Advancing Molecular Sieving via Å‑Scale Pore Tuning in Bottom-Up Graphene Synthesis

Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano Jg. 18; H. 7; S. 5730 - 5740
Hauptverfasser: Goethem, Cédric Van, Shen, Yueqing, Chi, Heng-Yu, Mensi, Mounir, Zhao, Kangning, Nijmeijer, Arian, Just, Paul-Emmanuel, Agrawal, Kumar Varoon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Chemical Society 07.02.2024
Schlagworte:
ISSN:1936-0851, 1936-086X, 1936-086X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from −1 °C min–1 to over −5 °C s–1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)­growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.
AbstractList Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from -1 °C min-1 to over -5 °C s-1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from -1 °C min-1 to over -5 °C s-1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.
Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from −1 °C min–1 to over −5 °C s–1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)­growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.
Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from −1 °C min–1 to over −5 °C s–1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.
Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from -1 °C min to over -5 °C s . Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H /CH separation factor from 6.2 up to 53.3.
Author Agrawal, Kumar Varoon
Zhao, Kangning
Mensi, Mounir
Nijmeijer, Arian
Shen, Yueqing
Goethem, Cédric Van
Chi, Heng-Yu
Just, Paul-Emmanuel
AuthorAffiliation Inorganic Membranes, MESA+ Institute for Nanotechnology
Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL-Valais Wallis)
University of Twente
Laboratory for Advanced Separations (LAS)
X-ray Diffraction and Surface Analytics Platform (XRD-SAP)
AuthorAffiliation_xml – name: Laboratory for Advanced Separations (LAS)
– name: Inorganic Membranes, MESA+ Institute for Nanotechnology
– name: X-ray Diffraction and Surface Analytics Platform (XRD-SAP)
– name: Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL-Valais Wallis)
– name: University of Twente
Author_xml – sequence: 1
  givenname: Cédric Van
  surname: Goethem
  fullname: Goethem, Cédric Van
  organization: Laboratory for Advanced Separations (LAS)
– sequence: 2
  givenname: Yueqing
  surname: Shen
  fullname: Shen, Yueqing
  organization: Laboratory for Advanced Separations (LAS)
– sequence: 3
  givenname: Heng-Yu
  surname: Chi
  fullname: Chi, Heng-Yu
  organization: Laboratory for Advanced Separations (LAS)
– sequence: 4
  givenname: Mounir
  surname: Mensi
  fullname: Mensi, Mounir
  organization: Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL-Valais Wallis)
– sequence: 5
  givenname: Kangning
  orcidid: 0000-0003-2916-4386
  surname: Zhao
  fullname: Zhao, Kangning
  organization: Laboratory for Advanced Separations (LAS)
– sequence: 6
  givenname: Arian
  surname: Nijmeijer
  fullname: Nijmeijer, Arian
  organization: University of Twente
– sequence: 7
  givenname: Paul-Emmanuel
  surname: Just
  fullname: Just, Paul-Emmanuel
– sequence: 8
  givenname: Kumar Varoon
  orcidid: 0000-0002-5170-6412
