Inequalities in Life Expectancy Among US Counties, 1980 to 2014: Temporal Trends and Key Drivers

Examining life expectancy by county allows for tracking geographic disparities over time and assessing factors related to these disparities. This information is potentially useful for policy makers, clinicians, and researchers seeking to reduce disparities and increase longevity. To estimate annual...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:JAMA internal medicine Ročník 177; číslo 7; s. 1003
Hlavní autoři: Dwyer-Lindgren, Laura, Bertozzi-Villa, Amelia, Stubbs, Rebecca W, Morozoff, Chloe, Mackenbach, Johan P, van Lenthe, Frank J, Mokdad, Ali H, Murray, Christopher J L
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.07.2017
Témata:
ISSN:2168-6114, 2168-6114
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Examining life expectancy by county allows for tracking geographic disparities over time and assessing factors related to these disparities. This information is potentially useful for policy makers, clinicians, and researchers seeking to reduce disparities and increase longevity. To estimate annual life tables by county from 1980 to 2014; describe trends in geographic inequalities in life expectancy and age-specific risk of death; and assess the proportion of variation in life expectancy explained by variation in socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors. Annual county-level life tables were constructed using small area estimation methods from deidentified death records from the National Center for Health Statistics (NCHS), and population counts from the US Census Bureau, NCHS, and the Human Mortality Database. Measures of geographic inequality in life expectancy and age-specific mortality risk were calculated. Principal component analysis and ordinary least squares regression were used to examine the county-level association between life expectancy and socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors. County of residence. Life expectancy at birth and age-specific mortality risk. Counties were combined as needed to create stable units of analysis over the period 1980 to 2014, reducing the number of areas analyzed from 3142 to 3110. In 2014, life expectancy at birth for both sexes combined was 79.1 (95% uncertainty interval [UI], 79.0-79.1) years overall, but differed by 20.1 (95% UI, 19.1-21.3) years between the counties with the lowest and highest life expectancy. Absolute geographic inequality in life expectancy increased between 1980 and 2014. Over the same period, absolute geographic inequality in the risk of death decreased among children and adolescents, but increased among older adults. Socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors explained 60%, 74%, and 27% of county-level variation in life expectancy, respectively. Combined, these factors explained 74% of this variation. Most of the association between socioeconomic and race/ethnicity factors and life expectancy was mediated through behavioral and metabolic risk factors. Geographic disparities in life expectancy among US counties are large and increasing. Much of the variation in life expectancy among counties can be explained by a combination of socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors. Policy action targeting socioeconomic factors and behavioral and metabolic risk factors may help reverse the trend of increasing disparities in life expectancy in the United States.
AbstractList Examining life expectancy by county allows for tracking geographic disparities over time and assessing factors related to these disparities. This information is potentially useful for policy makers, clinicians, and researchers seeking to reduce disparities and increase longevity. To estimate annual life tables by county from 1980 to 2014; describe trends in geographic inequalities in life expectancy and age-specific risk of death; and assess the proportion of variation in life expectancy explained by variation in socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors. Annual county-level life tables were constructed using small area estimation methods from deidentified death records from the National Center for Health Statistics (NCHS), and population counts from the US Census Bureau, NCHS, and the Human Mortality Database. Measures of geographic inequality in life expectancy and age-specific mortality risk were calculated. Principal component analysis and ordinary least squares regression were used to examine the county-level association between life expectancy and socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors. County of residence. Life expectancy at birth and age-specific mortality risk. Counties were combined as needed to create stable units of analysis over the period 1980 to 2014, reducing the number of areas analyzed from 3142 to 3110. In 2014, life expectancy at birth for both sexes combined was 79.1 (95% uncertainty interval [UI], 79.0-79.1) years overall, but differed by 20.1 (95% UI, 19.1-21.3) years between the counties with the lowest and highest life expectancy. Absolute geographic inequality in life expectancy increased between 1980 and 2014. Over the same period, absolute geographic inequality in the risk of death decreased among children and adolescents, but increased among older adults. Socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors explained 60%, 74%, and 27% of county-level variation in life expectancy, respectively. Combined, these factors explained 74% of this variation. Most of the association between socioeconomic and race/ethnicity factors and life expectancy was mediated through behavioral and metabolic risk factors. Geographic disparities in life expectancy among US counties are large and increasing. Much of the variation in life expectancy among counties can be explained by a combination of socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors. Policy action targeting socioeconomic factors and behavioral and metabolic risk factors may help reverse the trend of increasing disparities in life expectancy in the United States.
