  year: 2010
  end-page: 138
  ident: b9035
  article-title: Translating the mineral systems approach into an effective exploration targeting system
  publication-title: Ore Geol. Rev.
– volume: 92
  start-page: 97
  year: 2018
  end-page: 112
  ident: b0500
  article-title: Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran
  publication-title: Ore Geol. Rev.
– volume: 280
  start-page: 179
  year: 2012
  end-page: 194
  ident: b0600
  article-title: A detrital heavy mineral viewpoint on sediment provenance and tropical weathering in SE Asia
  publication-title: Sed. Geol.
– volume: 32
  start-page: 1
  year: 2006
  end-page: 16
  ident: b0545
  article-title: Bayesian network classifiers for mineral potential mapping
  publication-title: Comput. Geosci.
– volume: 10
  year: 2020
  ident: b0290
  article-title: A framework for modeling flood depth using a hybrid of hydraulics and machine learning
  publication-title: Sci. Rep.
– volume: 29
  start-page: 260
  year: 2006
  end-page: 286
  ident: b0575
  article-title: Predictive mapping for copper-gold magmatic-hydrothermal systems in NW Argentina: use of a regional-scale GIS, application of an expert-guided data-driven approach, and comparison with results from a continental-scale GIS
  publication-title: Ore Geol. Rev.
– volume: 527
  start-page: 1130
  year: 2015
  end-page: 1141
  ident: b0650
  article-title: Flood hazard risk assessment model based on random forest
  publication-title: J. Hydrol.
– volume: 136
  start-page: 1
  year: 2021
  end-page: 8
  ident: b9070
  article-title: Recognition of multivariate geochemical anomalies associated with mineralization using an improved generative adversarial network
  publication-title: Ore Geol. Rev.
– year: 1994
  ident: b0045
  article-title: Geographic Information Systems for Geoscientists, Modelling with GIS
– reference: Yuan, S.D., Mao, J., Cook, N.J., Wang, X., Liu, X., Yuan, Y., 2015. A Late Cretaceous tin metallogenic event in Nanling W-Sn metallogenic province: constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit, Hunan, China. Ore Geol. Rev. 65, 283-293.
– volume: 26
  start-page: 489
  year: 2017
  end-page: 507
  ident: b0275
  article-title: Random forest-based prospectivity modelling of Greenfield Terrains using sparse deposit data: An example from the Tanami Region, Western Australia
  publication-title: Nat. Resour. Res.
– reference: Hu, X.L., Gong, Y.J., Pi, D.H., Zhang, Z.J., Zeng, G.P., Xiong, S.F., Yao, S.Z., 2017. Jurassic magmatism related Pb-Zn-W-Mo polymetallic mineralization in the central Nanling Range, South China: geochronologic, geochemical, and isotopic evidence from the Huangshaping deposit. Ore Geol. Rev. 91, 877-895.
– reference: Feurer, M., Klein, A., Eggensperger K, Springenberg JT, Blum M, Hutter F., 2019. Auto-sklearn: efficient and robust automated machine learning, part of the springer series on challenges in machine learning book series (SSCML). 10.1007/978-3-030-05318-5_6.
– volume: 16
  start-page: 147
  year: 2007
  end-page: 155
  ident: b0040
  article-title: Application of radial basis functional link networks to exploration for Proterozoic mineral deposits in Central Iran
  publication-title: Nat. Resour. Res.
– volume: 6
  start-page: 21020
  year: 2018
  end-page: 21031
  ident: b0755
  article-title: A data-driven design for fault detection of wind turbines using random forests and XGboost. IEEE
  publication-title: Access
– volume: 95
  start-page: 65
  year: 2018
  end-page: 78
  ident: b0225
  article-title: Magnetite as an indicator of mixed sources for W-Mo-Pb-Zn mineralization in the Huangshaping polymetallic deposit, southern Hunan Province, China
  publication-title: Ore Geol. Rev.
– volume: 89
  start-page: 161
  year: 2016
  end-page: 173
  ident: b0370
  article-title: GeoCube: a 3D mineral resources quantitative prediction and assessment system
  publication-title: Comput. Geosci.
– volume: 40
  start-page: 99
  year: 2021
  end-page: 105
  ident: b0440
  article-title: Mineral prospectivity mapping using a VNet convolutional neural network
  publication-title: Lead. Edge
– volume: 80
  start-page: 339
  year: 1993
  end-page: 352
  ident: b0595
  article-title: Logistic analysis in case-control studies under validation sampling
  publication-title: Biometrika
– volume: 39
  start-page: 439
  year: 2007
  end-page: 451
  ident: b0620
  article-title: Mineral potential mapping using Bayesian learning for multilayer perceptrons
  publication-title: Math. Geol.
– volume: 17
  start-page: 29
  year: 2008
  end-page: 48
  ident: b0485
  article-title: Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the central lapland greenstone belt, northern Fennoscandian Shield
  publication-title: Nat. Resour. Res.
– volume: 26
  start-page: 457
  year: 2017
  end-page: 464
  ident: b0795
  article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods
  publication-title: Nat. Resour. Res.
– reference: Hu, X., Gong, Y., Pi, D., Zhang, Z., Zeng, G., Xiong, S., Yao, S., 2017. Jurassic magmatism related Pb-Zn-W-Mo polymetallic mineralization in the central Nanling range, South China: geochronologic, geochemical, and isotopic evidence from the Huangshaping deposit. Ore Geol. Rev. 10.1016/j.oregeorev.2017.08.016.
– volume: 360
  start-page: 186
  year: 2018
  end-page: 190
  ident: b0005
  article-title: Predicting reaction performance in C-N cross-coupling using machine learning
  publication-title: Science
– volume: 46
  start-page: 272
  year: 2012
  end-page: 283
  ident: b0010
  article-title: Support vector machine for multi-classification of mineral prospectivity areas
  publication-title: Comput. Geosci.
– reference: Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. Int. Joint Conf. Artif. Intel. 14 (2),1137-1145.
– reference: Xiong, Y., Zuo, R., 2018.GIS-based rare events logistic regression for mineral prospectivity mapping. Comput. Geosci., 111, 18-25.
– volume: 147
  year: 2021
  ident: b0680
  article-title: A positive and unlabeled learning algorithm for mineral prospectivity mapping
  publication-title: Comput. Geosci.
– volume: 30
  start-page: 27
  year: 2021
  end-page: 38
  ident: b0385
  article-title: Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping
  publication-title: Nat. Resour. Res.
– volume: 382-383
  start-page: 105952
  year: 2021
  ident: b0190
  article-title: Extraction of fractionated interstitial melt from a crystal mush system generating the late jurassic high-silica granites from the qitianling composite pluton, South China: implications for greisen-type tin mineralization
  publication-title: Lithos
– volume: 64
  start-page: 639
  year: 2017
  end-page: 651
  ident: b0160
  article-title: Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data
  publication-title: Aust. J. Earth Sci.
– reference: Zuo, R., Xia, Q., Zhang, D., 2013. A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas. Appl. Geochem. 33, 165-172.
– reference: Yousefi, M., Carranza, E.J.M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M.A., Mihalasky, M.J.,2021. Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. J. Geochem. Explor.,1-12.
– volume: 381–382
  start-page: 110
  year: 2013
  end-page: 118
  ident: b0480
  article-title: Controlling factors on heavy mineral assemblages in Chinese loess and Red Clay
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 100
  start-page: 133
  year: 2017
  end-page: 147
  ident: b0405
  article-title: Maximum entropy modeling for orogenic gold prospectivity mapping in the Tangbale-Hatu belt, western Junggar, China
  publication-title: Ore Geol. Rev.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0050
  article-title: Random forests
  publication-title: Machine Learn.
– volume: 590
  year: 2020
  ident: b0265
  article-title: Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using dempster shafer theory
  publication-title: J. Hydrol.
– volume: 21
  start-page: 556
  year: 2013
  end-page: 567
  ident: b0020
  article-title: Fuzzy outranking approach: a knowledge-driven method for mineral prospectivity mapping
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 203
  start-page: 196
  year: 2008
  end-page: 212
  ident: b0285
  article-title: Provenance of late Carboniferous sandstones in the Pennine Basin (UK) from combined heavy mineral, garnet geochemistry and palaeocurrent studies
  publication-title: Sed. Geol.