  surname: Agrawal
  fullname: Agrawal, Kumar Varoon
  email: kumar.agrawal@epfl.ch
  organization: Laboratory for Advanced Separations (LAS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38324377$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9q20AQxpeSkD9Ozr0VHQtFzu6OJa1OJQ35BwkpOAm9LaP1KN4g7zq7kiG3XPIAfaa-SZ4kMnZNeuhphvl-8w3Mt8-2nHfE2GfBh4JLcYQmOnR-CEYIpbJPbE-UkKdc5b-2Nn0mdtl-jI-cZ4Uq8h22CwrkCIpij90fTxbojHUPybVvyHQNhmRsabGcLCwmf17fXn6PDTaU_PSBktvOLSXrkh--bf0svZsn5wHnU3KUjJ9dO6Vo4wHbrrGJdLiuA3Z3dnp7cpFe3ZxfnhxfpQhq1KYlVAClUSQlryuQXMFoggIzrPrRKEcOeS8qoFpOcoNSFLJWhipZFKaqShiw7yvfeVfNaGLItQEbPQ92huFZe7T6X8XZqX7wCy24UiBk1jt8XTsE_9RRbPXMRkNNg458F7UsJYAEKXiPfvl4bHPl7zd74GgFmOBjDFRvEMH1Mi-9zkuv8-o3vq02ekE_-i64_lv_pd8B-UiakA
Cites_doi 10.1126/science.1208891
10.1016/0376-7388(95)00193-X
10.1016/j.carbon.2019.08.084
10.1016/j.carbon.2019.07.045
10.1039/c3nr00153a
10.1038/s44221-022-00006-z
10.1021/jacsau.3c00395
10.1126/science.1158877
10.1063/1.1702064
10.1016/j.memsci.2017.05.027
10.1021/acs.iecr.1c03039
10.1038/s44221-023-00037-0
10.1016/0039-6028(79)90330-3
10.1039/C8TA10872B
10.1016/0039-6028(76)90478-7
10.1016/0039-6028(74)90272-6
10.1063/1.3254383
10.1002/adma.202206627
10.1002/aenm.201701567
10.1002/adma.201304536
10.1063/1.2982585
10.1021/acsapm.2c02022
10.1002/admi.202201385
10.1063/1.4871978
10.1021/nl401601x
10.1016/j.memsci.2016.10.014
10.1021/nl902515k
10.1021/acsami.8b00846
10.1038/s41563-023-01669-z
10.1146/annurev-chembioeng-060816-101325
10.1002/adma.201804977
10.1038/s41586-020-2070-x
10.1038/s41467-022-30943-y
10.1002/adma.202104308
10.1021/nn3047154
10.1016/j.memsci.2020.119033
10.1021/nl801457b
10.1016/0376-7388(93)E0128-7
10.1002/adfm.202003979
10.1073/pnas.2022201118
10.1016/S0376-7388(00)80017-4
10.1038/s41565-022-01168-3
10.1002/app.1985.070300426
10.1039/c1cp22347j
10.1021/jacs.8b05136
10.1038/s41467-018-04904-3
10.1016/j.memsci.2021.119628
10.1126/science.1249097
10.1126/sciadv.abf0116
10.1021/acsnano.7b01231
10.1021/accountsmr.2c00143
10.1038/nature09379
10.1021/acsnano.1c02927
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1021/acsnano.3c11885
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 5740
ExternalDocumentID PMC10883125
38324377
10_1021_acsnano_3c11885
c097933408
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAHBH
AAYXX
ABBLG
ABLBI
ADHGD
BAANH
CITATION
CUPRZ
NPM
7X8
5PM
ID FETCH-LOGICAL-a384t-93b339c8e220fb320834da1a5abe2246a0368e283ef2d6ca2172f8ceb277cbb93
IEDL.DBID ACS
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173824700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-0851
1936-086X
IngestDate Tue Sep 30 17:10:38 EDT 2025
Thu Oct 02 07:13:03 EDT 2025
Mon Jul 21 06:05:00 EDT 2025
Sat Nov 29 04:16:19 EST 2025
Wed Feb 21 08:31:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords nickel
membrane
pore engineering
gas separation
graphene
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a384t-93b339c8e220fb320834da1a5abe2246a0368e283ef2d6ca2172f8ceb277cbb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5170-6412
0000-0003-2916-4386
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10883125
PMID 38324377
PQID 2923323210
