Advancing Molecular Sieving via Å‑Scale Pore Tuning in Bottom-Up Graphene Synthesis
Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demo...
Gespeichert in:
| Veröffentlicht in: | ACS nano Jg. 18; H. 7; S. 5730 - 5740 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
American Chemical Society
07.02.2024
|
| Schlagworte: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from −1 °C min–1 to over −5 °C s–1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3. |
|---|---|
| AbstractList | Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from -1 °C min-1 to over -5 °C s-1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from -1 °C min-1 to over -5 °C s-1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3. Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from −1 °C min–1 to over −5 °C s–1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3. Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from −1 °C min–1 to over −5 °C s–1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3. Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from -1 °C min to over -5 °C s . Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H /CH separation factor from 6.2 up to 53.3. |
| Author | Agrawal, Kumar Varoon Zhao, Kangning Mensi, Mounir Nijmeijer, Arian Shen, Yueqing Goethem, Cédric Van Chi, Heng-Yu Just, Paul-Emmanuel |
| AuthorAffiliation | Inorganic Membranes, MESA+ Institute for Nanotechnology Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL-Valais Wallis) University of Twente Laboratory for Advanced Separations (LAS) X-ray Diffraction and Surface Analytics Platform (XRD-SAP) |
| AuthorAffiliation_xml | – name: Laboratory for Advanced Separations (LAS) – name: Inorganic Membranes, MESA+ Institute for Nanotechnology – name: X-ray Diffraction and Surface Analytics Platform (XRD-SAP) – name: Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL-Valais Wallis) – name: University of Twente |
| Author_xml | – sequence: 1 givenname: Cédric Van surname: Goethem fullname: Goethem, Cédric Van organization: Laboratory for Advanced Separations (LAS) – sequence: 2 givenname: Yueqing surname: Shen fullname: Shen, Yueqing organization: Laboratory for Advanced Separations (LAS) – sequence: 3 givenname: Heng-Yu surname: Chi fullname: Chi, Heng-Yu organization: Laboratory for Advanced Separations (LAS) – sequence: 4 givenname: Mounir surname: Mensi fullname: Mensi, Mounir organization: Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL-Valais Wallis) – sequence: 5 givenname: Kangning orcidid: 0000-0003-2916-4386 surname: Zhao fullname: Zhao, Kangning organization: Laboratory for Advanced Separations (LAS) – sequence: 6 givenname: Arian surname: Nijmeijer fullname: Nijmeijer, Arian organization: University of Twente – sequence: 7 givenname: Paul-Emmanuel surname: Just fullname: Just, Paul-Emmanuel – sequence: 8 givenname: Kumar Varoon orcidid: 0000-0002-5170-6412 surname: Agrawal fullname: Agrawal, Kumar Varoon email: kumar.agrawal@epfl.ch organization: Laboratory for Advanced Separations (LAS) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38324377$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc9q20AQxpeSkD9Ozr0VHQtFzu6OJa1OJQ35BwkpOAm9LaP1KN4g7zq7kiG3XPIAfaa-SZ4kMnZNeuhphvl-8w3Mt8-2nHfE2GfBh4JLcYQmOnR-CEYIpbJPbE-UkKdc5b-2Nn0mdtl-jI-cZ4Uq8h22CwrkCIpij90fTxbojHUPybVvyHQNhmRsabGcLCwmf17fXn6PDTaU_PSBktvOLSXrkh--bf0svZsn5wHnU3KUjJ9dO6Vo4wHbrrGJdLiuA3Z3dnp7cpFe3ZxfnhxfpQhq1KYlVAClUSQlryuQXMFoggIzrPrRKEcOeS8qoFpOcoNSFLJWhipZFKaqShiw7yvfeVfNaGLItQEbPQ92huFZe7T6X8XZqX7wCy24UiBk1jt8XTsE_9RRbPXMRkNNg458F7UsJYAEKXiPfvl4bHPl7zd74GgFmOBjDFRvEMH1Mi-9zkuv8-o3vq02ekE_-i64_lv_pd8B-UiakA |
| Cites_doi | 10.1126/science.1208891 10.1016/0376-7388(95)00193-X 10.1016/j.carbon.2019.08.084 10.1016/j.carbon.2019.07.045 10.1039/c3nr00153a 10.1038/s44221-022-00006-z 10.1021/jacsau.3c00395 10.1126/science.1158877 10.1063/1.1702064 10.1016/j.memsci.2017.05.027 10.1021/acs.iecr.1c03039 10.1038/s44221-023-00037-0 10.1016/0039-6028(79)90330-3 10.1039/C8TA10872B 10.1016/0039-6028(76)90478-7 10.1016/0039-6028(74)90272-6 10.1063/1.3254383 10.1002/adma.202206627 10.1002/aenm.201701567 10.1002/adma.201304536 10.1063/1.2982585 10.1021/acsapm.2c02022 10.1002/admi.202201385 10.1063/1.4871978 10.1021/nl401601x 10.1016/j.memsci.2016.10.014 10.1021/nl902515k 10.1021/acsami.8b00846 10.1038/s41563-023-01669-z 10.1146/annurev-chembioeng-060816-101325 10.1002/adma.201804977 10.1038/s41586-020-2070-x 10.1038/s41467-022-30943-y 10.1002/adma.202104308 10.1021/nn3047154 10.1016/j.memsci.2020.119033 10.1021/nl801457b 10.1016/0376-7388(93)E0128-7 10.1002/adfm.202003979 10.1073/pnas.2022201118 10.1016/S0376-7388(00)80017-4 10.1038/s41565-022-01168-3 10.1002/app.1985.070300426 10.1039/c1cp22347j 10.1021/jacs.8b05136 10.1038/s41467-018-04904-3 10.1016/j.memsci.2021.119628 10.1126/science.1249097 10.1126/sciadv.abf0116 10.1021/acsnano.7b01231 10.1021/accountsmr.2c00143 10.1038/nature09379 10.1021/acsnano.1c02927 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. Published by American Chemical Society 2024 The Authors. Published by American Chemical Society 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1021/acsnano.3c11885 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 5740 |
