Bayesian Deep Learning for Spatial Interpolation in the Presence of Auxiliary Information

Earth scientists increasingly deal with ‘big data’. For spatial interpolation tasks, variants of kriging have long been regarded as the established geostatistical methods. However, kriging and its variants (such as regression kriging, in which auxiliary variables or derivatives of these are included...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical geosciences Vol. 54; no. 3; pp. 507 - 531
Main Authors: Kirkwood, Charlie, Economou, Theo, Pugeault, Nicolas, Odbert, Henry
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
Springer Nature B.V
Subjects:
ISSN:1874-8961, 1874-8953
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Earth scientists increasingly deal with ‘big data’. For spatial interpolation tasks, variants of kriging have long been regarded as the established geostatistical methods. However, kriging and its variants (such as regression kriging, in which auxiliary variables or derivatives of these are included as covariates) are relatively restrictive models and lack capabilities provided by deep neural networks. Principal among these is feature learning: the ability to learn filters to recognise task-relevant patterns in gridded data such as images. Here, we demonstrate the power of feature learning in a geostatistical context by showing how deep neural networks can automatically learn the complex high-order patterns by which point-sampled target variables relate to gridded auxiliary variables (such as those provided by remote sensing) and in doing so produce detailed maps. In order to cater for the needs of decision makers who require well-calibrated probabilities, we also demonstrate how both aleatoric and epistemic uncertainty can be quantified in our deep learning approach via a Bayesian approximation known as Monte Carlo dropout. In our example, we produce a national-scale probabilistic geochemical map from point-sampled observations with auxiliary data provided by a terrain elevation grid. By combining location information with automatically learned terrain derivatives, our deep learning approach achieves an excellent coefficient of determination ( R 2 = 0.74 ) and near-perfect probabilistic calibration on held-out test data. Our results indicate the suitability of Bayesian deep learning and its feature-learning capabilities for large-scale geostatistical applications where uncertainty matters. Graphic Abstract
AbstractList Earth scientists increasingly deal with ‘big data’. For spatial interpolation tasks, variants of kriging have long been regarded as the established geostatistical methods. However, kriging and its variants (such as regression kriging, in which auxiliary variables or derivatives of these are included as covariates) are relatively restrictive models and lack capabilities provided by deep neural networks. Principal among these is feature learning: the ability to learn filters to recognise task-relevant patterns in gridded data such as images. Here, we demonstrate the power of feature learning in a geostatistical context by showing how deep neural networks can automatically learn the complex high-order patterns by which point-sampled target variables relate to gridded auxiliary variables (such as those provided by remote sensing) and in doing so produce detailed maps. In order to cater for the needs of decision makers who require well-calibrated probabilities, we also demonstrate how both aleatoric and epistemic uncertainty can be quantified in our deep learning approach via a Bayesian approximation known as Monte Carlo dropout. In our example, we produce a national-scale probabilistic geochemical map from point-sampled observations with auxiliary data provided by a terrain elevation grid. By combining location information with automatically learned terrain derivatives, our deep learning approach achieves an excellent coefficient of determination (R2=0.74) and near-perfect probabilistic calibration on held-out test data. Our results indicate the suitability of Bayesian deep learning and its feature-learning capabilities for large-scale geostatistical applications where uncertainty matters.Graphic Abstract
Earth scientists increasingly deal with ‘big data’. For spatial interpolation tasks, variants of kriging have long been regarded as the established geostatistical methods. However, kriging and its variants (such as regression kriging, in which auxiliary variables or derivatives of these are included as covariates) are relatively restrictive models and lack capabilities provided by deep neural networks. Principal among these is feature learning: the ability to learn filters to recognise task-relevant patterns in gridded data such as images. Here, we demonstrate the power of feature learning in a geostatistical context by showing how deep neural networks can automatically learn the complex high-order patterns by which point-sampled target variables relate to gridded auxiliary variables (such as those provided by remote sensing) and in doing so produce detailed maps. In order to cater for the needs of decision makers who require well-calibrated probabilities, we also demonstrate how both aleatoric and epistemic uncertainty can be quantified in our deep learning approach via a Bayesian approximation known as Monte Carlo dropout. In our example, we produce a national-scale probabilistic geochemical map from point-sampled observations with auxiliary data provided by a terrain elevation grid. By combining location information with automatically learned terrain derivatives, our deep learning approach achieves an excellent coefficient of determination ( R 2 = 0.74 ) and near-perfect probabilistic calibration on held-out test data. Our results indicate the suitability of Bayesian deep learning and its feature-learning capabilities for large-scale geostatistical applications where uncertainty matters. Graphic Abstract
Author Odbert, Henry
Kirkwood, Charlie
Economou, Theo
Pugeault, Nicolas
Author_xml – sequence: 1
  givenname: Charlie
  orcidid: 0000-0003-3218-4097
  surname: Kirkwood
  fullname: Kirkwood, Charlie
  email: c.kirkwood@exeter.ac.uk
  organization: Department of Mathematics, University of Exeter
– sequence: 2
  givenname: Theo
  surname: Economou
  fullname: Economou, Theo
  organization: Department of Mathematics, University of Exeter, Climate and Atmosphere Research Centre, The Cyprus Institute
– sequence: 3
  givenname: Nicolas
  surname: Pugeault
  fullname: Pugeault, Nicolas
  organization: School of Computing Science, University of Glasgow
– sequence: 4
  givenname: Henry
  surname: Odbert
  fullname: Odbert, Henry
  organization: Met Office
BookMark eNp9kE9LwzAYh4NMcJt-AU8Bz9WkTdPkOOe_wUBBPXgKaft2ZnRJTTpw3964ioKHnX4JPE_yvr8JGllnAaFzSi4pIcVVoDFYQlKaECmFSMgRGlNRsETIPBv9njk9QZMQ1oRwmuV0jN6u9Q6C0RbfAHR4CdpbY1e4cR4_d7o3usUL24PvXBtvzmJjcf8O-MlDAFsBdg2ebT9Na7TfRTSKmz14io4b3QY4-8kper27fZk_JMvH-8V8tkx0JnifQJZCk4KQdR0zY4yyKqellEA1BQF1WTHKWaU5lwWvRVHmAFXD8pqTsiYsm6KL4d3Ou48thF6t3dbb-KVKOeOSS0FFpMRAVd6F4KFRlen3c_Zem1ZRor6LVEORKhap9kUqEtX0n9p5s4nbHpayQQoRtivwf1MdsL4A6PKIqA
CitedBy_id crossref_primary_10_1002_esp_5678
crossref_primary_10_3390_rs16173327
crossref_primary_10_1007_s11004_023_10125_2
crossref_primary_10_3390_atmos13081233
crossref_primary_10_1007_s10489_024_05913_0
crossref_primary_10_1016_j_measurement_2023_113019
crossref_primary_10_1016_j_earscirev_2024_104941
crossref_primary_10_1007_s10489_024_05541_8
crossref_primary_10_1007_s11053_022_10144_6
crossref_primary_10_1144_jgs2022_136
crossref_primary_10_1007_s11004_023_10087_5
crossref_primary_10_1080_13658816_2024_2347316
crossref_primary_10_1002_esp_6032
crossref_primary_10_1016_j_eswa_2025_129336
crossref_primary_10_1016_j_spasta_2024_100825
crossref_primary_10_1080_01431161_2025_2492412
crossref_primary_10_1109_ACCESS_2024_3388292
crossref_primary_10_1016_j_cageo_2025_105964
crossref_primary_10_1016_j_gexplo_2023_107174
crossref_primary_10_1016_j_jenvman_2025_125035
crossref_primary_10_1016_j_atmosenv_2024_120834
crossref_primary_10_1016_j_marpolbul_2025_118464
crossref_primary_10_5194_soil_10_679_2024
crossref_primary_10_1038_s41598_025_08844_z
crossref_primary_10_1007_s11004_024_10163_4
crossref_primary_10_1017_aer_2024_110
Cites_doi 10.5194/soil-5-79-2019
10.1016/j.geoderma.2010.12.018
10.1016/j.jappgeo.2014.09.013
10.1007/BF00889887
10.1016/j.gexplo.2016.05.003
10.1109/CVPRW.2016.90
10.1016/j.neunet.2007.04.024
10.1029/94JB03097
10.1016/S0094-5765(01)00020-0
10.5194/gmd-14-3899-2021
10.1016/j.geoderma.2019.05.012
10.2307/1400558
10.1016/j.geoderma.2019.05.031
10.1016/S0169-1368(99)00007-4
10.1007/s10346-015-0614-1
10.1080/00401706.1993.10485354
10.1190/INT-2015-0188.1
10.1016/j.agrformet.2011.07.021
10.1109/LGRS.2017.2764915
10.5194/soil-5-107-2019
10.1002/2017GL075710
10.1007/978-1-4612-1494-6
10.1016/j.earscirev.2019.02.023
10.1080/09208118908944041
10.1016/j.jsg.2018.11.010
10.2139/ssrn.3695311
10.1007/978-1-4612-0745-0_2
10.1007/s00477-007-0165-7
10.1111/j.1467-9868.2007.00587.x
10.21105/joss.00747
10.1007/978-3-319-69320-0_8
10.1201/b16018
10.1144/1467-7873/05-070
10.1098/rsta.2020.0099
10.1109/MGRS.2017.2762307
10.1002/hyp.9578
10.1126/sciadv.1700578
10.1016/j.gsf.2020.04.015
10.1144/SP453.12
10.1016/j.geoderma.2013.05.029
10.1109/MGRS.2016.2540798
10.1016/j.cageo.2007.05.001
10.1371/journal.pone.0202691
10.1007/978-1-4757-4286-2
10.1038/nature14539
10.1190/geo2018-0646.1
10.1016/j.isprsjprs.2014.02.013
10.1146/annurev-statistics-062713-085831
10.1007/BF00893318
10.3390/rs6098639
10.2113/gsecongeo.69.5.673
10.1029/2000RG000089
10.1198/016214506000001437
10.1016/j.petrol.2020.107933
10.1007/978-3-319-69320-0_9
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1007/s11004-021-09988-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
Computer Science
EISSN 1874-8953
EndPage 531
ExternalDocumentID 10_1007_s11004_021_09988_0
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: 2071900
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Horizon 2020
  grantid: 856612
  funderid: http://dx.doi.org/10.13039/501100007601
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67M
67Z
6NX
78A
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ATCPS
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KOV
L6V
L8X
LK5
LLZTM
M0N
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
P2P
P62
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8R
Z8S
Z8T
Z8W
Z8Z
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-a386t-e32ef2e89ddef234414c51b99e1a1e8edbc4164ca66976d87b5eecf45d60bd043
IEDL.DBID RSV
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743447700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1874-8961
IngestDate Thu Sep 25 00:56:03 EDT 2025
Sat Nov 29 02:45:21 EST 2025
Tue Nov 18 22:28:07 EST 2025
Fri Feb 21 02:47:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Feature learning
Uncertainty quantification
Mapping
Neural networks
Geostatistics
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a386t-e32ef2e89ddef234414c51b99e1a1e8edbc4164ca66976d87b5eecf45d60bd043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3218-4097
OpenAccessLink https://link.springer.com/10.1007/s11004-021-09988-0
PQID 2646969818
PQPubID 54390
PageCount 25
ParticipantIDs proquest_journals_2646969818
crossref_citationtrail_10_1007_s11004_021_09988_0
crossref_primary_10_1007_s11004_021_09988_0
springer_journals_10_1007_s11004_021_09988_0
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Mathematical geosciences
PublicationTitleAbbrev Math Geosci
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Hijmans RJ (2017) raster: Geographic Data Analysis and Modeling. R package version 2.6-7
PoggioLGimonaABrewerMJRegional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariatesGeoderma2013209114
Dimitrakopoulos R (2018) Stochastic mine planning-methods, examples and value in an uncertain world. In: Advances in applied strategic mine planning. Springer, pp 101–115
JournelAGGeostatistics for conditional simulation of ore bodiesEcon Geol1974695673687
Kirkwood C (2020) Deep covariate-learning: optimising information extraction from terrain texture for geostatistical modelling applications. arXiv preprint arXiv:2005.11194
LiTShenHYuanQZhangXZhangLEstimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approachGeophys Res Lett2017442311985
Kirkwood C (2016) A dropout-regularised neural network for mapping arsenic enrichment in SW England using MXNet. NERC open research archive
Fox CR, Ülkümen G (2011) Distinguishing two dimensions of uncertainty. Perspectives on thinking, judging, and decision making 14
BergerJOStatistical decision theory and bayesian analysis1985BerlinSpringer
YoeCPrinciples of risk analysis: decision making under uncertainty2011CambridgeCRC Press
LaahaGSkøienJBlöschlGSpatial prediction on river networks: comparison of top-kriging with regional regressionHydrol Process2014282315324
GelmanACarlinJBSternHSDunsonDBVehtariARubinDBBayesian data analysis2013CambridgeCRC Press
Vann J, Bertoli O, Jackson S (2002) An overview of geostatistical simulation for quantifying risk. In: Proceedings of geostatistical association of Australasia symposium” quantifying risk and error, vol 1, Citeseer, 1
Raftery AE, Lewis SM (1996) Implementing MCMC. Markov chain Monte Carlo in practice, pp 115–130
CressieNThe origins of krigingMath Geol1990223239252
MosegaardKTarantolaAMonte carlo sampling of solutions to inverse problemsJ Geophys Res Solid Earth1995100B71243112447
Gal Y, Ghahramani Z (2016) Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: International conference on machine learning, pp 1050–1059
British Geological Survey (2020) Geology of Britain Viewer. Accessed through online web interface at http://mapapps.bgs.ac.uk/geologyofbritain/home.html
CawleyGCJanacekGJHaylockMRDorlingSRPredictive uncertainty in environmental modellingNeural Netw2007204537549
Wilson AG (2020) The case for Bayesian deep learning. arXiv preprint arXiv:2001.10995
SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res201415119291958
Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys 50(1):159–170
LamichhaneSKumarLWilsonBDigital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a reviewGeoderma2019352395413
R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
KrigeDGA statistical approach to some basic mine valuation problems on the witwatersrandJ South Afr Inst Min Metall1951526119139
WellmannJFDe La VargaMMurdieREGessnerKJessellMUncertainty estimation for a geological model of the sandstone greenstone belt, western Australia-insights from integrated geological and geophysical inversion in a Bayesian inference frameworkGeol Soc Spec Publ201845314156
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: a system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
MulderVDe BruinSSchaepmanMEMayrTThe use of remote sensing in soil and terrain mapping-a reviewGeoderma20111621–2119
ShamsipourPSchetselaarEBellefleurGMarcotteD3D stochastic inversion of potential field data using structural geologic constraintsJ Appl Geophys2014111173182
AlzubaidiFMostaghimiPSwietojanskiPClarkSRArmstrongRTAutomated lithology classification from drill core images using convolutional neural networksJ Pet Sci Eng2021197107933
GneitingTRafteryAEStrictly proper scoring rules, prediction, and estimationJ Am Stat Assoc2007102477359378
Schaaf A, de la Varga M, Wellmann F, Bond CE (2021) Constraining stochastic 3-D structural geological models with topology information usingÚpproximate Bayesian computation in GemPy 2.1. Geoscientific Model Dev 14(6):3899–3913
HenglTHeuvelinkGBRossiterDGAbout regression-kriging: from equations to case studiesComput Geosci2007331013011315
Dillon JV, Langmore I, Tran D, Brevdo E, Vasudevan S, Moore D, Patton B, Alemi A, Hoffman M, Saurous RA (2017) Tensorflow distributions. arXiv preprint arXiv:1711.10604
GneitingTBalabdaouiFRafteryAEProbabilistic forecasts, calibration and sharpnessJ R Stat Soc B2007692243268
PerolTGharbiMDenolleMConvolutional neural network for earthquake detection and locationSci Adv201842e1700578
Ruiz-AriasJPozo-VázquezDSantos-AlamillosFLara-FanegoVTovar-PescadorJA topographic geostatistical approach for mapping monthly mean values of daily global solar radiation: a case study in southern spainAgric For Meteorol20111511218121822
KirkwoodCEconomouTOdbertHPugeaultNA framework for probabilistic weather forecast post-processing across models and lead times using machine learningPhilos Trans R Soc A2021379219420200099
LeCunYBengioYHintonGDeep learningNature20155217553436444
PilzJSpöckGWhy do we need and how should we implement bayesian kriging methodsStoch Environ Res Risk Assess2008225621632
de la Varga M, Wellmann JF (2016) Structural geologic modeling as an inference problem: a bayesian perspective. Interpretation 4(3):SM1–SM16
DimitrakopoulosRConditional simulation algorithms for modelling orebody uncertainty in open pit optimisationInt J Min Reclam Environ1998124173179
Sambridge M, Mosegaard K (2002) Monte Carlo methods in geophysical inverse problems. Rev Geophys 40(3):1–29
ColominaIMolinaPUnmanned aerial systems for photogrammetry and remote sensing: a reviewISPRS J Photogramm2014927997
Kampffmeyer M, Salberg AB, Jenssen R (2016) Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 1–9
LeNailANn-svg: Publication-ready neural network architecture schematicsJ. Open Source Softw.2019433747
Menabde M, Froyland G, Stone P, Yeates G (2018) Mining schedule optimisation for conditionally simulated orebodies. In: Advances in applied strategic mine planning. Springer, pp 91–100
Van ZylJJThe shuttle radar topography mission (SRTM): a breakthrough in remote sensing of topographyActa Astronaut2001485–12559565
KirkwoodCCaveMBeamishDGrebbySFerreiraAA machine learning approach to geochemical mappingJ Geochem Explor20161674961
ZuoRXiongYWangJCarranzaEJMDeep learning and its application in geochemical mappingEarth Sci Rev2019192114
ParmentierBMcGillBWilsonAMRegetzJJetzWGuralnickRPTuanmuMNRobinsonNSchildhauerMAn assessment of methods and remote-sensing derived covariates for regional predictions of 1 km daily maximum air temperatureRemote Sens20146986398670
WadouxAMJPadarianJMinasnyBMulti-source data integration for soil mapping using deep learningSoil201951107119
Li Y, Sun Y, Reich BJ (2020) Deepkriging: Spatially dependent deep neural networks for spatial prediction. arXiv preprint arXiv:2007.11972
GroseLAilleresLLaurentGArmitRJessellMInversion of geological knowledge for fold geometryJ Struct Geol2019119114
GneitingTKatzfussMProbabilistic forecastingAnnu Rev Stat Appl20141125151
Wu X, Liang L, Shi Y, Fomel S (2019) Faultseg3d: Using synthetic data sets to train an end-to-end convolutional neural network for 3d seismic fault segmentation. Geophysics 84(3):IM35–IM45
WadouxAMCUsing deep learning for multivariate mapping of soil with quantified uncertaintyGeoderma20193515970
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
SabinsFFRemote sensing for mineral explorationOre Geol Rev1999143–4157183
Shwartz-Ziv R, Tishby N (2017) Opening the black box of deep neural networks via information. arXiv preprint arXiv:1703.00810
OlierookHKScalzoRKohnDChandraRFarahbakhshEClarkCReddySMMüllerRDBayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3d geological modelsGeosci Front2021121479493
ClarkIStatistics or geostatistics? Sampling error or nugget effect?J South Afr Inst Min Metal20101106307312
YoussefAMPourghasemiHRPourtaghiZSAl-KatheeriMMLandslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi ArabiaLandslides2016135839856
ChenYZhuLGhamisiPJiaXLiGTangLHyperspectral images classification with gabor filtering and convolutional neural networkIEEE Geosci Remote Sens Lett2017141223552359
Young DM, Parry LE, Lee D, Ray S (2018) Spatial models with covariates improve estimates of peat depth in blanket peatlands. PLoS ONE 13(9):e0202691
PadarianJMinasnyBMcBratneyABUsing deep learning for digital soil mappingSoil2019517989
ZhuXXTuiaDMouLXiaGSZhangLXuFFraundorferFDeep learning in remote sensing: A comprehensive review and list of resourcesIEEE Trans Geosci Remote Sens201754836
JournelAGRossiMWhen do we need a trend model in kriging?Math Geol1989217715739
GotwayCAHartfordAHGeostatistical methods for incorporating auxiliary information in the prediction of spatial variablesJ Agric Biol Environ Stat199611739
JohnsonCBrewardNAnderEAultLG-base: baseline geochemical mapping of Great Britain and Northern IrelandGeochem
T Gneiting (9988_CR17) 2007; 69
9988_CR67
B Parmentier (9988_CR51) 2014; 6
9988_CR65
9988_CR62
K Mosegaard (9988_CR46) 1995; 100
9988_CR60
I Clark (9988_CR7) 2010; 110
N Cressie (9988_CR9) 1990; 22
9988_CR28
9988_CR29
9988_CR24
F Alzubaidi (9988_CR2) 2021; 197
T Hengl (9988_CR23) 2007; 33
A Gelman (9988_CR16) 2013
MS Handcock (9988_CR22) 1993; 35
XX Zhu (9988_CR77) 2017; 5
J Padarian (9988_CR50) 2019; 5
A LeNail (9988_CR40) 2019; 4
T Perol (9988_CR52) 2018; 4
HK Olierook (9988_CR49) 2021; 12
9988_CR11
9988_CR55
9988_CR56
T Gneiting (9988_CR19) 2007; 102
9988_CR10
L Poggio (9988_CR54) 2013; 209
Y Chen (9988_CR6) 2017; 14
CA Gotway (9988_CR20) 1996; 1
AMC Wadoux (9988_CR68) 2019; 351
9988_CR4
L Zhang (9988_CR76) 2016; 4
9988_CR15
9988_CR59
9988_CR1
GC Cawley (9988_CR5) 2007; 20
C Johnson (9988_CR25) 2005; 5
AM Youssef (9988_CR75) 2016; 13
9988_CR13
9988_CR14
V Mulder (9988_CR47) 2011; 162
DG Krige (9988_CR35) 1951; 52
I Colomina (9988_CR8) 2014; 92
JJ Van Zyl (9988_CR66) 2001; 48
S Lamichhane (9988_CR38) 2019; 352
P Shamsipour (9988_CR61) 2014; 111
ML Stein (9988_CR64) 1999
9988_CR44
J Ruiz-Arias (9988_CR57) 2011; 151
9988_CR45
9988_CR42
9988_CR43
C Yoe (9988_CR73) 2011
9988_CR48
C Kirkwood (9988_CR33) 2016; 167
AG Journel (9988_CR27) 1989; 21
AG Journel (9988_CR26) 1974; 69
FF Sabins (9988_CR58) 1999; 14
C Kirkwood (9988_CR34) 2021; 379
T Li (9988_CR41) 2017; 44
R Zuo (9988_CR78) 2019; 192
L Grose (9988_CR21) 2019; 119
9988_CR31
9988_CR32
9988_CR30
9988_CR74
9988_CR71
JF Wellmann (9988_CR70) 2018; 453
9988_CR72
AMJ Wadoux (9988_CR69) 2019; 5
JO Berger (9988_CR3) 1985
T Gneiting (9988_CR18) 2014; 1
9988_CR36
Y LeCun (9988_CR39) 2015; 521
R Dimitrakopoulos (9988_CR12) 1998; 12
G Laaha (9988_CR37) 2014; 28
J Pilz (9988_CR53) 2008; 22
N Srivastava (9988_CR63) 2014; 15
References_xml – reference: Vann J, Bertoli O, Jackson S (2002) An overview of geostatistical simulation for quantifying risk. In: Proceedings of geostatistical association of Australasia symposium” quantifying risk and error, vol 1, Citeseer, 1
– reference: BergerJOStatistical decision theory and bayesian analysis1985BerlinSpringer
– reference: British Geological Survey (2020) Geology of Britain Viewer. Accessed through online web interface at http://mapapps.bgs.ac.uk/geologyofbritain/home.html
– reference: GroseLAilleresLLaurentGArmitRJessellMInversion of geological knowledge for fold geometryJ Struct Geol2019119114
– reference: Raftery AE, Lewis SM (1996) Implementing MCMC. Markov chain Monte Carlo in practice, pp 115–130
– reference: Ruiz-AriasJPozo-VázquezDSantos-AlamillosFLara-FanegoVTovar-PescadorJA topographic geostatistical approach for mapping monthly mean values of daily global solar radiation: a case study in southern spainAgric For Meteorol20111511218121822
– reference: PadarianJMinasnyBMcBratneyABUsing deep learning for digital soil mappingSoil2019517989
– reference: MosegaardKTarantolaAMonte carlo sampling of solutions to inverse problemsJ Geophys Res Solid Earth1995100B71243112447
– reference: Van ZylJJThe shuttle radar topography mission (SRTM): a breakthrough in remote sensing of topographyActa Astronaut2001485–12559565
– reference: Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: a system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283
– reference: LeNailANn-svg: Publication-ready neural network architecture schematicsJ. Open Source Softw.2019433747
– reference: Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
– reference: Dillon JV, Langmore I, Tran D, Brevdo E, Vasudevan S, Moore D, Patton B, Alemi A, Hoffman M, Saurous RA (2017) Tensorflow distributions. arXiv preprint arXiv:1711.10604
– reference: ZhangLZhangLDuBDeep learning for remote sensing data: a technical tutorial on the state of the artIEEE Trans Geosci Remote Sens2016422240
– reference: ZhuXXTuiaDMouLXiaGSZhangLXuFFraundorferFDeep learning in remote sensing: A comprehensive review and list of resourcesIEEE Trans Geosci Remote Sens201754836
– reference: Menabde M, Froyland G, Stone P, Yeates G (2018) Mining schedule optimisation for conditionally simulated orebodies. In: Advances in applied strategic mine planning. Springer, pp 91–100
– reference: Wu X, Liang L, Shi Y, Fomel S (2019) Faultseg3d: Using synthetic data sets to train an end-to-end convolutional neural network for 3d seismic fault segmentation. Geophysics 84(3):IM35–IM45
– reference: CressieNThe origins of krigingMath Geol1990223239252
– reference: PoggioLGimonaABrewerMJRegional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariatesGeoderma2013209114
– reference: LaahaGSkøienJBlöschlGSpatial prediction on river networks: comparison of top-kriging with regional regressionHydrol Process2014282315324
– reference: JohnsonCBrewardNAnderEAultLG-base: baseline geochemical mapping of Great Britain and Northern IrelandGeochem Explor Environ Anal200554347357
– reference: WadouxAMJPadarianJMinasnyBMulti-source data integration for soil mapping using deep learningSoil201951107119
– reference: Wilson AG (2020) The case for Bayesian deep learning. arXiv preprint arXiv:2001.10995
– reference: MulderVDe BruinSSchaepmanMEMayrTThe use of remote sensing in soil and terrain mapping-a reviewGeoderma20111621–2119
– reference: Neal RM (1996) Priors for infinite networks. In: Bayesian learning for neural networks. Springer, pp 29–53
– reference: Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys 50(1):159–170
– reference: Fox CR, Ülkümen G (2011) Distinguishing two dimensions of uncertainty. Perspectives on thinking, judging, and decision making 14
– reference: JournelAGGeostatistics for conditional simulation of ore bodiesEcon Geol1974695673687
– reference: ClarkIStatistics or geostatistics? Sampling error or nugget effect?J South Afr Inst Min Metal20101106307312
– reference: Luo W, Li Y, Urtasun R, Zemel R (2016) Understanding the effective receptive field in deep convolutional neural networks. In: Advances in neural information processing systems, pp 4898–4906
– reference: WellmannJFDe La VargaMMurdieREGessnerKJessellMUncertainty estimation for a geological model of the sandstone greenstone belt, western Australia-insights from integrated geological and geophysical inversion in a Bayesian inference frameworkGeol Soc Spec Publ201845314156
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
– reference: ZuoRXiongYWangJCarranzaEJMDeep learning and its application in geochemical mappingEarth Sci Rev2019192114
– reference: KirkwoodCEconomouTOdbertHPugeaultNA framework for probabilistic weather forecast post-processing across models and lead times using machine learningPhilos Trans R Soc A2021379219420200099
– reference: ChenYZhuLGhamisiPJiaXLiGTangLHyperspectral images classification with gabor filtering and convolutional neural networkIEEE Geosci Remote Sens Lett2017141223552359
– reference: Kampffmeyer M, Salberg AB, Jenssen R (2016) Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 1–9
– reference: Kirkwood C (2020) Deep covariate-learning: optimising information extraction from terrain texture for geostatistical modelling applications. arXiv preprint arXiv:2005.11194
– reference: KrigeDGA statistical approach to some basic mine valuation problems on the witwatersrandJ South Afr Inst Min Metall1951526119139
– reference: Li Y, Sun Y, Reich BJ (2020) Deepkriging: Spatially dependent deep neural networks for spatial prediction. arXiv preprint arXiv:2007.11972
– reference: SabinsFFRemote sensing for mineral explorationOre Geol Rev1999143–4157183
– reference: Dimitrakopoulos R (2018) Stochastic mine planning-methods, examples and value in an uncertain world. In: Advances in applied strategic mine planning. Springer, pp 101–115
– reference: KirkwoodCCaveMBeamishDGrebbySFerreiraAA machine learning approach to geochemical mappingJ Geochem Explor20161674961
– reference: LeCunYBengioYHintonGDeep learningNature20155217553436444
– reference: OlierookHKScalzoRKohnDChandraRFarahbakhshEClarkCReddySMMüllerRDBayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3d geological modelsGeosci Front2021121479493
– reference: Sambridge M, Mosegaard K (2002) Monte Carlo methods in geophysical inverse problems. Rev Geophys 40(3):1–29
– reference: HandcockMSSteinMLA bayesian analysis of krigingTechnometrics1993354403410
– reference: Matheron G (1962) Traité de géostatistique appliquée. Mémoires du Bureau de Recherches Géologiques et Minières, Éditions Technip
– reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res201415119291958
– reference: Schaaf A, de la Varga M, Wellmann F, Bond CE (2021) Constraining stochastic 3-D structural geological models with topology information usingÚpproximate Bayesian computation in GemPy 2.1. Geoscientific Model Dev 14(6):3899–3913
– reference: R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
– reference: ParmentierBMcGillBWilsonAMRegetzJJetzWGuralnickRPTuanmuMNRobinsonNSchildhauerMAn assessment of methods and remote-sensing derived covariates for regional predictions of 1 km daily maximum air temperatureRemote Sens20146986398670
– reference: PerolTGharbiMDenolleMConvolutional neural network for earthquake detection and locationSci Adv201842e1700578
– reference: YoeCPrinciples of risk analysis: decision making under uncertainty2011CambridgeCRC Press
– reference: WadouxAMCUsing deep learning for multivariate mapping of soil with quantified uncertaintyGeoderma20193515970
– reference: GneitingTRafteryAEStrictly proper scoring rules, prediction, and estimationJ Am Stat Assoc2007102477359378
– reference: ColominaIMolinaPUnmanned aerial systems for photogrammetry and remote sensing: a reviewISPRS J Photogramm2014927997
– reference: JournelAGRossiMWhen do we need a trend model in kriging?Math Geol1989217715739
– reference: GneitingTBalabdaouiFRafteryAEProbabilistic forecasts, calibration and sharpnessJ R Stat Soc B2007692243268
– reference: GelmanACarlinJBSternHSDunsonDBVehtariARubinDBBayesian data analysis2013CambridgeCRC Press
– reference: ShamsipourPSchetselaarEBellefleurGMarcotteD3D stochastic inversion of potential field data using structural geologic constraintsJ Appl Geophys2014111173182
– reference: HenglTHeuvelinkGBRossiterDGAbout regression-kriging: from equations to case studiesComput Geosci2007331013011315
– reference: YoussefAMPourghasemiHRPourtaghiZSAl-KatheeriMMLandslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi ArabiaLandslides2016135839856
– reference: AlzubaidiFMostaghimiPSwietojanskiPClarkSRArmstrongRTAutomated lithology classification from drill core images using convolutional neural networksJ Pet Sci Eng2021197107933
– reference: Hijmans RJ (2017) raster: Geographic Data Analysis and Modeling. R package version 2.6-7
– reference: Kirkwood C (2016) A dropout-regularised neural network for mapping arsenic enrichment in SW England using MXNet. NERC open research archive
– reference: SteinMLInterpolation of spatial data: some theory for kriging1999BerlinSpringer
– reference: GneitingTKatzfussMProbabilistic forecastingAnnu Rev Stat Appl20141125151
– reference: Young DM, Parry LE, Lee D, Ray S (2018) Spatial models with covariates improve estimates of peat depth in blanket peatlands. PLoS ONE 13(9):e0202691
– reference: Gal Y, Ghahramani Z (2016) Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: International conference on machine learning, pp 1050–1059
– reference: DimitrakopoulosRConditional simulation algorithms for modelling orebody uncertainty in open pit optimisationInt J Min Reclam Environ1998124173179
– reference: Shwartz-Ziv R, Tishby N (2017) Opening the black box of deep neural networks via information. arXiv preprint arXiv:1703.00810
– reference: Kendall A, Gal Y (2017) What uncertainties do we need in bayesian deep learning for computer vision? In: Advances in neural information processing systems, pp 5574–5584
– reference: de la Varga M, Wellmann JF (2016) Structural geologic modeling as an inference problem: a bayesian perspective. Interpretation 4(3):SM1–SM16
– reference: PilzJSpöckGWhy do we need and how should we implement bayesian kriging methodsStoch Environ Res Risk Assess2008225621632
– reference: LiTShenHYuanQZhangXZhangLEstimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approachGeophys Res Lett2017442311985
– reference: GotwayCAHartfordAHGeostatistical methods for incorporating auxiliary information in the prediction of spatial variablesJ Agric Biol Environ Stat199611739
– reference: LamichhaneSKumarLWilsonBDigital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a reviewGeoderma2019352395413
– reference: CawleyGCJanacekGJHaylockMRDorlingSRPredictive uncertainty in environmental modellingNeural Netw2007204537549
– volume: 5
  start-page: 79
  issue: 1
  year: 2019
  ident: 9988_CR50
  publication-title: Soil
  doi: 10.5194/soil-5-79-2019
– ident: 9988_CR29
– ident: 9988_CR31
– volume: 162
  start-page: 1
  issue: 1–2
  year: 2011
  ident: 9988_CR47
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.12.018
– volume: 111
  start-page: 173
  year: 2014
  ident: 9988_CR61
  publication-title: J Appl Geophys
  doi: 10.1016/j.jappgeo.2014.09.013
– volume: 22
  start-page: 239
  issue: 3
  year: 1990
  ident: 9988_CR9
  publication-title: Math Geol
  doi: 10.1007/BF00889887
– volume: 167
  start-page: 49
  year: 2016
  ident: 9988_CR33
  publication-title: J Geochem Explor
  doi: 10.1016/j.gexplo.2016.05.003
– ident: 9988_CR28
  doi: 10.1109/CVPRW.2016.90
– volume: 20
  start-page: 537
  issue: 4
  year: 2007
  ident: 9988_CR5
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2007.04.024
– volume: 100
  start-page: 12431
  issue: B7
  year: 1995
  ident: 9988_CR46
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/94JB03097
– volume: 48
  start-page: 559
  issue: 5–12
  year: 2001
  ident: 9988_CR66
  publication-title: Acta Astronaut
  doi: 10.1016/S0094-5765(01)00020-0
– ident: 9988_CR60
  doi: 10.5194/gmd-14-3899-2021
– volume: 351
  start-page: 59
  year: 2019
  ident: 9988_CR68
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.012
– volume: 1
  start-page: 17
  year: 1996
  ident: 9988_CR20
  publication-title: J Agric Biol Environ Stat
  doi: 10.2307/1400558
– volume: 352
  start-page: 395
  year: 2019
  ident: 9988_CR38
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.031
– volume: 14
  start-page: 157
  issue: 3–4
  year: 1999
  ident: 9988_CR58
  publication-title: Ore Geol Rev
  doi: 10.1016/S0169-1368(99)00007-4
– volume: 13
  start-page: 839
  issue: 5
  year: 2016
  ident: 9988_CR75
  publication-title: Landslides
  doi: 10.1007/s10346-015-0614-1
– volume: 35
  start-page: 403
  issue: 4
  year: 1993
  ident: 9988_CR22
  publication-title: Technometrics
  doi: 10.1080/00401706.1993.10485354
– ident: 9988_CR10
  doi: 10.1190/INT-2015-0188.1
– volume: 151
  start-page: 1812
  issue: 12
  year: 2011
  ident: 9988_CR57
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2011.07.021
– volume: 14
  start-page: 2355
  issue: 12
  year: 2017
  ident: 9988_CR6
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2017.2764915
– volume: 5
  start-page: 107
  issue: 1
  year: 2019
  ident: 9988_CR69
  publication-title: Soil
  doi: 10.5194/soil-5-107-2019
– volume: 44
  start-page: 11
  issue: 23
  year: 2017
  ident: 9988_CR41
  publication-title: Geophys Res Lett
  doi: 10.1002/2017GL075710
– ident: 9988_CR32
– volume-title: Interpolation of spatial data: some theory for kriging
  year: 1999
  ident: 9988_CR64
  doi: 10.1007/978-1-4612-1494-6
– volume: 192
  start-page: 1
  year: 2019
  ident: 9988_CR78
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2019.02.023
– ident: 9988_CR11
– volume: 12
  start-page: 173
  issue: 4
  year: 1998
  ident: 9988_CR12
  publication-title: Int J Min Reclam Environ
  doi: 10.1080/09208118908944041
– volume: 119
  start-page: 1
  year: 2019
  ident: 9988_CR21
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2018.11.010
– ident: 9988_CR36
– ident: 9988_CR14
  doi: 10.2139/ssrn.3695311
– ident: 9988_CR48
  doi: 10.1007/978-1-4612-0745-0_2
– volume: 22
  start-page: 621
  issue: 5
  year: 2008
  ident: 9988_CR53
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-007-0165-7
– ident: 9988_CR15
– volume: 69
  start-page: 243
  issue: 2
  year: 2007
  ident: 9988_CR17
  publication-title: J R Stat Soc B
  doi: 10.1111/j.1467-9868.2007.00587.x
– ident: 9988_CR42
– volume: 4
  start-page: 747
  issue: 33
  year: 2019
  ident: 9988_CR40
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00747
– ident: 9988_CR45
  doi: 10.1007/978-3-319-69320-0_8
– volume-title: Bayesian data analysis
  year: 2013
  ident: 9988_CR16
  doi: 10.1201/b16018
– volume: 5
  start-page: 347
  issue: 4
  year: 2005
  ident: 9988_CR25
  publication-title: Geochem Explor Environ Anal
  doi: 10.1144/1467-7873/05-070
– volume: 379
  start-page: 20200099
  issue: 2194
  year: 2021
  ident: 9988_CR34
  publication-title: Philos Trans R Soc A
  doi: 10.1098/rsta.2020.0099
– ident: 9988_CR67
– volume-title: Principles of risk analysis: decision making under uncertainty
  year: 2011
  ident: 9988_CR73
– volume: 5
  start-page: 8
  issue: 4
  year: 2017
  ident: 9988_CR77
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/MGRS.2017.2762307
– volume: 110
  start-page: 307
  issue: 6
  year: 2010
  ident: 9988_CR7
  publication-title: J South Afr Inst Min Metal
– volume: 28
  start-page: 315
  issue: 2
  year: 2014
  ident: 9988_CR37
  publication-title: Hydrol Process
  doi: 10.1002/hyp.9578
– ident: 9988_CR71
– volume: 4
  start-page: e1700578
  issue: 2
  year: 2018
  ident: 9988_CR52
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1700578
– ident: 9988_CR56
– ident: 9988_CR4
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 9988_CR63
  publication-title: J Mach Learn Res
– ident: 9988_CR43
– volume: 12
  start-page: 479
  issue: 1
  year: 2021
  ident: 9988_CR49
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.04.015
– volume: 52
  start-page: 119
  issue: 6
  year: 1951
  ident: 9988_CR35
  publication-title: J South Afr Inst Min Metall
– volume: 453
  start-page: 41
  issue: 1
  year: 2018
  ident: 9988_CR70
  publication-title: Geol Soc Spec Publ
  doi: 10.1144/SP453.12
– volume: 209
  start-page: 1
  year: 2013
  ident: 9988_CR54
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.05.029
– volume: 4
  start-page: 22
  issue: 2
  year: 2016
  ident: 9988_CR76
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/MGRS.2016.2540798