Examining life expectancy by county allows for tracking geographic disparities over time and assessing factors related to these disparities. This information is potentially useful for policy makers, clinicians, and researchers seeking to reduce disparities and increase longevity.ImportanceExamining life expectancy by county allows for tracking geographic disparities over time and assessing factors related to these disparities. This information is potentially useful for policy makers, clinicians, and researchers seeking to reduce disparities and increase longevity.To estimate annual life tables by county from 1980 to 2014; describe trends in geographic inequalities in life expectancy and age-specific risk of death; and assess the proportion of variation in life expectancy explained by variation in socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors.ObjectiveTo estimate annual life tables by county from 1980 to 2014; describe trends in geographic inequalities in life expectancy and age-specific risk of death; and assess the proportion of variation in life expectancy explained by variation in socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors.Annual county-level life tables were constructed using small area estimation methods from deidentified death records from the National Center for Health Statistics (NCHS), and population counts from the US Census Bureau, NCHS, and the Human Mortality Database. Measures of geographic inequality in life expectancy and age-specific mortality risk were calculated. Principal component analysis and ordinary least squares regression were used to examine the county-level association between life expectancy and socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors.Design, Setting, and ParticipantsAnnual county-level life tables were constructed using small area estimation methods from deidentified death records from the National Center for Health Statistics (NCHS), and population counts from the US Census Bureau, NCHS, and the Human Mortality Database. Measures of geographic inequality in life expectancy and age-specific mortality risk were calculated. Principal component analysis and ordinary least squares regression were used to examine the county-level association between life expectancy and socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors.County of residence.ExposuresCounty of residence.Life expectancy at birth and age-specific mortality risk.Main Outcomes and MeasuresLife expectancy at birth and age-specific mortality risk.Counties were combined as needed to create stable units of analysis over the period 1980 to 2014, reducing the number of areas analyzed from 3142 to 3110. In 2014, life expectancy at birth for both sexes combined was 79.1 (95% uncertainty interval [UI], 79.0-79.1) years overall, but differed by 20.1 (95% UI, 19.1-21.3) years between the counties with the lowest and highest life expectancy. Absolute geographic inequality in life expectancy increased between 1980 and 2014. Over the same period, absolute geographic inequality in the risk of death decreased among children and adolescents, but increased among older adults. Socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors explained 60%, 74%, and 27% of county-level variation in life expectancy, respectively. Combined, these factors explained 74% of this variation. Most of the association between socioeconomic and race/ethnicity factors and life expectancy was mediated through behavioral and metabolic risk factors.ResultsCounties were combined as needed to create stable units of analysis over the period 1980 to 2014, reducing the number of areas analyzed from 3142 to 3110. In 2014, life expectancy at birth for both sexes combined was 79.1 (95% uncertainty interval [UI], 79.0-79.1) years overall, but differed by 20.1 (95% UI, 19.1-21.3) years between the counties with the lowest and highest life expectancy. Absolute geographic inequality in life expectancy increased between 1980 and 2014. Over the same period, absolute geographic inequality in the risk of death decreased among children and adolescents, but increased among older adults. Socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors explained 60%, 74%, and 27% of county-level variation in life expectancy, respectively. Combined, these factors explained 74% of this variation. Most of the association between socioeconomic and race/ethnicity factors and life expectancy was mediated through behavioral and metabolic risk factors.Geographic disparities in life expectancy among US counties are large and increasing. Much of the variation in life expectancy among counties can be explained by a combination of socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors. Policy action targeting socioeconomic factors and behavioral and metabolic risk factors may help reverse the trend of increasing disparities in life expectancy in the United States.Conclusions and RelevanceGeographic disparities in life expectancy among US counties are large and increasing. Much of the variation in life expectancy among counties can be explained by a combination of socioeconomic and race/ethnicity factors, behavioral and metabolic risk factors, and health care factors. Policy action targeting socioeconomic factors and behavioral and metabolic risk factors may help reverse the trend of increasing disparities in life expectancy in the United States.
Author Dwyer-Lindgren, Laura
Mackenbach, Johan P
Stubbs, Rebecca W
van Lenthe, Frank J
Bertozzi-Villa, Amelia
Murray, Christopher J L
Mokdad, Ali H
Morozoff, Chloe
Author_xml – sequence: 1
  givenname: Laura
  surname: Dwyer-Lindgren
  fullname: Dwyer-Lindgren, Laura
  organization: Institute for Health Metrics and Evaluation, University of Washington, Seattle
– sequence: 2
  givenname: Amelia
  surname: Bertozzi-Villa
  fullname: Bertozzi-Villa, Amelia
  organization: Institute for Health Metrics and Evaluation, University of Washington, Seattle
– sequence: 3
  givenname: Rebecca W
  surname: Stubbs
  fullname: Stubbs, Rebecca W
  organization: Institute for Health Metrics and Evaluation, University of Washington, Seattle
– sequence: 4
  givenname: Chloe
  surname: Morozoff
  fullname: Morozoff, Chloe
  organization: Institute for Health Metrics and Evaluation, University of Washington, Seattle
– sequence: 5
  givenname: Johan P
  surname: Mackenbach
  fullname: Mackenbach, Johan P
  organization: Department of Public Health, Erasmus MC, Rotterdam, Netherlands
– sequence: 6
  givenname: Frank J
  surname: van Lenthe
  fullname: van Lenthe, Frank J
  organization: Department of Public Health, Erasmus MC, Rotterdam, Netherlands
– sequence: 7
  givenname: Ali H
  surname: Mokdad
  fullname: Mokdad, Ali H
  organization: Institute for Health Metrics and Evaluation, University of Washington, Seattle
– sequence: 8
  givenname: Christopher J L
  surname: Murray
  fullname: Murray, Christopher J L
  organization: Institute for Health Metrics and Evaluation, University of Washington, Seattle
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28492829$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1PwkAYhDcGI4j8Bd2jB4v70eyHN4KoxCYehHPdtm_NknZbdlsj_94SMXEuM4cnM8lcopFrHCB0Q8mcEkLvd6Y21nXgXQ3FnBEq50RTdYYmjAoVCUrj0b88RrMQdmSQIiTm_AKNmYo1U0xP0Mfawb43le0sBGwdTmwJePXdQt4Zlx_wom7cJ96-42XTuyN0h6lWBHcNHpbjB7yBum28qfDGgysCNq7Ar3DAj95-gQ9X6Lw0VYDZyado-7TaLF-i5O15vVwkkeFKdhE1JiNKypLKXAiuiCwkEyXnwPJYx9xkEkpCM0liBZnIRCk4V8CUIbmWuWZTdPvb2_pm30Po0tqGHKrKOGj6kFKl5dBKxBG9PqF9NjyYtt7Wxh_Sv1fYDxNIZ6w
CitedBy_id crossref_primary_10_1097_PHH_0000000000001248
crossref_primary_10_1097_EDE_0000000000001537
crossref_primary_10_1007_s11109_025_10076_w
crossref_primary_10_1016_j_tjnut_2025_06_002
crossref_primary_10_1016_j_jaci_2023_04_015
crossref_primary_10_1038_s42949_023_00088_y
crossref_primary_10_1016_j_jth_2025_102001
crossref_primary_10_1016_j_sempedsurg_2023_151354
crossref_primary_10_1002_jls_21785
crossref_primary_10_1161_STROKEAHA_119_024159
crossref_primary_10_2105_AJPH_2018_304375
crossref_primary_10_1093_geronb_gbab129
crossref_primary_10_1186_s12911_018_0719_2
crossref_primary_10_3390_cancers14112620
crossref_primary_10_1016_j_cardfail_2021_11_002
crossref_primary_10_1186_s12913_020_05996_8
crossref_primary_10_1016_S0140_6736_24_02372_9
crossref_primary_10_3390_nu14061219
crossref_primary_10_1016_j_tpb_2023_05_001
crossref_primary_10_7326_M21_3956
crossref_primary_10_1186_s12939_024_02283_4
crossref_primary_10_1093_aje_kwae202
crossref_primary_10_1111_add_14116
crossref_primary_10_1161_CIRCULATIONAHA_118_033915
crossref_primary_10_2105_AJPH_2019_305506
crossref_primary_10_1093_ije_dyab158
crossref_primary_10_1177_0008417419898930
crossref_primary_10_1016_j_jvs_2018_10_123
crossref_primary_10_1177_26323524211033873
crossref_primary_10_3390_ijerph19031530
crossref_primary_10_1177_1090198119839111
crossref_primary_10_1016_j_ajog_2018_01_011
crossref_primary_10_1016_j_ahj_2019_04_020
crossref_primary_10_7326_M20_7381
crossref_primary_10_1371_journal_pone_0244384
crossref_primary_10_1016_j_jacadv_2025_101692
crossref_primary_10_1016_S0140_6736_17_32473_X
crossref_primary_10_1111_jrh_12745
crossref_primary_10_1001_jamanetworkopen_2019_14718
crossref_primary_10_1016_j_gheart_2017_11_001
crossref_primary_10_1016_j_amepre_2019_02_007
crossref_primary_10_1016_j_transproceed_2021_05_003
crossref_primary_10_1007_s10653_023_01510_1
crossref_primary_10_1007_s00038_019_01244_x
crossref_primary_10_1016_j_jacc_2023_05_038
crossref_primary_10_1111_jgs_15939
crossref_primary_10_1097_SLA_0000000000005609
crossref_primary_10_1016_j_amepre_2018_03_017
crossref_primary_10_1061_NHREFO_NHENG_1642
crossref_primary_10_1186_s12944_023_01983_0
crossref_primary_10_1086_706808
crossref_primary_10_1016_j_socscimed_2019_04_047
crossref_primary_10_1016_j_jval_2023_06_015
crossref_primary_10_1177_00221465241271072
crossref_primary_10_1186_s12982_025_00972_1
crossref_primary_10_1038_s41591_021_01379_6
crossref_primary_10_1007_s11606_023_08062_1
crossref_primary_10_1177_00207314211024895
crossref_primary_10_4054_DemRes_2020_42_11
crossref_primary_10_1089_pop_2024_0202
crossref_primary_10_1289_EHP11662
crossref_primary_10_1016_j_nut_2021_111310
crossref_primary_10_2105_AJPH_2018_304585
crossref_primary_10_1016_j_regsciurbeco_2023_103972
crossref_primary_10_1016_j_ijforecast_2024_05_001
crossref_primary_10_1007_s40980_021_00095_6
crossref_primary_10_1016_j_envres_2025_121728
crossref_primary_10_3389_fpubh_2022_942842
crossref_primary_10_1016_S0140_6736_18_31891_9
crossref_primary_10_1038_s41746_022_00602_z
crossref_primary_10_1017_S1368980024001368
crossref_primary_10_1215_00703370_12185960
crossref_primary_10_1016_j_amepre_2022_10_008
crossref_primary_10_1016_S0140_6736_24_01495_8
crossref_primary_10_1016_j_jacc_2019_04_042
crossref_primary_10_3390_ijerph16234734
crossref_primary_10_1016_j_cmicom_2025_105108
crossref_primary_10_1001_jamanetworkopen_2019_6386
crossref_primary_10_5888_pcd21_240110
crossref_primary_10_1007_s40615_023_01566_w
crossref_primary_10_1177_00914150231171856
crossref_primary_10_1186_s12963_025_00409_6
crossref_primary_10_1001_jamanetworkopen_2018_3146
crossref_primary_10_1186_s12889_023_17214_1
crossref_primary_10_2105_AJPH_2018_304559
crossref_primary_10_1016_j_healthplace_2021_102644
crossref_primary_10_1016_j_amepre_2022_08_022
crossref_primary_10_1089_jwh_2019_29027_pcss
crossref_primary_10_1080_08820538_2022_2157217
crossref_primary_10_1093_ije_dyz265
crossref_primary_10_1016_S2468_2667_17_30165_2
crossref_primary_10_1016_S2352_4642_21_00275_3
crossref_primary_10_1136_bmjopen_2023_079365
crossref_primary_10_1136_medethics_2020_106856
crossref_primary_10_1146_annurev_soc_072320_100249
crossref_primary_10_4187_respcare_09711
crossref_primary_10_1016_j_puhe_2019_11_015
crossref_primary_10_2146_ajhp180081
crossref_primary_10_1001_jama_2023_4018
crossref_primary_10_1016_j_jaac_2023_08_019
crossref_primary_10_1016_S2468_2667_18_30208_1
crossref_primary_10_1016_j_jacc_2018_09_079
crossref_primary_10_1016_j_jacr_2020_08_022
crossref_primary_10_1146_annurev_publhealth_082619_104231
crossref_primary_10_3390_ijerph18073415
crossref_primary_10_1177_00469580211007264
crossref_primary_10_1002_oby_23528
crossref_primary_10_1007_s40615_024_02251_2
crossref_primary_10_1681_ASN_2018111128
crossref_primary_10_1186_s13690_020_00438_7
crossref_primary_10_7326_M18_2800
crossref_primary_10_1080_15265161_2018_1513597
crossref_primary_10_1016_j_amepre_2017_11_011
crossref_primary_10_1016_j_jue_2023_103627
crossref_primary_10_1001_jamanetworkopen_2023_46864
crossref_primary_10_1002_oto2_70090
crossref_primary_10_1080_01612840_2017_1336658
crossref_primary_10_1016_j_ogc_2019_11_002
crossref_primary_10_1017_S1368980023000058
crossref_primary_10_1186_s12889_020_8223_x
crossref_primary_10_1097_ACM_0000000000005162
crossref_primary_10_1016_j_focus_2023_100085
crossref_primary_10_1016_j_socscimed_2020_113443
crossref_primary_10_1007_s11606_021_06976_2
crossref_primary_10_1017_S104161022300042X
crossref_primary_10_1371_journal_pone_0239654
crossref_primary_10_1136_tobaccocontrol_2018_054686
crossref_primary_10_3390_ijerph191710672
crossref_primary_10_1056_NEJMhpr1707176
crossref_primary_10_1016_j_socscimed_2018_07_030
crossref_primary_10_1053_j_ajkd_2018_03_010
crossref_primary_10_1080_17441692_2021_1908395
crossref_primary_10_1080_10401334_2022_2045490
crossref_primary_10_1215_00703370_9774819
crossref_primary_10_1002_psp_2849
crossref_primary_10_1186_s12942_019_0192_x
crossref_primary_10_1016_j_amepre_2021_01_006
crossref_primary_10_3390_life15060832
crossref_primary_10_1177_22799036251347035
crossref_primary_10_1186_s12889_020_08754_x
crossref_primary_10_3390_ijerph17176037
crossref_primary_10_1016_j_ssmph_2025_101791
crossref_primary_10_1177_08901171211002328
crossref_primary_10_1186_s12889_021_12097_6
crossref_primary_10_1016_j_focus_2025_100334
crossref_primary_10_1016_S0140_6736_17_32452_2
crossref_primary_10_1093_jcr_ucaa003
crossref_primary_10_7326_M17_0796
crossref_primary_10_1002_lrh2_10255
crossref_primary_10_1007_s11121_022_01482_1
crossref_primary_10_1016_S0140_6736_20_32545_9
crossref_primary_10_1061_NHREFO_NHENG_2224
crossref_primary_10_5888_pcd15_170332
crossref_primary_10_1016_S0140_6736_22_00876_5
crossref_primary_10_1177_21501319221125471
crossref_primary_10_18865_ed_DECIPHeR_12
crossref_primary_10_3389_fpubh_2025_1564567
crossref_primary_10_1080_00036846_2020_1813248
crossref_primary_10_1177_1099800419828486
crossref_primary_10_1001_jamanetworkopen_2020_32086
crossref_primary_10_1038_s41598_023_37955_8
crossref_primary_10_1177_1049909119864300
crossref_primary_10_1007_s11121_022_01439_4
crossref_primary_10_1002_lrh2_10222
crossref_primary_10_1097_01_NUMA_0000654844_72394_8f
crossref_primary_10_1016_j_lanwpc_2022_100451
crossref_primary_10_1007_s40572_022_00338_8
crossref_primary_10_2105_AJPH_2018_304626
crossref_primary_10_1016_j_suc_2020_06_006
crossref_primary_10_1097_JAC_0000000000000278
crossref_primary_10_1001_jamainternmed_2019_6532
crossref_primary_10_1097_MLR_0000000000001654
crossref_primary_10_1177_237946151800400104
crossref_primary_10_1016_j_mayocp_2020_04_043
crossref_primary_10_1007_s11606_019_05582_7
crossref_primary_10_1089_jicm_2021_0117
crossref_primary_10_1016_j_healthplace_2021_102618
crossref_primary_10_1016_j_puhip_2024_100512
crossref_primary_10_1111_1468_0009_12444
crossref_primary_10_1136_bmjph_2024_001266
crossref_primary_10_1097_FCH_0000000000000318
crossref_primary_10_1002_lrh2_10357
crossref_primary_10_1016_j_rmed_2025_108110
crossref_primary_10_1186_s12963_022_00285_4
crossref_primary_10_7326_M18_3653
crossref_primary_10_1016_j_outlook_2018_02_003
crossref_primary_10_1001_jama_2018_21947
crossref_primary_10_1002_pan3_10427
crossref_primary_10_1016_j_jvs_2019_03_060
crossref_primary_10_1016_j_ypmed_2019_105781
crossref_primary_10_1007_s11606_017_4287_4
crossref_primary_10_1177_00031348231216485
crossref_primary_10_1016_j_jacc_2020_05_043
crossref_primary_10_1016_S0140_6736_24_02136_6
crossref_primary_10_1371_journal_pone_0253073
crossref_primary_10_1016_j_outlook_2024_102272
crossref_primary_10_1097_PHH_0000000000001744
crossref_primary_10_1080_17538157_2021_1880413
crossref_primary_10_1016_j_socscimed_2021_113766
crossref_primary_10_1016_j_urology_2019_09_047
crossref_primary_10_2139_ssrn_3803582
crossref_primary_10_1016_j_healthplace_2019_02_001
crossref_primary_10_1016_S0140_6736_24_02246_3
crossref_primary_10_1016_j_socscimed_2022_114855
crossref_primary_10_1016_j_amepre_2021_04_014
crossref_primary_10_1371_journal_pone_0214947
crossref_primary_10_1007_s10654_024_01169_7
crossref_primary_10_1007_s10900_018_0547_4
crossref_primary_10_1136_medethics_2021_107395
crossref_primary_10_1053_j_ajkd_2017_12_014
crossref_primary_10_1016_j_healthplace_2024_103209
crossref_primary_10_1001_jamanetworkopen_2022_35912
crossref_primary_10_1086_732668
crossref_primary_10_37808_jhhsa_46_2_3
crossref_primary_10_1016_j_carrev_2023_09_005
crossref_primary_10_1016_j_jvs_2022_10_053
crossref_primary_10_1002_dev_22179
crossref_primary_10_1002_cam4_1706
crossref_primary_10_1186_s12942_019_0185_9
crossref_primary_10_3390_ijgi12050195
crossref_primary_10_1001_jamanetworkopen_2018_6816
crossref_primary_10_1007_s11013_021_09749_y
crossref_primary_10_1016_j_socscimed_2021_113772
crossref_primary_10_1016_j_amepre_2021_04_023
crossref_primary_10_1007_s11121_022_01337_9
crossref_primary_10_1016_j_amepre_2018_08_006
crossref_primary_10_1177_08901171231190597
crossref_primary_10_1257_app_20200405
crossref_primary_10_1002_lrh2_10301
crossref_primary_10_1016_j_ijcard_2020_04_080
crossref_primary_10_1097_EDE_0000000000001879
crossref_primary_10_1177_1073110519857313
crossref_primary_10_1016_j_scitotenv_2021_147672
crossref_primary_10_1007_s13524_019_00821_2
crossref_primary_10_1257_aer_20181026
crossref_primary_10_1007_s10620_019_05734_z
crossref_primary_10_1186_s12955_020_01302_6
crossref_primary_10_1007_s11606_018_4670_9
crossref_primary_10_1002_pds_5193
crossref_primary_10_1161_JAHA_120_016340
crossref_primary_10_14423_SMJ_0000000000001062
crossref_primary_10_1177_08901171211002328d
crossref_primary_10_1089_pop_2017_0142
crossref_primary_10_1111_1468_0009_12642
crossref_primary_10_1186_s12889_024_20982_z
crossref_primary_10_1186_s12885_022_09252_6
crossref_primary_10_1186_s12889_024_18450_9
crossref_primary_10_1016_j_envres_2019_108842
crossref_primary_10_1016_j_ihj_2022_07_008
crossref_primary_10_1371_journal_pone_0270025
crossref_primary_10_1097_EE9_0000000000000038
crossref_primary_10_1016_j_jacc_2021_06_057
crossref_primary_10_1016_j_insmatheco_2021_03_014
crossref_primary_10_1016_j_tig_2023_08_005
crossref_primary_10_1073_pnas_2003719117
crossref_primary_10_1016_S2468_2667_21_00205_X
crossref_primary_10_1177_1357633X18806651
crossref_primary_10_1371_journal_pone_0254001
crossref_primary_10_1001_jamanetworkopen_2022_9178
crossref_primary_10_1017_cts_2024_598
crossref_primary_10_1038_s41467_018_06205_1
crossref_primary_10_1007_s11606_018_4568_6
crossref_primary_10_1007_s40615_025_02471_0
crossref_primary_10_1186_s12942_020_00251_z
crossref_primary_10_1093_gerona_gly005
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1001/jamainternmed.2017.0918
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 2168-6114
ExternalDocumentID 28492829
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30 AG047845
GroupedDBID 0R~
4.4
53G
AAGZG
AARDX
AAWTL
ABBLC
ABJNI
ABPMR
ACDNT
ACGFS
ADBBV
AENEX
AFCHL
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AMJDE
ANMPU
BRYMA
C45
CGR
CUY
CVF
EBD
EBS
ECM
EIF
EJD
EMOBN
EX3
H13
HF~
NPM
OB2
OBH
OCB
OGEVE
OHH
OVD
PQQKQ
RAJ
SV3
TEORI
WH7
WOW
YYP
7X8
ID FETCH-LOGICAL-a387t-1aab0877f17c663807d726f33e2c4943ab7ef01b7048eb6b6f6338e28a0c97c92
IEDL.DBID 7X8
ISICitedReferencesCount 323
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404599100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-6114
IngestDate Thu Sep 04 16:54:58 EDT 2025
Mon Jul 21 06:07:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a387t-1aab0877f17c663807d726f33e2c4943ab7ef01b7048eb6b6f6338e28a0c97c92
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28492829
PQID 1897807069
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1897807069
pubmed_primary_28492829
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JAMA internal medicine
PublicationTitleAlternate JAMA Intern Med
PublicationYear 2017
SSID ssj0000800433
Score 2.6587944
Snippet Examining life expectancy by county allows for tracking geographic disparities over time and assessing factors related to these disparities. This information...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1003
SubjectTerms Adult
Aged
Birth Rate - ethnology
Birth Rate - trends
Child
Female
Geographic Information Systems - statistics & numerical data
Health Behavior - ethnology
Health Status Disparities
Healthcare Disparities - statistics & numerical data
Humans
Life Expectancy - ethnology
Life Expectancy - trends
Male
Metabolism
Mortality - ethnology
Risk Factors
Socioeconomic Factors
United States - epidemiology
Title Inequalities in Life Expectancy Among US Counties, 1980 to 2014: Temporal Trends and Key Drivers
URI https://www.ncbi.nlm.nih.gov/pubmed/28492829
https://www.proquest.com/docview/1897807069
Volume 177
WOSCitedRecordID wos000404599100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qRHzxfpk3IvhotZeYiy8ypkNxGwM32dtM0gQK0s61Cv57T9pOnwTBlz4UCk3Oybl--Q5CZ1REVnFx5YWKEI_okHtKCOXBq0ASBRpREs8_d1m_z8djMagLbnkNq5zbxNJQx5l2NfLLgDuuHOZTcTN989zUKNddrUdoLKJGBKGM02o25t81FhcNkXKafBhQDllSQOYQr5p4KCnLbuB3HMiLXYDz5L-HmqXL6az_92c30FodbOJWpR2baMGkW2ilV7fTt9HLQ2qqW5WQL-Mkxd3EGuzYj3XhrC5uuVFEePSE2-VICZOf40BwHxcZhpWQazysmK1ecYWtxTKN8aP5xLezEu-xg0adu2H73qtHLngy4qzwAimVowi0AdMQi8AaYhZSG0Um1ESQSCpmrB8oBgffKKqopZDjmpBLXwumRbiLltIsNfsIx8ZX2rdcChC64VRa4669RqHQCvIg2USn872bgEq7PoVMTfaeT352r4n2KgFMphX3xgS8qXDN34M_fH2IVp1UK3DtEWpYONDmGC3rjyLJZyelrsCzP-h9Ad-ExqY
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inequalities+in+Life+Expectancy+Among+US+Counties%2C+1980+to+2014%3A+Temporal+Trends+and+Key+Drivers&rft.jtitle=JAMA+internal+medicine&rft.au=Dwyer-Lindgren%2C+Laura&rft.au=Bertozzi-Villa%2C+Amelia&rft.au=Stubbs%2C+Rebecca+W&rft.au=Morozoff%2C+Chloe&rft.date=2017-07-01&rft.eissn=2168-6114&rft.volume=177&rft.issue=7&rft.spage=1003&rft_id=info:doi/10.1001%2Fjamainternmed.2017.0918&rft_id=info%3Apmid%2F28492829&rft_id=info%3Apmid%2F28492829&rft.externalDocID=28492829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6114&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6114&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6114&client=summon