Numerical simulation and dimension reduction analysis of electromagnetic logging while drilling of horizontal wells in complex structures

Electromagnetic logging while drilling (LWD) is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells. In this paper, we solve the dipole source-generated magnetic/electric fields in 2D formations efficiently by the 2.5D finite difference method....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Petroleum science Ročník 17; číslo 3; s. 645 - 657
Hlavní autoři: Wu, Zhen-Guan, Deng, Shao-Gui, He, Xu-Quan, Zhang, Runren, Fan, Yi-Ren, Yuan, Xi-Yong, Wu, Yi-Zhi, Liu, Qing Huo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beijing China University of Petroleum (Beijing) 01.06.2020
KeAi Publishing Communications Ltd
Témata:
ISSN:1672-5107, 1995-8226
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Electromagnetic logging while drilling (LWD) is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells. In this paper, we solve the dipole source-generated magnetic/electric fields in 2D formations efficiently by the 2.5D finite difference method. Particularly, by leveraging the field’s rapid attenuation in spectral domain, we propose truncated Gauss–Hermite quadrature, which is several tens of times faster than traditional inverse fast Fourier transform. By applying the algorithm to the LWD modeling under complex formations, e.g., folds, fault and sandstone pinch-outs, we analyze the feasibility of the dimension reduction from 2D to 1D. For the formations with smooth lateral changes, like folds, the simplified 1D model’s results agree well with the true responses, which indicate that the 1D simplification with sliding window is feasible. However, for the formation structures with drastic rock properties changes and sharp boundaries, for instance, faults and sandstone pinch-outs, the simplified 1D model will lead to large errors and, therefore, 2.5D algorithms should be applied to ensure the accuracy.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1672-5107
1995-8226
DOI:10.1007/s12182-020-00444-y