Measuring Cloud Workload Burstiness

Workload burstiness and spikes are among the main reasons for service disruptions and decrease in the Quality-of-Service (QoS) of online services. They are hurdles that complicate autonomic resource management of datacenters. In this paper, we review the state-of-the-art in online identification of...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing pp. 566 - 572
Main Authors: Ali-Eldin, Ahmed, Seleznjev, Oleg, Sjostedt-de Luna, Sara, Tordsson, Johan, Elmroth, Erik
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Workload burstiness and spikes are among the main reasons for service disruptions and decrease in the Quality-of-Service (QoS) of online services. They are hurdles that complicate autonomic resource management of datacenters. In this paper, we review the state-of-the-art in online identification of workload spikes and quantifying burstiness. The applicability of some of the proposed techniques is examined for Cloud systems where various workloads are co-hosted on the same platform. We discuss Sample Entropy (Samp En), a measure used in biomedical signal analysis, as a potential measure for burstiness. A modification to the original measure is introduced to make it more suitable for Cloud workloads.
AbstractList Workload burstiness and spikes are among the main reasons for service disruptions and decrease in the Quality-of-Service (QoS) of online services. They are hurdles that complicate autonomic resource management of datacenters. In this paper, we review the state-of-the-art in online identification of workload spikes and quantifying burstiness. The applicability of some of the proposed techniques is examined for Cloud systems where various workloads are co-hosted on the same platform. We discuss Sample Entropy (Samp En), a measure used in biomedical signal analysis, as a potential measure for burstiness. A modification to the original measure is introduced to make it more suitable for Cloud workloads.
Author Seleznjev, Oleg
Ali-Eldin, Ahmed
Tordsson, Johan
Elmroth, Erik
Sjostedt-de Luna, Sara
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Ali-Eldin
  fullname: Ali-Eldin, Ahmed
  email: ahmeda@cs.umu.se
  organization: Dept. of Comput. Sci., Umea Univ., Umea, Sweden
– sequence: 2
  givenname: Oleg
  surname: Seleznjev
  fullname: Seleznjev, Oleg
  email: oleg.seleznjev@math.umu.se
  organization: Dept. of Math. & Math. Stat., Umea Univ., Umea, Sweden
– sequence: 3
  givenname: Sara
  surname: Sjostedt-de Luna
  fullname: Sjostedt-de Luna, Sara
  email: sara@math.umu.se
  organization: Dept. of Math. & Math. Stat., Umea Univ., Umea, Sweden
– sequence: 4
  givenname: Johan
  surname: Tordsson
  fullname: Tordsson, Johan
  email: tordsson@cs.umu.se
  organization: Dept. of Comput. Sci., Umea Univ., Umea, Sweden
– sequence: 5
  givenname: Erik
  surname: Elmroth
  fullname: Elmroth, Erik
  email: elmroth@cs.umu.se
  organization: Dept. of Comput. Sci., Umea Univ., Umea, Sweden
BookMark eNotjT1PwzAUAI0EElAyMbJEYk76_BXbI1gUkFqxUDFWL84zCoQE2c3AvycSTLec7i7Z6TiNxNg1h5pzcOu997UArmprTljhjOXKuAWWN-esyPkDAHijFxcu2O2OMM-pH99LP0xzV75N6XOYsCvv55SP_Ug5X7GziEOm4p8rtt88vPqnavvy-OzvthVKq45VkE2woNoWQXa6iYI7NDF0QBrQyuXYtkpACErFGDsSQCFgdARIhijIFbv56_ZEdPhO_Remn4MBYbRW8hcjmz-O
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/UCC.2014.87
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479978816
1479978817
EndPage 572
ExternalDocumentID 7027554
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a384t-c36c804bba03d56f219a7fcd0e50a83651bb420cc44fffde20eccaf9e0ae7eec3
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380558700080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:00:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a384t-c36c804bba03d56f219a7fcd0e50a83651bb420cc44fffde20eccaf9e0ae7eec3
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-108397
PageCount 7
ParticipantIDs ieee_primary_7027554
PublicationCentury 2000
PublicationDate 2014-Dec.
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-Dec.
PublicationDecade 2010
PublicationTitle Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing
PublicationTitleAbbrev UCC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001651100
Score 1.7275474
Snippet Workload burstiness and spikes are among the main reasons for service disruptions and decrease in the Quality-of-Service (QoS) of online services. They are...
SourceID ieee
SourceType Publisher
StartPage 566
SubjectTerms Electronic publishing
Encyclopedias
Entropy
Internet
Measurement
Servers
Title Measuring Cloud Workload Burstiness
URI https://ieeexplore.ieee.org/document/7027554
WOSCitedRecordID wos000380558700080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sFT1VZ8s6BHt81uks3m6mLxoKUHC72VPCYglK7Urr-_ye7aInjxFkJImAzJTCbfNwPwoG2aUad5LGiCMRNax1pKE2uimaTeKCRNntlXMZ3mi4WcdeBxz4VBxBp8hqPQrP_ybWmqECobi_DHxlkXukKIhqt1iKdkPGQ_ayl4CZHjeVEE6BYb5b9Lp9SWY9L_35onMDxQ8KLZ3ricQgfXZ9D_qcEQtUdyAPdvdZDPj4mKVVnZKES_V6Wy0VPlHbsa1D6E-eT5vXiJ28IHsaI528aGZiYnTGtFqOWZ87eKEs5YgpyonHpJtWYpMYYx55zFlARFOIlEoUA09Bx663KNFxD595qlqfOOjk6Zn1UmyKVSnCuReC2RSxgEmZefTW6LZSvu1d_d13AcdrSBc9xAb7up8BaOzPf242tzVytkBwvbjLQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfRUtRXfLujRbbObZHdzdbFUbEsPLfRW8piAIK3Urr_fZHdtEbx4CyEkTIZkJpPvmwF4UCZOqFU8TGmEIUuVCpUQOlREMUGdUYiqPLPDdDzO5nMxacDjlguDiCX4DLu-Wf7lm5UufKisl_o_Ns72YJ8zFkcVW2sXUUm4z39Wk_AiInqzPPfgLdbNfhdPKW1Hv_W_VY-hsyPhBZOteTmBBi5PofVThSGoD2Ub7kdlmM-NCfL3VWECH_9-X0kTPBXOtSth7R2Y9Z-n-SCsSx-EkmZsE2qa6IwwpSShhifW3SsytdoQ5ERm1EmqFIuJ1oxZaw3GxKvCCiQSU0RNz6C5XC3xHAL3YjM0ts7VUTFzs4oIuZCSc5lGTk_kAtpe5sVHld1iUYt7-Xf3HRwOpqPhYvgyfr2CI7-7FbjjGpqbdYE3cKC_Nm-f69tSOd-QQ4_7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2014+IEEE%2FACM+7th+International+Conference+on+Utility+and+Cloud+Computing&rft.atitle=Measuring+Cloud+Workload+Burstiness&rft.au=Ali-Eldin%2C+Ahmed&rft.au=Seleznjev%2C+Oleg&rft.au=Sjostedt-de+Luna%2C+Sara&rft.au=Tordsson%2C+Johan&rft.date=2014-12-01&rft.pub=IEEE&rft.spage=566&rft.epage=572&rft_id=info:doi/10.1109%2FUCC.2014.87&rft.externalDocID=7027554