– volume: 35
  start-page: 383
  year: 2009
  end-page: 400
  ident: b0090
  article-title: Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features
  publication-title: Ore Geol. Rev.
– volume: 28
  start-page: 1336
  year: 2014
  end-page: 1354
  ident: b0565
  article-title: Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain
  publication-title: Int. J. Geograph. Inf. Sci.
– volume: 71
  start-page: 749
  year: 2015
  end-page: 760
  ident: b0155
  article-title: Mineral potential mapping with a restricted Boltzmann machine
  publication-title: Ore Geol. Rev.
– reference: Ji, S.,Wang, X., Zhao, W., Guo, D., 2019. An application of a three-stage XGBoost-based model to sales forecasting of a cross-border e-commerce enterprise. Math. Problems Eng.
– reference: Yu, C.W., N., 2009. Regional metallogenic zonation in Nanling area: time-space synchronization in complex metallogenic system. Beijing: Geological Publishing House.
– volume: 41
  start-page: 1
  year: 2022
  end-page: 12
  ident: b0175
  article-title: Dictionary learning for integration of evidential layers for mineral prospectivity modeling
  publication-title: Ore Geol. Rev.
– volume: 48
  start-page: 2839
  year: 2015
  end-page: 2846
  ident: b0655
  article-title: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
  publication-title: Pattern Recogn.
– volume: 200
  start-page: 129
  year: 2003
  end-page: 136
  ident: b0510
  article-title: Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): the potential of calcite as a geochronometer
  publication-title: Chem. Geol.
– volume: 26
  start-page: 1
  year: 2017
  end-page: 14
  ident: b0490
  article-title: Optimizing a knowledge-driven prospectivity model for gold deposits within Perapohja Belt, Northern Finland
  publication-title: Nat. Resour. Res.
– volume: 28
  start-page: 931
  year: 2019
  end-page: 951
  ident: b0245
  article-title: Risk-based analysis in mineral potential mapping: application of quantifier-guided ordered weighted averaging method
  publication-title: Nat. Resour. Res.
– volume: 10
  start-page: 165
  year: 2001
  end-page: 175
  ident: b0075
  article-title: Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines
  publication-title: Explor. Min. Geol.
– volume: 334
  start-page: 21
  year: 2016
  end-page: 33
  ident: b0130
  article-title: Heavy mineral assemblages of the storegga tsunami deposit
  publication-title: Sed. Geol.
– volume: 59
  start-page: 556
  year: 2016
  end-page: 572
  ident: b0770
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Sci. China Earth Sci.
– volume: 35
  start-page: 279
  year: 2003
  end-page: 300
  ident: b0240
  article-title: Isometric logratio transformations for compositional data analysis
  publication-title: Math. Geol.
– volume: 12
  start-page: 418
  year: 2006
  end-page: 431
  ident: b0610
  article-title: Pre-Devonian tectonic evolution of South China: from Cathaysian Block to Caledonian period folded orogenic belt
  publication-title: Geol. J. China Univ.
– volume: 112
  year: 2019
  ident: b0760
  article-title: Controls on and prospectivity mapping of volcanic-type uranium mineralization in the Pucheng district, NW Fujian, China
  publication-title: Ore Geol. Rev.
– volume: 27
  start-page: 171
  year: 2020
  end-page: 178
  ident: b0235
  article-title: Genetic mineralogy of natural heavy placer minerals and its effectiveness in mineral prospecting
  publication-title: Earth Sci. Front.
– volume: 192
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0800
  article-title: Deep learning and its application in geochemical mapping
  publication-title: Earth-Sci. Rev.
– volume: 29
  start-page: 3443
  year: 2020
  end-page: 3455
  ident: b0810
  article-title: Effects of random negative training samples on mineral prospectivity mapping
  publication-title: Nat. Resour. Res.
– volume: 30
  start-page: 1
  year: 2021
  end-page: 21
  ident: b0815
  article-title: Uncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutions
  publication-title: Nat. Resour. Res.
– reference: Skabar, A.A., 2003.Mineral potential mapping using feed-forward neural networks. In Proceedings of the international joint conference on neural networks, 3, 1814-1819, Portland, OR, the United States, IEEE Press.
– volume: 60
  start-page: 129
  year: 2010
  end-page: 149
  ident: b0105
  article-title: Improved wildcat modelling of mineral prospectivity
  publication-title: Resour. Geol.
– volume: 135
  start-page: 1066
  year: 2021
  end-page: 1080
  ident: b0170
  article-title: Mineral exploration targeting by combination of recursive indicator elimination with the ?2-regularization logistic regression based on geochemical data
  publication-title: Ore Geol. Rev.
– volume: 31
  start-page: 37
  year: 2022
  end-page: 50
  ident: b0505
  article-title: Deep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral deposits
  publication-title: Nat. Resour. Res.
– volume: 25
  start-page: 35
  year: 2016
  end-page: 50
  ident: b0125
  article-title: Data-driven predictive modeling of mineral prospectivity using Random Forests: a case study in Catanduanes Island (Philippines)
  publication-title: Nat. Resour. Res.
– volume: 37
  start-page: 662
  year: 2011
  end-page: 669
  ident: b0200
  article-title: A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan
  publication-title: China. Comput. Geosci.
– volume: 12
  start-page: 385
  year: 2020
  end-page: 393
  ident: b0420
  article-title: Modelling of shallow landslides with Machine Learning algorithms
  publication-title: Geosci. Front.
– volume: 247
  start-page: 124
  year: 2015
  end-page: 136
  ident: b0340
  article-title: Comparisoning state-of-the-art classification algorithms for credit scoring: an update of research
  publication-title: Eur. J. Oper. Res.
– volume: 15
  start-page: 1
  year: 2006
  end-page: 14
  ident: b0540
  article-title: A hybrid fuzzy weights-of-evidence model for mineral potential mapping
  publication-title: Nat. Resour. Res.
– volume: 20
  start-page: 391
  year: 1992
  end-page: 394
  ident: b0030
  article-title: Two-phase uplift of higher Himalayas since 17 Ma
  publication-title: Geology
– volume: 164
  start-page: 94
  year: 2016
  end-page: 106
  ident: b0715
  article-title: Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping
  publication-title: J. Geochem. Explor.
– reference: Sun, T., Chen, F., Zhong, L.X., Liu, W.M., Wang, Y., 2019. GIS-based mineral prospectivity mapping using machine learning methods: a case study from Tongling ore district, eastern China. Ore Geol. Rev. 109, 26-49. https://10.1016/j.oregeorev.201 9.04.003.
– volume: 73
  start-page: 198
  year: 2014
  end-page: 207
  ident: b0215
  article-title: Regression trees for modeling geochemical data-an application to Late Jurassic carbonates (Ammonitico Rosso)
  publication-title: Comput. Geosci.
– volume: 7
  start-page: 3019
  year: 2010
  end-page: 3025
  ident: b0195
  article-title: Density/area powerlaw models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China
  publication-title: Biogeosciences
– volume: 2
  start-page: 122
  year: 1993
  end-page: 139
  ident: b0205
  article-title: The representation of geoscience information for data integration
  publication-title: Nonrenewable Resources
– reference: Brochu, E., Cora, V., de Freitas, N. 2010. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599v1 [cs.LG].
– volume: 139
  start-page: 170
  year: 2014
  end-page: 176
  ident: b0790
  article-title: Identification of geochemical anomalies associated with mineralizationin the Fanshan district, Fujian, China
  publication-title: J. Geochem. Explor.
– volume: 4
  start-page: 1
  year: 2021
  end-page: 14
  ident: b0430
  article-title: An effective adaptive customization framework for small manufacturing plants using extreme gradient boosting-XGBoost and random forest ensemble learning algorithms in an Industry 4.0 environment
  publication-title: Machine Learn. Appl.