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10883125
proquest_miscellaneous_2923323210
pubmed_primary_38324377
crossref_primary_10_1021_acsnano_3c11885
acs_journals_10_1021_acsnano_3c11885
PublicationCentury 2000
PublicationDate 2024-02-07
PublicationDateYYYYMMDD 2024-02-07
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref16/cit16
  doi: 10.1126/science.1208891
– ident: ref48/cit48
  doi: 10.1016/0376-7388(95)00193-X
– ident: ref53/cit53
  doi: 10.1016/j.carbon.2019.08.084
– ident: ref31/cit31
  doi: 10.1016/j.carbon.2019.07.045
– ident: ref52/cit52
  doi: 10.1039/c3nr00153a
– ident: ref4/cit4
  doi: 10.1038/s44221-022-00006-z
– ident: ref46/cit46
  doi: 10.1021/jacsau.3c00395
– ident: ref21/cit21
  doi: 10.1126/science.1158877
– ident: ref43/cit43
  doi: 10.1063/1.1702064
– ident: ref7/cit7
  doi: 10.1016/j.memsci.2017.05.027
– ident: ref47/cit47
  doi: 10.1021/acs.iecr.1c03039
– ident: ref5/cit5
  doi: 10.1038/s44221-023-00037-0
– ident: ref39/cit39
  doi: 10.1016/0039-6028(79)90330-3
– ident: ref18/cit18
  doi: 10.1039/C8TA10872B
– ident: ref38/cit38
  doi: 10.1016/0039-6028(76)90478-7
– ident: ref37/cit37
  doi: 10.1016/0039-6028(74)90272-6
– ident: ref35/cit35
  doi: 10.1063/1.3254383
– ident: ref27/cit27
  doi: 10.1002/adma.202206627
– ident: ref1/cit1
  doi: 10.1002/aenm.201701567
– ident: ref11/cit11
  doi: 10.1002/adma.201304536
– ident: ref42/cit42
  doi: 10.1063/1.2982585
– ident: ref2/cit2
  doi: 10.1021/acsapm.2c02022
– ident: ref12/cit12
  doi: 10.1002/admi.202201385
– ident: ref34/cit34
  doi: 10.1063/1.4871978
– ident: ref40/cit40
  doi: 10.1021/nl401601x
– ident: ref9/cit9
  doi: 10.1016/j.memsci.2016.10.014
– ident: ref41/cit41
  doi: 10.1021/nl902515k
– ident: ref20/cit20
  doi: 10.1021/acsami.8b00846
– ident: ref13/cit13
  doi: 10.1038/s41563-023-01669-z
– ident: ref8/cit8
  doi: 10.1146/annurev-chembioeng-060816-101325
– ident: ref30/cit30
  doi: 10.1002/adma.201804977
– ident: ref23/cit23
  doi: 10.1038/s41586-020-2070-x
– ident: ref6/cit6
  doi: 10.1038/s41467-022-30943-y
– ident: ref29/cit29
  doi: 10.1002/adma.202104308
– ident: ref33/cit33
  doi: 10.1021/nn3047154
– ident: ref17/cit17
  doi: 10.1016/j.memsci.2020.119033
– ident: ref22/cit22
  doi: 10.1021/nl801457b
– ident: ref51/cit51
  doi: 10.1016/0376-7388(93)E0128-7
– ident: ref3/cit3
  doi: 10.1002/adfm.202003979
– ident: ref32/cit32
  doi: 10.1073/pnas.2022201118
– ident: ref50/cit50
  doi: 10.1016/S0376-7388(00)80017-4
– ident: ref14/cit14
  doi: 10.1038/s41565-022-01168-3
– ident: ref49/cit49
  doi: 10.1002/app.1985.070300426
– ident: ref36/cit36
  doi: 10.1039/c1cp22347j
– ident: ref15/cit15
  doi: 10.1021/jacs.8b05136
– ident: ref19/cit19
  doi: 10.1038/s41467-018-04904-3
– ident: ref45/cit45
  doi: 10.1016/j.memsci.2021.119628
– ident: ref24/cit24
  doi: 10.1126/science.1249097
– ident: ref44/cit44
  doi: 10.1126/sciadv.abf0116
– ident: ref28/cit28
  doi: 10.1021/acsnano.7b01231
– ident: ref10/cit10
  doi: 10.1021/accountsmr.2c00143
– ident: ref25/cit25
  doi: 10.1038/nature09379
– ident: ref26/cit26
  doi: 10.1021/acsnano.1c02927
SSID ssj0057876
Score 2.4857495
Snippet Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A...
Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5730
Title Advancing Molecular Sieving via Å‑Scale Pore Tuning in Bottom-Up Graphene Synthesis
URI http://dx.doi.org/10.1021/acsnano.3c11885
https://www.ncbi.nlm.nih.gov/pubmed/38324377
https://www.proquest.com/docview/2923323210
https://pubmed.ncbi.nlm.nih.gov/PMC10883125
Volume 18
WOSCitedRecordID wos001173824700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1R4AAH9qVsMhIHLoHWznoExHKACqkt6i2yHUfk4lRNWokbFz6Ab-JP-BLGaVpaKiS4RbJlJTP2zBvP5A3AiZSKupGMLdcNhGVzYwd5TVluTF2HBpETRwWJ673XaPidTvD4TRb9M4NP6-dcZprr9IxJxMK-U4EFiiDXVO9dXDVHRtfsO3eYQMYAGVHEmMVnZgHjhmQ27YZmsOXPEskJn3Oz-o-3XYOVEliSi-FOWIc5pTdgeYJucBOeihbKEp_Jw6grLmkmytwpkEHCycfb5-t7E7WmyGPaU6TVN7cmJNHkMs1ztKbtLrk1DNdoIEnzRSN4zJJsC9o3162rO6vsq2Bx5tu5FTDBWCB9RWktFowiCrMjXucOF8rwy3H0ajjoMxXTyJXc9LCKfYkxuOdJIQK2DfM61WoXiOS24IwJRL22LeOIOzjdc0UkaMwiKqtwghIJy3ORhUXKm9bDUkxhKaYqnI60EXaHLBu_Tz0eaSvEk2DSG1yrtJ-FFLEqo-afpCrsDLU3XgzjcMO86FXBn9LreIJh2Z4e0clzwbZdRzvMEAbu_e1T9mGJIu4pCru9A5jPe311CItykCdZ7wgqXsc_KrbuF2jw7Z4
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBfSmrkThwCbR21iMgNlEqpBbELbIdR-TioCZF4saFD-Cb-BO-hHGaFApCgltkW5YzY888e-w3ALtSKupGMrZcNxCWzY0d5HVluTF1HRpEThwVJK5Nr9Xy7-6C6xGoV29hcBAZ9pQVQfxPdoHGAZZprtN9JhES-84ojDvoXE3OgsPjdmV7zfRz-3Fk3CcjmBiQ-fzowHgjmQ17ox8Q8_tNyS-u53T2_4Oeg5kSZpLD_ryYhxGlF2D6C_ngItwWCZUlfpOrKkcuaSfKnDCQx4STt5f359c26lCR67SrSKdnzlBIoslRmudoW28eyJnhu0ZzSdpPGqFklmRLcHN60jk-t8osCxZnvp1bAROMBdJXlNZjwShiMjviDe5woQzbHEcfh5U-UzGNXMlNRqvYl7gj9zwpRMCWYUynWq0CkdwWnDGBGNi2ZRxxB5t7rogEjVlEZQ12USJhuUqysAiA00ZYiiksxVSDvUop4UOfc-P3pjuV0kJcFybYwbVKe1lIEbkyal4o1WClr8RBZ7grNzyMXg38IfUOGhjO7eEandwX3NsNtMoMQeHa335lGybPO1fNsHnRulyHKYqIqLjy7W3AWN7tqU2YkI95knW3inn8AYRm9Rw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB6VFCF6aPknbQEjceCyQOz9Paa0AQREkQKI28q_Yi_eKLtB6q2XPkCfqW_CkzDebCICQkLcVrZleT32zGeP5xuAPSk1DZU0XhgmwvO504P8SHuhoWFAExUYVZG4XkTdbnx7m_TqoDAXC4ODKLCnonLiu109UKZmGGgdYrnlNj9gEmFxHMzBxwDNuctb0D7uT_SvW4Lh2JeMZ2UEFFNCnxcdOIski1mL9AJmPn8t-cT8dL68b-BL8LmGm6Q9Xh_L8EHbFfj0hIRwFW6qxMoSv8nlJFcu6Wfa3TSQ-4yT_38f_vzroyw16eVDTa5G7i6FZJb8yMsSdez1gJw43mtUm6T_2yKkLLJiDa47v66OT70624LHWeyXXsIEY4mMNaVHRjCK2MxXvMUDLrRjneNo67AyZtpQFUruMluZWOLJPIqkEAlbh4bNrd4EIrkvOGMCsbDvS6N4gM2jUChBDVNUNmEPZyStd0uRVo5w2krraUrraWrC_kQw6WDMvfF6092J4FLcH87pwa3OR0VKEcEy6iKVmrAxFuS0MzydOz7GqAnxjIinDRz39myNze4qDu4WameG4PDr235lBxZ6PzvpxVn3_BssUgRG1cvv6Ds0yuFIb8G8vC-zYrhdLeVHR7z3lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+Molecular+Sieving+via+%C3%85-Scale+Pore+Tuning+in+Bottom-Up+Graphene+Synthesis&rft.jtitle=ACS+nano&rft.au=Goethem%2C+C%C3%A9dric+Van&rft.au=Shen%2C+Yueqing&rft.au=Chi%2C+Heng-Yu&rft.au=Mensi%2C+Mounir&rft.date=2024-02-07&rft.issn=1936-086X&rft.eissn=1936-086X&rft_id=info:doi/10.1021%2Facsnano.3c11885&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon