Bayesian Deep Learning for Spatial Interpolation in the Presence of Auxiliary Information
Earth scientists increasingly deal with ‘big data’. For spatial interpolation tasks, variants of kriging have long been regarded as the established geostatistical methods. However, kriging and its variants (such as regression kriging, in which auxiliary variables or derivatives of these are included...
Uložené v:
| Vydané v: | Mathematical geosciences Ročník 54; číslo 3; s. 507 - 531 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1874-8961, 1874-8953 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!