– volume: 33
  start-page: 1301
  issue: 10
  year: 2007
  ident: 9988_CR23
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2007.05.001
– ident: 9988_CR24
– ident: 9988_CR74
  doi: 10.1371/journal.pone.0202691
– volume-title: Statistical decision theory and bayesian analysis
  year: 1985
  ident: 9988_CR3
  doi: 10.1007/978-1-4757-4286-2
– ident: 9988_CR62
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 9988_CR39
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 9988_CR30
– ident: 9988_CR72
  doi: 10.1190/geo2018-0646.1
– ident: 9988_CR1
– volume: 92
  start-page: 79
  year: 2014
  ident: 9988_CR8
  publication-title: ISPRS J Photogramm
  doi: 10.1016/j.isprsjprs.2014.02.013
– volume: 1
  start-page: 125
  year: 2014
  ident: 9988_CR18
  publication-title: Annu Rev Stat Appl
  doi: 10.1146/annurev-statistics-062713-085831
– volume: 21
  start-page: 715
  issue: 7
  year: 1989
  ident: 9988_CR27
  publication-title: Math Geol
  doi: 10.1007/BF00893318
– volume: 6
  start-page: 8639
  issue: 9
  year: 2014
  ident: 9988_CR51
  publication-title: Remote Sens
  doi: 10.3390/rs6098639
– volume: 69
  start-page: 673
  issue: 5
  year: 1974
  ident: 9988_CR26
  publication-title: Econ Geol
  doi: 10.2113/gsecongeo.69.5.673
– ident: 9988_CR55
– ident: 9988_CR59
  doi: 10.1029/2000RG000089
– volume: 102
  start-page: 359
  issue: 477
  year: 2007
  ident: 9988_CR19
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000001437
– volume: 197
  start-page: 107933
  year: 2021
  ident: 9988_CR2
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2020.107933
– ident: 9988_CR44
– ident: 9988_CR13
  doi: 10.1007/978-3-319-69320-0_9
– ident: 9988_CR65
SSID ssj0061351
Score 2.4974022
Snippet Earth scientists increasingly deal with ‘big data’. For spatial interpolation tasks, variants of kriging have long been regarded as the established...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 507
SubjectTerms Approximation
Artificial neural networks
Bayesian analysis
Bayesian theory
Big Data
Chemistry and Earth Sciences
Computer Science
Deep learning
Earth and Environmental Science
Earth Sciences
Elevation
Geostatistics
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Interpolation
Machine learning
Mathematical models
Neural networks
Pattern recognition
Physics
Probability theory
Remote sensing
Spatial data
Spatial discrimination learning
Special Issue
Statistical analysis
Statistical methods
Statistics for Engineering
Terrain
Uncertainty
Title Bayesian Deep Learning for Spatial Interpolation in the Presence of Auxiliary Information
URI https://link.springer.com/article/10.1007/s11004-021-09988-0
https://www.proquest.com/docview/2646969818
Volume 54
WOSCitedRecordID wos000743447700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1874-8953
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061351
  issn: 1874-8961
  databaseCode: RSV
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7iA7z4FuuLHLzpwu5mm8exvg9SxBd6WpLsRArSSlvF_nsnadaiqKC3hU3CMpkk32zmm4-QPS0lomxjE5c6mxTKClxSoBInBNNNppwOP3PuLkS7Le_v1WUkhQ3qbPf6SjLs1BOyWxaSJnIMfzFGkAkG6jN43Ekv2HB1fVfvv9xrzvkwS4oikYpnkSrz_Rifj6MJxvxyLRpOm9PF_33nElmI6JK2xu6wTKagu0IWa-UGGhfyCpk7C4K-I3wKKaB2sEoeDvUIPKWSHgM801h49ZEiqqVeuBgdlY5TFHvj_Dna6VKEj_QyMJgs0J6jrZe3zlNH90c08px8wzVye3pyc3SeROGFRDPJhwmwHFwOUuHe53KGiKmwzcwoBZnOQEJlLOK4wmrOEc1UUpgmgHVFs-KpqdKCrZPpbq8LG4RW1hTCCGEYY4VylUS85hwYLnTKpLENktX2L22sSu7FMZ7KST1lb88S7VkGe5Zpg-x_9Hke1-T4tfV2Pa1lXJ-DEmEgV1whWmmQg3oaJ69_Hm3zb823yHzu-RIh1WebTA_7L7BDZu3rsDPo7wa_fQdKLeZj
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEB5KreiLrdXitbXmwTdd2N3k8uOxVmtLz6NoLfVpSbITOSh35e4qvf_eSS7roaigbwubhGUyM_lmM98MwEurNaFs54tQBl8I4xWZFJoiKMVtn5tg08-cy4EaDvXVlTnPpLBZl-3eXUkmT70iu1UpaaKm8JdiBF1QoH5P0IkVK-Z__HTZ-V8Ze87FMEsrUWgjq0yV-f0aPx9HK4z5y7VoOm2ON__vO7fgUUaX7HCpDo9hDcfbsNl1bmDZkLfh_vvU0HdBTykF1M-ewJc3doGRUsneIt6wXHj1KyNUy2LjYlJUtkxRnCzz59hozAg-svPEYPLIJoEd3t6Nrkd2umCZ5xQHPoXPx-8ujk6K3HihsFzLeYG8xlCjNuT7Qs0JMQnfr5wxWNkKNbbOE44T3kpJaKbVyvURfRD9VpauLQXfgfXxZIzPgLXeCeWUcpxzYUKrCa-FgE4qW3LtfA-qTv6Nz1XJY3OM62ZVTznKsyF5NkmeTdmDVz_m3Cxrcvx19H63rU22z1lDMFAaaQit9OB1t42r139ebfffhr-ABycXHwbN4HR4tgcP68idSGk_-7A-n97ic9jw3-aj2fQg6fB3HxfpRw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6hDRAvGwwQHQP8wBtES2LXPx7HRgExVZWAaTxFtnOeKk1p1XZo_e85OwkdCJAQb5FiW9HZZ38Xf98dwEurNaFs57OQB58J4xW5FJosKMXtkJtg08-cs1M1HuvzczO5oeJPbPf-SrLVNMQsTc3qcF6Hw43wrUgEipJCYYoXdEZB-7aIRPoYr3866_diGevPxZBLK5FpI4tONvP7MX4-mjZ485cr0nTyjHb__5vvw06HOtlRu0wewC1s9mC3r-jAOgffgzvvUqHfNT0laqhfPoSvb-wao9SSnSDOWZeQ9YIR2mWxoDEtYNZSF2ctr45NG0awkk2SsskjmwV2dHU9vZzaxZp1-qfY8BF8Gb39fPw-6woyZJZrucqQlxhK1Ib2xFByQlLCDwtnDBa2QI2184TvhLdSEsqptXJDRB_EsJa5q3PBH8NWM2vwCbDaO6GcUo5zLkyoNeG4ENBJZXOunR9A0c9F5bts5bFoxmW1ybMc7VmRPatkzyofwKsffeZtro6_tj7op7jq_HZZETyURhpCMQN43U_p5vWfR9v_t-Yv4O7kZFSdfhh_fAr3yiipSGygA9haLa7wGdz231bT5eJ5Ws7fAY6V8is
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Deep+Learning+for+Spatial+Interpolation+in+the+Presence+of+Auxiliary+Information&rft.jtitle=Mathematical+geosciences&rft.au=Kirkwood%2C+Charlie&rft.au=Economou%2C+Theo&rft.au=Pugeault%2C+Nicolas&rft.au=Odbert%2C+Henry&rft.date=2022-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1874-8961&rft.eissn=1874-8953&rft.volume=54&rft.issue=3&rft.spage=507&rft.epage=531&rft_id=info:doi/10.1007%2Fs11004-021-09988-0&rft.externalDocID=10_1007_s11004_021_09988_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-8961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-8961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-8961&client=summon