– volume: 69
  start-page: 187
  year: 2015
  end-page: 198
  ident: b0460
  article-title: Controls on porphyry Cu mineralization around Hanza Mountain, south-east of Iran: an analysis of structural evolution from remote sensing, geophysical, geochemical and geological data
  publication-title: Ore Geol. Rev.
– volume: 102
  start-page: 220
  year: 2018
  end-page: 239
  ident: b0660
  article-title: Genesis of the Xianghualing Sn-Pb-Zn deposit, South China: a multi-method zircon study
  publication-title: Ore Geol. Rev.
– volume: 19
  start-page: 103
  year: 2010
  end-page: 124
  ident: b0495
  article-title: Application of artificial neural network for gold-silver deposits potential mapping: a case study of Korea
  publication-title: Nat. Resour. Res.
– reference: Wyborn, L.A.I., Heinrich, C.A., Jaques, A.L., 1994. Australian Proterozoic mineral systems: essential ingredients and mappable criteria. In: The AusIMM Annual Conference, vol. 1994. AusIMM Darwin, pp. 109-115.
– volume: 30
  start-page: 1011
  year: 2021
  end-page: 1031
  ident: b0765
  article-title: Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional autoencoder network and supervised convolutional neural network
  publication-title: Nat. Resour. Res.
– volume: 134
  start-page: 27
  year: 2013
  end-page: 37
  ident: b0645
  article-title: Fault trace-oriented singularity mapping technique to characterize anisotropic geochemical signatures in Gejiu mineral district, China
  publication-title: J. Geochem. Explor.
– volume: 104316
  year: 2021
  ident: b0685
  article-title: Mineral prospectivity mapping by deep learning method in YawanDaqiao area, Gansu
  publication-title: Ore Geol. Rev.
– volume: 111
  year: 2019
  ident: b0720
  article-title: Exploration information systems-a proposal for the future use of GIS in mineral exploration targeting
  publication-title: Ore Geol. Rev.
– volume: 131
  year: 2021
  ident: b9030
  article-title: Detection of geochemical anomalies related to mineralization using the GANomaly network
  publication-title: Appl. Geochem.
– volume: 49
  start-page: 592
  year: 2021
  end-page: 596
  ident: b0450
  article-title: Recognition of a Middle-Late Jurassic are-related porphyry copper belt along the Southeast China coast: geological characteristics and metallogenic implications
  publication-title: Geology
– start-page: 1
  year: 2021
  end-page: 19
  ident: b0690
  article-title: A convolutional neural network of GoogLeNet applied in mineral prospectivity prediction based on multi-source geoinformation
  publication-title: Nat. Resour. Res.
– volume: 32
  start-page: 314
  year: 2007
  end-page: 324
  ident: b9015
  article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China
  publication-title: Ore. Geol. Rev.
– volume: 120
  start-page: 1
  year: 2020
  end-page: 20
  ident: b0700
  article-title: Mineral prospectivity analysis for BIF iron deposits: a case study in the Anshan-Benxi area, Liaoning province, North-East China
  publication-title: Ore Geol. Rev.
– volume: 85
  year: 2019
  ident: b0570
  article-title: Ensemble learning: pattern classification using ensemble methods
  publication-title: World Sci.
– volume: 77
  start-page: 117
  year: 2016
  end-page: 132
  ident: b0220
  article-title: S, Pb, and Sr isotope geochemistry and genesis of Pb-Zn mineralization in the Huangshaping polymetallic ore deposit of southern Hunan Province
  publication-title: China. Ore Geol. Rev.
– volume: 9
  start-page: 137
  year: 2001
  end-page: 163
  ident: b0310
  article-title: Logistic regression in rare events data
  publication-title: Polit. Anal.
– volume: 31
  start-page: 1
  year: 2022
  end-page: 17
  ident: b9065
  article-title: Mineral Prospectivity Prediction by Integration of Convolutional Autoencoder Network and Random Forest
  publication-title: Nat. Resour. Res.
– volume: 57
  start-page: 1049
  year: 2009
  end-page: 1065
  ident: b0330
  article-title: Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil
  publication-title: Geophys. Prospect.
– volume: 37
  start-page: 1946
  year: 2011
  end-page: 1957
  ident: b0640
  article-title: Analysis and integration of geo-information to identify granitic intrusions as exploration targets in southeastern Yunnan District, China
  publication-title: Comput. Geosci.
– volume: 86
  start-page: 75
  year: 2016
  end-page: 82
  ident: b9050
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Comput. Geosci.
– volume: 23
  start-page: 627
  year: 2014
  end-page: 644
  ident: b0635
  article-title: Alteration mineral mapping with ASTER data by integration of coded spectral ratio imaging and SOM neural network model
  publication-title: Turk. J. Earth Sci.
– volume: 109
  start-page: 253
  year: 2015
  end-page: 282
  ident: b0270
  article-title: Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Qianlishan granitic pluton, Southeast China
  publication-title: Mineral. Petrol.
– volume: 122
  year: 2020
  ident: b0425
  article-title: Recognition of geochemical anomalies using a deep variational autoencoder network
  publication-title: Appl. Geochem.
– volume: 32
  start-page: 37
  year: 2007
  end-page: 80
  ident: b0320
  article-title: Ore controls in the Charters Towers goldfield, NE Australia: Constraints from geological, geophysical and numerical analyses
  publication-title: Ore Geol. Rev.
– volume: 128
  start-page: 1
  year: 2021
  end-page: 8
  ident: b0555
  article-title: Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof
  publication-title: Appl. Geochem.
– volume: 16
  start-page: 72
  year: 1994
  end-page: 76
  ident: b0455
  article-title: Robust kriging and its application in delineation of geochemical anomalies with scale of 1:50000
  publication-title: Comput. Techn. Geophys. Geochem. Explor.
– volume: 363
  start-page: 112
  year: 2015
  end-page: 124
  ident: b0350
  article-title: Provenance of heavy mineral deposits on the northwestern shelf of the South China Sea, evidence from single-mineral chemistry
  publication-title: Mar. Geol.
– volume: 124
  start-page: 3
  year: 1999
  end-page: 29
  ident: b0470
  article-title: Processes controlling the compositionof heavy mineral assemblages in sandstones
  publication-title: Sed. Geol.
– volume: 29
  start-page: 189
  year: 2020
  end-page: 202
  ident: b9045
  article-title: Mapping mineral prospectivity via semi-supervised random forest
  publication-title: Nat. Resour. Res.
– volume: 29
  start-page: 267
  year: 2020
  end-page: 283
  ident: b9020
  article-title: Practical implementation of random forest-based mineral potential mapping for porphyry Cu-Au mineralization in the Eastern Lachlan Orogen, NSW, Australia
  publication-title: Nat. Resour. Res.
– volume: 71
  start-page: 861
  year: 2015
  end-page: 881
  ident: b0400
  article-title: Spatial data analysis of mineral deposit point patterns: applications to exploration targeting
  publication-title: Ore Geol. Rev.
– volume: 47
  start-page: 757
  year: 2000
  end-page: 770
  ident: b0065
  article-title: Artificial neural networks: a new method for mineral prospectivity mapping
  publication-title: Aust. J. Earth Sci.
– volume: 29
  start-page: 203
  year: 2020
  end-page: 227
  ident: b0390
  article-title: Prospectivity mapping for tungsten polymetallic mineral resources, Nanling Metallogenic Belt, South China: Use of Random Forest algorithm from a perspective of data imbalance
  publication-title: Nat. Resour. Res.
– volume: 8
  start-page: 1080
  year: 2017
  end-page: 1102
  ident: b0465
  article-title: Ensemble machine-learning-based geospatial approach for flood risk assessment using multisensor remote-sensing data and GIS
  publication-title: Geomatics Natural Hazards Risk
– volume: 41
  start-page: 661
  year: 2006
  end-page: 669
  ident: b0515
  article-title: Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China
  publication-title: Mineral Deposita
– volume: 24
  start-page: 1151
  year: 2003
  end-page: 1156
  ident: b0560
  article-title: Artificial neural networks as a tool for mineral potential mapping with GIS
  publication-title: Int. J. Remote Sens.
– year: 2020
  ident: b0070
  article-title: An optimized XGBoost based diagnostic system for effective prediction of heart disease
  publication-title: J. King Saud Univ. – Comput. Inf. Sci.
– reference: Carranza, E.J.M., Laborte, A.G., 2015. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of Random Forests algorithm. Ore Geol. Rev., 71, 777-787.
– volume: 52
  start-page: 100
  year: 2013
  end-page: 112
  ident: b0380
  article-title: Regional prospectivity analysis for hydrothermal-remobilized nickel mineral systems in western Victoria, Australia
  publication-title: Ore Geol. Rev.
– volume: 100
  start-page: 25
  year: 2009
  end-page: 36
  ident: b0745
  article-title: Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies
  publication-title: J. Geochem. Explor.
– volume: 124
  year: 2020
  ident: b0550
  article-title: Modeling of Cu-Au prospectivity in the caraja′s mineral province (Brazil) through machine learning, dealing with imbalanced training data
  publication-title: Ore Geol. Rev.
– reference: Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical Bayesian optimization of machine learning algorithms. In: Shawe-Taylor, J, Zemel, R.S., Bartlett, P.L. (Eds.), Proceedings of the 24th International Conference on Neural Information Processing Systems. Curran Associates Inc., New York, United States, pp. 2951–2959.
– volume: 81
  start-page: 278
  year: 2007
  end-page: 286
  ident: b0735
  article-title: 40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in Southern Hunan, China and its geological implications
  publication-title: Acta Geol. Sinica (Engl. Ed.)
– volume: 53
  start-page: 89
  year: 2017
  end-page: 103
  ident: b0665
  article-title: Mineralogy, fluid inclusion petrography, and stable isotope geochemistry of Pb-Zn-Ag veins at the Shizhuyuan deposit, Hunan Province, southeastern China
  publication-title: Miner. Depos.
– volume: 2
  year: 2020
  ident: b0580
  article-title: Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN
  publication-title: Appl. Sci.
– reference: Chen, Y.Q., Chen, J.G., Wang, X.Q., et al., 2008.GIS-Based Integrated Quantitative Assessments of Mineral Resources. Geological Publishing House, Beijing.
– volume: 48
  start-page: 349
  year: 2012
  end-page: 383
  ident: b9025
  article-title: Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: mineral system analysis, targeting model and prospectivity analysis
  publication-title: Ore Geol. Rev.
– ident: 10.1016/j.oregeorev.2022.104916_b0315
– volume: 280
  start-page: 179
  year: 2012
  ident: 10.1016/j.oregeorev.2022.104916_b0600
  article-title: A detrital heavy mineral viewpoint on sediment provenance and tropical weathering in SE Asia
  publication-title: Sed. Geol.
  doi: 10.1016/j.sedgeo.2012.03.007
– ident: 10.1016/j.oregeorev.2022.104916_b0725
  doi: 10.1016/j.gexplo.2021.106839
– volume: 69
  start-page: 187
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0460
  article-title: Controls on porphyry Cu mineralization around Hanza Mountain, south-east of Iran: an analysis of structural evolution from remote sensing, geophysical, geochemical and geological data
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.02.016
– volume: 59
  start-page: 556
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0770
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-015-5178-3
– ident: 10.1016/j.oregeorev.2022.104916_b9040
– volume: 100
  start-page: 25
  year: 2009
  ident: 10.1016/j.oregeorev.2022.104916_b0745
  article-title: Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2008.03.004
– volume: 12
  start-page: 241
  issue: 4
  year: 2003
  ident: 10.1016/j.oregeorev.2022.104916_b0280
  article-title: A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression
  publication-title: Nat. Resour. Res.
  doi: 10.1023/B:NARR.0000007804.27450.e8
– volume: 17
  start-page: 29
  issue: 1
  year: 2008
  ident: 10.1016/j.oregeorev.2022.104916_b0485
  article-title: Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the central lapland greenstone belt, northern Fennoscandian Shield
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-008-9062-0
– volume: 48
  start-page: 2839
  issue: 9
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0655
  article-title: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2015.03.009
– ident: 10.1016/j.oregeorev.2022.104916_b0415
  doi: 10.1109/ACCESS.2017.2766203
– volume: 122
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0425
  article-title: Recognition of geochemical anomalies using a deep variational autoencoder network
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2020.104710
– volume: 7
  start-page: 3019
  year: 2010
  ident: 10.1016/j.oregeorev.2022.104916_b0195
  article-title: Density/area powerlaw models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China
  publication-title: Biogeosciences
  doi: 10.5194/bg-7-3019-2010
– volume: 334
  start-page: 21
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0130
  article-title: Heavy mineral assemblages of the storegga tsunami deposit
  publication-title: Sed. Geol.
  doi: 10.1016/j.sedgeo.2016.01.007
– volume: 124
  start-page: 3
  year: 1999
  ident: 10.1016/j.oregeorev.2022.104916_b0470
  article-title: Processes controlling the compositionof heavy mineral assemblages in sandstones
  publication-title: Sed. Geol.
  doi: 10.1016/S0037-0738(98)00118-3
– volume: 54
  start-page: 145
  year: 2013
  ident: 10.1016/j.oregeorev.2022.104916_b0015
  article-title: Application of fuzzy-AHP method to integrate geophysical data in a prospect scale, a case study: seridune copper deposit
  publication-title: Boll. Geofis. Teor. Appl.
– ident: 10.1016/j.oregeorev.2022.104916_b0305
  doi: 10.1155/2019/8503252
– volume: 9
  start-page: 19
  year: 2018
  ident: 10.1016/j.oregeorev.2022.104916_b0035
  article-title: Exploration of Kahang porphyry copper deposit using advanced integration of geological, remote sensing, geochemical, and magnetics data
  publication-title: J. Min. Environ.
– volume: 147
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0680
  article-title: A positive and unlabeled learning algorithm for mineral prospectivity mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104667
– ident: 10.1016/j.oregeorev.2022.104916_b0250
  doi: 10.1007/978-3-030-05318-5_6
– volume: 527
  start-page: 1130
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0650
  article-title: Flood hazard risk assessment model based on random forest
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.06.008
– volume: 41
  start-page: 661
  year: 2006
  ident: 10.1016/j.oregeorev.2022.104916_b0515
  article-title: Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China
  publication-title: Mineral Deposita
  doi: 10.1007/s00126-006-0084-4
– ident: 10.1016/j.oregeorev.2022.104916_b0295
  doi: 10.1016/j.oregeorev.2017.08.016
– volume: 35
  start-page: 279
  issue: 3
  year: 2003
  ident: 10.1016/j.oregeorev.2022.104916_b0240
  article-title: Isometric logratio transformations for compositional data analysis
  publication-title: Math. Geol.
  doi: 10.1023/A:1023818214614
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0290
  article-title: A framework for modeling flood depth using a hybrid of hydraulics and machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65232-5
– volume: 53
  start-page: 89
  issue: 1
  year: 2017
  ident: 10.1016/j.oregeorev.2022.104916_b0665
  article-title: Mineralogy, fluid inclusion petrography, and stable isotope geochemistry of Pb-Zn-Ag veins at the Shizhuyuan deposit, Hunan Province, southeastern China
  publication-title: Miner. Depos.
  doi: 10.1007/s00126-017-0725-9
– volume: 192
  start-page: 1
  year: 2019
  ident: 10.1016/j.oregeorev.2022.104916_b0800
  article-title: Deep learning and its application in geochemical mapping
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2019.02.023
– volume: 112
  year: 2019
  ident: 10.1016/j.oregeorev.2022.104916_b0760
  article-title: Controls on and prospectivity mapping of volcanic-type uranium mineralization in the Pucheng district, NW Fujian, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2019.103028
– volume: 164
  start-page: 94
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0715
  article-title: Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.10.008
– volume: 16
  start-page: 72
  issue: 1
  year: 1994
  ident: 10.1016/j.oregeorev.2022.104916_b0455
  article-title: Robust kriging and its application in delineation of geochemical anomalies with scale of 1:50000
  publication-title: Comput. Techn. Geophys. Geochem. Explor.
– volume: 32
  start-page: 314
  year: 2007
  ident: 10.1016/j.oregeorev.2022.104916_b9015
  article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China
  publication-title: Ore. Geol. Rev.
  doi: 10.1016/j.oregeorev.2006.10.002
– year: 2008
  ident: 10.1016/j.oregeorev.2022.104916_b0185
– volume: 35
  start-page: 383
  year: 2009
  ident: 10.1016/j.oregeorev.2022.104916_b0090
  article-title: Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2009.01.001
– volume: 79
  start-page: 1
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0395
  article-title: Genesis of the Huangshaping WMo-Cu-Pb-Zn polymetallic deposit in southeastern Hunan Province, China: constraints from fluid inclusions, trace elements, and isotopes
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2016.04.023
– volume: 36
  start-page: 3028
  issue: 2
  year: 2009
  ident: 10.1016/j.oregeorev.2022.104916_b0475
  article-title: An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.018
– volume: 200
  start-page: 129
  year: 2003
  ident: 10.1016/j.oregeorev.2022.104916_b0510
  article-title: Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): the potential of calcite as a geochronometer
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(03)00187-6
– volume: 8
  start-page: 1249
  issue: 4
  year: 2018
  ident: 10.1016/j.oregeorev.2022.104916_b0585
  article-title: Ensemble learning: a survey
  publication-title: WIREs Data Min. Knowledge Discovery
  doi: 10.1002/widm.1249
– volume: 10
  start-page: 229
  issue: 3
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0590
  article-title: A comparative analysis of artificial neural network (ANN), wavelet neural network (WNN), and support vector machine (SVM) data-driven models to mineral potential mapping for copper mineralizations in the Shahr-e-Babak region, Kerman, Iran
  publication-title: Appl. Geomatics
  doi: 10.1007/s12518-018-0229-z
– volume: 12
  start-page: 418
  year: 2006
  ident: 10.1016/j.oregeorev.2022.104916_b0610
  article-title: Pre-Devonian tectonic evolution of South China: from Cathaysian Block to Caledonian period folded orogenic belt
  publication-title: Geol. J. China Univ.
– volume: 59
  start-page: 556
  issue: 3
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0750
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Science China, Earth Sciences
  doi: 10.1007/s11430-015-5178-3
– volume: 75
  start-page: 16
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0260
  article-title: Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.12.005
– volume: 104
  start-page: 148
  issue: 1
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0605
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– ident: 10.1016/j.oregeorev.2022.104916_b0740
  doi: 10.1016/j.oregeorev.2014.10.006
– volume: 590
  issue: 125275
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0265
  article-title: Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using dempster shafer theory
  publication-title: J. Hydrol.
– volume: 203
  start-page: 196
  year: 2008
  ident: 10.1016/j.oregeorev.2022.104916_b0285
  article-title: Provenance of late Carboniferous sandstones in the Pennine Basin (UK) from combined heavy mineral, garnet geochemistry and palaeocurrent studies
  publication-title: Sed. Geol.
  doi: 10.1016/j.sedgeo.2007.11.002
– volume: 29
  start-page: 3443
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0810
  article-title: Effects of random negative training samples on mineral prospectivity mapping
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09668-6
– volume: 79
  start-page: 1
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0355
  article-title: Genesis of the huangshaping W-Mo-Cu-Pb-Zn polymetallic deposit in southeastern Hunan Province, China: constraints from fluid inclusions, trace elements, and isotopes
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2016.04.023
– volume: 120
  start-page: 1
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0700
  article-title: Mineral prospectivity analysis for BIF iron deposits: a case study in the Anshan-Benxi area, Liaoning province, North-East China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2018.11.019
– volume: 102
  start-page: 220
  year: 2018
  ident: 10.1016/j.oregeorev.2022.104916_b0660
  article-title: Genesis of the Xianghualing Sn-Pb-Zn deposit, South China: a multi-method zircon study
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2018.09.005
– volume: 26
  start-page: 457
  year: 2017
  ident: 10.1016/j.oregeorev.2022.104916_b0795
  article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9345-4
– volume: 32
  start-page: 37
  year: 2007
  ident: 10.1016/j.oregeorev.2022.104916_b0320
  article-title: Ore controls in the Charters Towers goldfield, NE Australia: Constraints from geological, geophysical and numerical analyses
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2006.12.001
– volume: 10
  start-page: 102
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0630
  article-title: Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: a case study from southern Jiangxi Province, China
  publication-title: Minerals
  doi: 10.3390/min10020102
– volume: 381–382
  start-page: 110
  year: 2013
  ident: 10.1016/j.oregeorev.2022.104916_b0480
  article-title: Controlling factors on heavy mineral assemblages in Chinese loess and Red Clay
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/j.palaeo.2013.04.020
– volume: 23
  start-page: 627
  issue: 6
  year: 2014
  ident: 10.1016/j.oregeorev.2022.104916_b0635
  article-title: Alteration mineral mapping with ASTER data by integration of coded spectral ratio imaging and SOM neural network model
  publication-title: Turk. J. Earth Sci.
  doi: 10.3906/yer-1401-9
– volume: 140
  start-page: 56
  year: 2014
  ident: 10.1016/j.oregeorev.2022.104916_b0150
  article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.02.013
– volume: 29
  start-page: 203
  issue: 1
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0390
  article-title: Prospectivity mapping for tungsten polymetallic mineral resources, Nanling Metallogenic Belt, South China: Use of Random Forest algorithm from a perspective of data imbalance
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09564-8
– volume: 94
  start-page: 193
  year: 2018
  ident: 10.1016/j.oregeorev.2022.104916_b0230
  article-title: Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2018.01.029
– ident: 10.1016/j.oregeorev.2022.104916_b0525
  doi: 10.1007/978-1-4419-9326-7_1
– volume: 46
  start-page: 272
  issue: 2
  year: 2012
  ident: 10.1016/j.oregeorev.2022.104916_b0010
  article-title: Support vector machine for multi-classification of mineral prospectivity areas
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.12.014
– ident: 10.1016/j.oregeorev.2022.104916_b0675
  doi: 10.1016/j.cageo.2017.10.005
– volume: 31
  start-page: 1
  year: 2022
  ident: 10.1016/j.oregeorev.2022.104916_b9065
  article-title: Mineral Prospectivity Prediction by Integration of Convolutional Autoencoder Network and Random Forest
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-022-10038-7
– volume: 9
  start-page: 137
  issue: 2
  year: 2001
  ident: 10.1016/j.oregeorev.2022.104916_b0310
  article-title: Logistic regression in rare events data
  publication-title: Polit. Anal.
  doi: 10.1093/oxfordjournals.pan.a004868
– volume: 75
  start-page: 11
  issue: 1
  year: 1988
  ident: 10.1016/j.oregeorev.2022.104916_b0055
  article-title: Logistic regression for two stage case-control data
  publication-title: Biometrika
  doi: 10.1093/biomet/75.1.11
– volume: 71
  start-page: 749
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0155
  article-title: Mineral potential mapping with a restricted Boltzmann machine
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.08.012
– volume: 95
  start-page: 65
  year: 2018
  ident: 10.1016/j.oregeorev.2022.104916_b0225
  article-title: Magnetite as an indicator of mixed sources for W-Mo-Pb-Zn mineralization in the Huangshaping polymetallic deposit, southern Hunan Province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2018.02.019
– volume: 36
  start-page: 803
  year: 2004
  ident: 10.1016/j.oregeorev.2022.104916_b0535
  article-title: A hybrid neuro-fuzzy model for mineral potential mapping
  publication-title: Math. Geol.
  doi: 10.1023/B:MATG.0000041180.34176.65
– volume: 38
  start-page: 219
  year: 2010
  ident: 10.1016/j.oregeorev.2022.104916_b0100
  article-title: Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden)
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2010.02.003
– volume: 124
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0550
  article-title: Modeling of Cu-Au prospectivity in the caraja′s mineral province (Brazil) through machine learning, dealing with imbalanced training data
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2020.103611
– volume: 47
  start-page: 757
  issue: 4
  year: 2000
  ident: 10.1016/j.oregeorev.2022.104916_b0065
  article-title: Artificial neural networks: a new method for mineral prospectivity mapping
  publication-title: Aust. J. Earth Sci.
  doi: 10.1046/j.1440-0952.2000.00807.x
– volume: 12
  start-page: 385
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0420
  article-title: Modelling of shallow landslides with Machine Learning algorithms
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.04.014
– volume: 57
  start-page: 1049
  issue: 6
  year: 2009
  ident: 10.1016/j.oregeorev.2022.104916_b0330
  article-title: Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.2008.00779.x
– volume: 312–313
  start-page: 1
  year: 2018
  ident: 10.1016/j.oregeorev.2022.104916_b0360
  article-title: Zircon geochronology and geochemistry of the Xianghualing A-type granitic rocks: Insights into multi-stage Sn-polymetallic mineralization
  publication-title: Lithos
  doi: 10.1016/j.lithos.2018.05.001
– volume: 247
  start-page: 124
  issue: 1
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0340
  article-title: Comparisoning state-of-the-art classification algorithms for credit scoring: an update of research
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.05.030
– volume: 92
  start-page: 97
  year: 2018
  ident: 10.1016/j.oregeorev.2022.104916_b0500
  article-title: Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2017.11.013
– volume: 2
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0580
  article-title: Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN
  publication-title: Appl. Sci.
– volume: 30
  start-page: 27
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0385
  article-title: Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09742-z
– ident: 10.1016/j.oregeorev.2022.104916_b0180
  doi: 10.1145/2939672.2939785
– volume: 74
  start-page: 60
  issue: 1
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0115
  article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.10.004
– volume: 32
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.oregeorev.2022.104916_b0545
  article-title: Bayesian network classifiers for mineral potential mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.03.018
– volume: 19
  start-page: 103
  issue: 2
  year: 2010
  ident: 10.1016/j.oregeorev.2022.104916_b0495
  article-title: Application of artificial neural network for gold-silver deposits potential mapping: a case study of Korea
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-010-9112-2
– ident: 10.1016/j.oregeorev.2022.104916_b0060
– volume: 38
  start-page: 128
  year: 2010
  ident: 10.1016/j.oregeorev.2022.104916_b9035
  article-title: Translating the mineral systems approach into an effective exploration targeting system
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2010.05.008
– volume: 37
  start-page: 662
  issue: 5
  year: 2011
  ident: 10.1016/j.oregeorev.2022.104916_b0200
  article-title: A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan
  publication-title: China. Comput. Geosci.
  doi: 10.1016/j.cageo.2010.11.001
– volume: 89
  start-page: 161
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0370
  article-title: GeoCube: a 3D mineral resources quantitative prediction and assessment system
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.01.012
– start-page: 1
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0690
  article-title: A convolutional neural network of GoogLeNet applied in mineral prospectivity prediction based on multi-source geoinformation
  publication-title: Nat. Resour. Res.
– volume: 111
  year: 2019
  ident: 10.1016/j.oregeorev.2022.104916_b0720
  article-title: Exploration information systems-a proposal for the future use of GIS in mineral exploration targeting
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2019.103005
– volume: 71
  start-page: 703
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0120
  article-title: Predictive mapping of prospectivity for orogenic gold, Giyani greenstone belt (South Africa)
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.10.030
– volume: 29
  start-page: 260
  year: 2006
  ident: 10.1016/j.oregeorev.2022.104916_b0575
  article-title: Predictive mapping for copper-gold magmatic-hydrothermal systems in NW Argentina: use of a regional-scale GIS, application of an expert-guided data-driven approach, and comparison with results from a continental-scale GIS
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2005.10.002
– volume: 128
  start-page: 1
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0555
  article-title: Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2021.104940
– volume: 25
  start-page: 35
  issue: 1
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0125
  article-title: Data-driven predictive modeling of mineral prospectivity using Random Forests: a case study in Catanduanes Island (Philippines)
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-015-9268-x
– volume: 26
  start-page: 489
  issue: 4
  year: 2017
  ident: 10.1016/j.oregeorev.2022.104916_b0275
  article-title: Random forest-based prospectivity modelling of Greenfield Terrains using sparse deposit data: An example from the Tanami Region, Western Australia
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9335-6
– ident: 10.1016/j.oregeorev.2022.104916_b0080
– volume: 15
  start-page: 1
  year: 2006
  ident: 10.1016/j.oregeorev.2022.104916_b0540
  article-title: A hybrid fuzzy weights-of-evidence model for mineral potential mapping
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-006-9012-7
– volume: 80
  start-page: 339
  issue: 2
  year: 1993
  ident: 10.1016/j.oregeorev.2022.104916_b0595
  article-title: Logistic analysis in case-control studies under validation sampling
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.339
– volume: 50
  start-page: 325
  issue: 3–4
  year: 2010
  ident: 10.1016/j.oregeorev.2022.104916_b0520
  article-title: Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia)
  publication-title: J. Geodyn.
  doi: 10.1016/j.jog.2010.01.018
– volume: 28
  start-page: 202
  year: 2013
  ident: 10.1016/j.oregeorev.2022.104916_b0780
  article-title: Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2012.10.031
– volume: 48
  start-page: 912
  year: 2005
  ident: 10.1016/j.oregeorev.2022.104916_b0135
  article-title: Petrogenesis and significance of early Yanshanian syenite-granite complex in eastern Nanling Range
  publication-title: Sci. China, Ser. D Earth Sci.
  doi: 10.1360/03yd0384
– volume: 37
  start-page: 1946
  year: 2011
  ident: 10.1016/j.oregeorev.2022.104916_b0640
  article-title: Analysis and integration of geo-information to identify granitic intrusions as exploration targets in southeastern Yunnan District, China
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.06.023
– volume: 6
  start-page: 21020
  year: 2018
  ident: 10.1016/j.oregeorev.2022.104916_b0755
  article-title: A data-driven design for fault detection of wind turbines using random forests and XGboost. IEEE
  publication-title: Access
  doi: 10.1109/ACCESS.2018.2818678
– volume: 21
  start-page: 556
  year: 2013
  ident: 10.1016/j.oregeorev.2022.104916_b0020
  article-title: Fuzzy outranking approach: a knowledge-driven method for mineral prospectivity mapping
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.oregeorev.2022.104916_b0145
– volume: 52
  start-page: 100
  year: 2013
  ident: 10.1016/j.oregeorev.2022.104916_b0380
  article-title: Regional prospectivity analysis for hydrothermal-remobilized nickel mineral systems in western Victoria, Australia
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2012.04.001
– volume: 40
  start-page: 99
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0440
  article-title: Mineral prospectivity mapping using a VNet convolutional neural network
  publication-title: Lead. Edge
  doi: 10.1190/tle40020099.1
– volume: 97
  start-page: 161
  year: 2007
  ident: 10.1016/j.oregeorev.2022.104916_b0345
  article-title: He, Pb and S isotopic constraints on the relationship between the A-type Qitianling granite and the Furong tin deposit, Hunan Province, China
  publication-title: Lithos
  doi: 10.1016/j.lithos.2006.12.009
– ident: 10.1016/j.oregeorev.2022.104916_b0625
  doi: 10.1016/j.oregeorev.2019.04.003
– volume: 131
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b9030
  article-title: Detection of geochemical anomalies related to mineralization using the GANomaly network
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2021.105043
– volume: 64
  start-page: 639
  issue: 5
  year: 2017
  ident: 10.1016/j.oregeorev.2022.104916_b0160
  article-title: Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data
  publication-title: Aust. J. Earth Sci.
  doi: 10.1080/08120099.2017.1328705
– volume: 26
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.oregeorev.2022.104916_b0490
  article-title: Optimizing a knowledge-driven prospectivity model for gold deposits within Perapohja Belt, Northern Finland
  publication-title: Nat. Resour. Res.
– volume: 37
  start-page: 1967
  issue: 12
  year: 2011
  ident: 10.1016/j.oregeorev.2022.104916_b0775
  article-title: Support vector machine: A tool for mapping mineral prospectivity
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.09.014
– volume: 27
  start-page: 299
  issue: 3
  year: 2018
  ident: 10.1016/j.oregeorev.2022.104916_b0410
  article-title: A MaxEnt model for mineral prospectivity mapping
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9355-2
– volume: 29
  start-page: 267
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b9020
  article-title: Practical implementation of random forest-based mineral potential mapping for porphyry Cu-Au mineralization in the Eastern Lachlan Orogen, NSW, Australia
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09598-y
– volume: 136
  start-page: 1
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b9070
  article-title: Recognition of multivariate geochemical anomalies associated with mineralization using an improved generative adversarial network
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2021.104264
– volume: 41
  start-page: 1
  year: 2022
  ident: 10.1016/j.oregeorev.2022.104916_b0175
  article-title: Dictionary learning for integration of evidential layers for mineral prospectivity modeling
  publication-title: Ore Geol. Rev.
– volume: 16
  start-page: 147
  issue: 2
  year: 2007
  ident: 10.1016/j.oregeorev.2022.104916_b0040
  article-title: Application of radial basis functional link networks to exploration for Proterozoic mineral deposits in Central Iran
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-007-9036-7
– volume: 29
  start-page: 71
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b9000
  article-title: Boosting for mineral prospectivity modeling: A new GIS toolbox
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09483-8
– volume: 33
  start-page: 536
  year: 2008
  ident: 10.1016/j.oregeorev.2022.104916_b0085
  article-title: Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2007.07.001
– volume: 35
  start-page: 2032
  year: 2009
  ident: 10.1016/j.oregeorev.2022.104916_b0095
  article-title: Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2009.02.008
– volume: 139
  start-page: 170
  year: 2014
  ident: 10.1016/j.oregeorev.2022.104916_b0790
  article-title: Identification of geochemical anomalies associated with mineralizationin the Fanshan district, Fujian, China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2013.08.013
– volume: 60
  start-page: 129
  year: 2010
  ident: 10.1016/j.oregeorev.2022.104916_b0105
  article-title: Improved wildcat modelling of mineral prospectivity
  publication-title: Resour. Geol.
  doi: 10.1111/j.1751-3928.2010.00121.x
– volume: 28
  start-page: 1336
  issue: 7
  year: 2014
  ident: 10.1016/j.oregeorev.2022.104916_b0565
  article-title: Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain
  publication-title: Int. J. Geograph. Inf. Sci.
  doi: 10.1080/13658816.2014.885527
– volume: 109
  start-page: 253
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0270
  article-title: Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Qianlishan granitic pluton, Southeast China
  publication-title: Mineral. Petrol.
  doi: 10.1007/s00710-014-0355-1
– volume: 49
  start-page: 592
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0450
  article-title: Recognition of a Middle-Late Jurassic are-related porphyry copper belt along the Southeast China coast: geological characteristics and metallogenic implications
  publication-title: Geology
  doi: 10.1130/G48615.1
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.oregeorev.2022.104916_b0050
  article-title: Random forests
  publication-title: Machine Learn.
  doi: 10.1023/A:1010933404324
– volume: 71
  start-page: 861
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0400
  article-title: Spatial data analysis of mineral deposit point patterns: applications to exploration targeting
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.05.019
– volume: 104316
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0685
  article-title: Mineral prospectivity mapping by deep learning method in YawanDaqiao area, Gansu
  publication-title: Ore Geol. Rev.
– volume: 79
  start-page: 69
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0710
  article-title: Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.03.007
– ident: 10.1016/j.oregeorev.2022.104916_b0300
  doi: 10.1016/j.oregeorev.2017.08.016
– volume: 20
  start-page: 391
  year: 1992
  ident: 10.1016/j.oregeorev.2022.104916_b0030
  article-title: Two-phase uplift of higher Himalayas since 17 Ma
  publication-title: Geology
  doi: 10.1130/0091-7613(1992)020<0391:TPUOHH>2.3.CO;2
– year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0140
  article-title: Genera-tion of late meosozic qianlishan A2-type granite in nanling range, South China: implications for shizhuyuan W-Sn mineralization and tectonic evolution
  publication-title: Lithos
  doi: 10.1016/j.lithos.2016.10.010
– volume: 382-383
  start-page: 105952
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0190
  article-title: Extraction of fractionated interstitial melt from a crystal mush system generating the late jurassic high-silica granites from the qitianling composite pluton, South China: implications for greisen-type tin mineralization
  publication-title: Lithos
  doi: 10.1016/j.lithos.2020.105952
– volume: 12
  start-page: 155
  year: 2003
  ident: 10.1016/j.oregeorev.2022.104916_b0530
  article-title: Artificial neural networks for mineral potential mapping
  publication-title: Nat. Resour. Res.
  doi: 10.1023/A:1025171803637
– ident: 10.1016/j.oregeorev.2022.104916_b0445
  doi: 10.1016/j.oregeorev.2011.09.003
– volume: 74
  start-page: 97
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0705
  article-title: Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.10.014
– volume: 29
  start-page: 3415
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0805
  article-title: Geodata science-based mineral prospectivity mapping: a review
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09700-9
– volume: 4
  start-page: 1
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0430
  article-title: An effective adaptive customization framework for small manufacturing plants using extreme gradient boosting-XGBoost and random forest ensemble learning algorithms in an Industry 4.0 environment
  publication-title: Machine Learn. Appl.
– volume: 30
  start-page: 1011
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0765
  article-title: Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional autoencoder network and supervised convolutional neural network
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09789-y
– year: 1994
  ident: 10.1016/j.oregeorev.2022.104916_b0045
– volume: 48
  start-page: 349
  year: 2012
  ident: 10.1016/j.oregeorev.2022.104916_b9025
  article-title: Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: mineral system analysis, targeting model and prospectivity analysis
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2012.05.004
– year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0695
  article-title: Mineral prospectivity mapping via gated recurrent unit model
  publication-title: Nat. Resour. Res.
– volume: 134
  start-page: 27
  year: 2013
  ident: 10.1016/j.oregeorev.2022.104916_b0645
  article-title: Fault trace-oriented singularity mapping technique to characterize anisotropic geochemical signatures in Gejiu mineral district, China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2013.07.009
– volume: 28
  start-page: 31
  year: 2019
  ident: 10.1016/j.oregeorev.2022.104916_b9005
  article-title: Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-018-9375-6
– volume: 85
  year: 2019
  ident: 10.1016/j.oregeorev.2022.104916_b0570
  article-title: Ensemble learning: pattern classification using ensemble methods
  publication-title: World Sci.
– volume: 135
  start-page: 1066
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0170
  article-title: Mineral exploration targeting by combination of recursive indicator elimination with the ?2-regularization logistic regression based on geochemical data
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2021.104213
– volume: 2
  start-page: 122
  year: 1993
  ident: 10.1016/j.oregeorev.2022.104916_b0205
  article-title: The representation of geoscience information for data integration
  publication-title: Nonrenewable Resources
  doi: 10.1007/BF02272809
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.oregeorev.2022.104916_b0325
  article-title: CPEM: Accurate cancer type classification based on somatic alterations using an ensemble of a random forest and a deep neural network
  publication-title: Sci. Rep.
– volume: 31
  start-page: 37
  issue: 1
  year: 2022
  ident: 10.1016/j.oregeorev.2022.104916_b0505
  article-title: Deep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral deposits
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09984-5
– volume: 94
  start-page: 438
  year: 2008
  ident: 10.1016/j.oregeorev.2022.104916_b0210
  article-title: Predicting landslides for risk analysis spatial models tested by a cross-validation technique
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.12.036
– volume: 55
  start-page: 13
  issue: 1
  year: 2008
  ident: 10.1016/j.oregeorev.2022.104916_b0255
  article-title: Evaluating geological complexity and complexity gradients as controls on copper mineralization, Mt Isa Inlier
  publication-title: Aust. J. Earth Sci.
  doi: 10.1080/08120090701581364
– volume: 27
  start-page: 171
  issue: 5
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0235
  article-title: Genetic mineralogy of natural heavy placer minerals and its effectiveness in mineral prospecting
  publication-title: Earth Sci. Front.
– volume: 360
  start-page: 186
  issue: 6385
  year: 2018
  ident: 10.1016/j.oregeorev.2022.104916_b0005
  article-title: Predicting reaction performance in C-N cross-coupling using machine learning
  publication-title: Science
  doi: 10.1126/science.aar5169
– ident: 10.1016/j.oregeorev.2022.104916_b0730
– volume: 100
  start-page: 133
  year: 2017
  ident: 10.1016/j.oregeorev.2022.104916_b0405
  article-title: Maximum entropy modeling for orogenic gold prospectivity mapping in the Tangbale-Hatu belt, western Junggar, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2017.04.029
– volume: 28
  start-page: 931
  year: 2019
  ident: 10.1016/j.oregeorev.2022.104916_b0245
  article-title: Risk-based analysis in mineral potential mapping: application of quantifier-guided ordered weighted averaging method
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-018-9428-x
– volume: 81
  start-page: 278
  year: 2007
  ident: 10.1016/j.oregeorev.2022.104916_b0735
  article-title: 40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in Southern Hunan, China and its geological implications
  publication-title: Acta Geol. Sinica (Engl. Ed.)
  doi: 10.1111/j.1755-6724.2007.tb00951.x
– volume: 35
  start-page: 675
  issue: 3
  year: 2009
  ident: 10.1016/j.oregeorev.2022.104916_b0335
  article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.05.003
– ident: 10.1016/j.oregeorev.2022.104916_b0785
  doi: 10.1016/j.apgeochem.2013.02.009
– volume: 73
  start-page: 198
  year: 2014
  ident: 10.1016/j.oregeorev.2022.104916_b0215
  article-title: Regression trees for modeling geochemical data-an application to Late Jurassic carbonates (Ammonitico Rosso)
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.09.007
– volume: 122
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0365
  article-title: Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian-Zhangbaling area, Anhui Province, China
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2020.104747
– volume: 80
  start-page: 200
  year: 2017
  ident: 10.1016/j.oregeorev.2022.104916_b0165
  article-title: Mapping mineral prospectivity using an extreme learning machine regression
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2016.06.033
– volume: 363
  start-page: 112
  year: 2015
  ident: 10.1016/j.oregeorev.2022.104916_b0350
  article-title: Provenance of heavy mineral deposits on the northwestern shelf of the South China Sea, evidence from single-mineral chemistry
  publication-title: Mar. Geol.
  doi: 10.1016/j.margeo.2015.01.015
– volume: 91
  start-page: 1066
  year: 2017
  ident: 10.1016/j.oregeorev.2022.104916_b0025
  article-title: Prospectivity analysis of orogenic gold deposits in saqez-sardasht goldfield, Zagros orogen
  publication-title: Iran. Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2017.11.001
– volume: 77
  start-page: 117
  issue: 27
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b0220
  article-title: S, Pb, and Sr isotope geochemistry and genesis of Pb-Zn mineralization in the Huangshaping polymetallic ore deposit of southern Hunan Province
  publication-title: China. Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2016.02.010
– ident: 10.1016/j.oregeorev.2022.104916_b0670
– volume: 39
  start-page: 439
  issue: 5
  year: 2007
  ident: 10.1016/j.oregeorev.2022.104916_b0620
  article-title: Mineral potential mapping using Bayesian learning for multilayer perceptrons
  publication-title: Math. Geol.
  doi: 10.1007/s11004-007-9106-8
– year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b0070
  article-title: An optimized XGBoost based diagnostic system for effective prediction of heart disease
  publication-title: J. King Saud Univ. – Comput. Inf. Sci.
– volume: 10
  start-page: 165
  year: 2001
  ident: 10.1016/j.oregeorev.2022.104916_b0075
  article-title: Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines
  publication-title: Explor. Min. Geol.
  doi: 10.2113/0100165
– volume: 29
  start-page: 189
  year: 2020
  ident: 10.1016/j.oregeorev.2022.104916_b9045
  article-title: Mapping mineral prospectivity via semi-supervised random forest
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09510-8
– ident: 10.1016/j.oregeorev.2022.104916_b0615
  doi: 10.1109/IJCNN.2003.1223683
– volume: 30
  start-page: 1
  issue: 5
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0815
  article-title: Uncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutions
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09871-z
– volume: 86
  start-page: 75
  year: 2016
  ident: 10.1016/j.oregeorev.2022.104916_b9050
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.10.006
– volume: 32
  start-page: 327
  year: 2021
  ident: 10.1016/j.oregeorev.2022.104916_b0375
  article-title: Mineral prospectivity prediction via convolutional neural networks based on geological big data
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-020-1365-z
– volume: 8
  start-page: 1080
  issue: 2
  year: 2017
  ident: 10.1016/j.oregeorev.2022.104916_b0465
  article-title: Ensemble machine-learning-based geospatial approach for flood risk assessment using multisensor remote-sensing data and GIS
  publication-title: Geomatics Natural Hazards Risk
  doi: 10.1080/19475705.2017.1294113
– volume: 24
  start-page: 1151
  issue: 5
  year: 2003
  ident: 10.1016/j.oregeorev.2022.104916_b0560
  article-title: Artificial neural networks as a tool for mineral potential mapping with GIS
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116021000031791
– ident: 10.1016/j.oregeorev.2022.104916_b0110
  doi: 10.1016/j.oregeorev.2014.08.010
SSID ssj0006001
Score 2.5686653
Snippet [Display omitted] •Bayesian optimization is a powerful optimization tool to find the best hyperparameters of machine learning models.•The optimization results...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104916
SubjectTerms Bayesian optimization
Ensemble learning
K-fold cross validation
Mineral prospectivity mapping
Random forest
XGBoost
Title Ensemble learning models with a Bayesian optimization algorithm for mineral prospectivity mapping
URI https://dx.doi.org/10.1016/j.oregeorev.2022.104916
Volume 145
WOSCitedRecordID wos000798946700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0169-1368
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0006001
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELVaaCU4IEqL-GiRD72tstp8Ou6tRVBOtAcqcYscexwt2mRRdkHw7zuO7ZBtkbYceolWUcbO7rwdP1szbwj5rKSWSSp5EMs0DRKViYDjMhWIUOQQJsAiLbtmE-zyMr--5j9dV9RF106ANU3-8MBv_6ur8R4625TOvsDd_aB4Az-j0_GKbsfrPzn-rFlAbeqhZv7Uo-t248vYRt_EI3SVk3OMFrUrwxyJWTVv8YG6yzusp50YtcnecqWYhqzXwog5VEM--6OFUQVWx8kJm_ZxxPX5wqmqxpuZ1J-pi-rDAwfcq_aJUf4MMuNBGNtuOH0QTdJBGMQ9HrcllH9FaHtYcDOet1CZSs37sZlj_GSxqon9x1rVZxD65LSboh-oMAMVdqDXZDNiKQ_9HtstzYbdWbF3-w1WEv6efaPn6cqAglztkh23d6Bfrc_fkVfQ7JHtgaLkHnn73TrjPREeB9TjgFocUIMDKqjHAR3igPY4oIgD6nBAV3BAHQ4-kF_nZ1enF4HrpxGIOGfLQHENmgMSkgmybgm5ikvNEpVKiEqkckoKyUpcA8o4BpFpqdlE6wjyTEdxost4n2w08wYOCDVtBVQkWchBIQ3iuTI6_iU-KmSuMnVIMv-zFdKJzZueJ7NijeMOyaQ3vLV6K-tNvni_FI42WjpYIObWGR-9fL5jsvX0t_hINpbtHXwib-T9crpoTzrA_QZ9S5g9
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+learning+models+with+a+Bayesian+optimization+algorithm+for+mineral+prospectivity+mapping&rft.jtitle=Ore+geology+reviews&rft.au=Yin%2C+Jiangning&rft.au=Li%2C+Nan&rft.date=2022-06-01&rft.issn=0169-1368&rft.volume=145&rft.spage=104916&rft_id=info:doi/10.1016%2Fj.oregeorev.2022.104916&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oregeorev_2022_104916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1368&client=summon