| ExternalDocumentID | PMC10883125 38324377 10_1021_acsnano_3c11885 c097933408 |
| Genre | Journal Article |
| GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABJNI ABMVS ABQRX ABUCX ACBEA ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH AAYXX ABBLG ABLBI ADHGD BAANH CITATION CUPRZ NPM 7X8 5PM |
| ID | FETCH-LOGICAL-a384t-93b339c8e220fb320834da1a5abe2246a0368e283ef2d6ca2172f8ceb277cbb93 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173824700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Tue Sep 30 17:10:38 EDT 2025 Thu Oct 02 07:13:03 EDT 2025 Mon Jul 21 06:05:00 EDT 2025 Sat Nov 29 04:16:19 EST 2025 Wed Feb 21 08:31:55 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | nickel membrane pore engineering gas separation graphene |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a384t-93b339c8e220fb320834da1a5abe2246a0368e283ef2d6ca2172f8ceb277cbb93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5170-6412 0000-0003-2916-4386 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10883125 |
| PMID | 38324377 |
| PQID | 2923323210 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10883125 proquest_miscellaneous_2923323210 pubmed_primary_38324377 crossref_primary_10_1021_acsnano_3c11885 acs_journals_10_1021_acsnano_3c11885 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-07 |
| PublicationDateYYYYMMDD | 2024-02-07 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2024 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref16/cit16 doi: 10.1126/science.1208891 – ident: ref48/cit48 doi: 10.1016/0376-7388(95)00193-X – ident: ref53/cit53 doi: 10.1016/j.carbon.2019.08.084 – ident: ref31/cit31 doi: 10.1016/j.carbon.2019.07.045 – ident: ref52/cit52 doi: 10.1039/c3nr00153a – ident: ref4/cit4 doi: 10.1038/s44221-022-00006-z – ident: ref46/cit46 doi: 10.1021/jacsau.3c00395 – ident: ref21/cit21 doi: 10.1126/science.1158877 – ident: ref43/cit43 doi: 10.1063/1.1702064 – ident: ref7/cit7 doi: 10.1016/j.memsci.2017.05.027 – ident: ref47/cit47 doi: 10.1021/acs.iecr.1c03039 – ident: ref5/cit5 doi: 10.1038/s44221-023-00037-0 – ident: ref39/cit39 doi: 10.1016/0039-6028(79)90330-3 – ident: ref18/cit18 doi: 10.1039/C8TA10872B – ident: ref38/cit38 doi: 10.1016/0039-6028(76)90478-7 – ident: ref37/cit37 doi: 10.1016/0039-6028(74)90272-6 – ident: ref35/cit35 doi: 10.1063/1.3254383 – ident: ref27/cit27 doi: 10.1002/adma.202206627 – ident: ref1/cit1 doi: 10.1002/aenm.201701567 – ident: ref11/cit11 doi: 10.1002/adma.201304536 – ident: ref42/cit42 doi: 10.1063/1.2982585 – ident: ref2/cit2 doi: 10.1021/acsapm.2c02022 – ident: ref12/cit12 doi: 10.1002/admi.202201385 – ident: ref34/cit34 doi: 10.1063/1.4871978 – ident: ref40/cit40 doi: 10.1021/nl401601x – ident: ref9/cit9 doi: 10.1016/j.memsci.2016.10.014 – ident: ref41/cit41 doi: 10.1021/nl902515k – ident: ref20/cit20 doi: 10.1021/acsami.8b00846 – ident: ref13/cit13 doi: 10.1038/s41563-023-01669-z – ident: ref8/cit8 doi: 10.1146/annurev-chembioeng-060816-101325 – ident: ref30/cit30 doi: 10.1002/adma.201804977 – ident: ref23/cit23 doi: 10.1038/s41586-020-2070-x – ident: ref6/cit6 doi: 10.1038/s41467-022-30943-y – ident: ref29/cit29 doi: 10.1002/adma.202104308 – ident: ref33/cit33 doi: 10.1021/nn3047154 – ident: ref17/cit17 doi: 10.1016/j.memsci.2020.119033 – ident: ref22/cit22 doi: 10.1021/nl801457b – ident: ref51/cit51 doi: 10.1016/0376-7388(93)E0128-7 – ident: ref3/cit3 doi: 10.1002/adfm.202003979 – ident: ref32/cit32 doi: 10.1073/pnas.2022201118 – ident: ref50/cit50 doi: 10.1016/S0376-7388(00)80017-4 – ident: ref14/cit14 doi: 10.1038/s41565-022-01168-3 – ident: ref49/cit49 doi: 10.1002/app.1985.070300426 – ident: ref36/cit36 doi: 10.1039/c1cp22347j – ident: ref15/cit15 doi: 10.1021/jacs.8b05136 – ident: ref19/cit19 doi: 10.1038/s41467-018-04904-3 – ident: ref45/cit45 doi: 10.1016/j.memsci.2021.119628 – ident: ref24/cit24 doi: 10.1126/science.1249097 – ident: ref44/cit44 doi: 10.1126/sciadv.abf0116 – ident: ref28/cit28 doi: 10.1021/acsnano.7b01231 – ident: ref10/cit10 doi: 10.1021/accountsmr.2c00143 – ident: ref25/cit25 doi: 10.1038/nature09379 – ident: ref26/cit26 doi: 10.1021/acsnano.1c02927 |
| SSID | ssj0057876 |
| Score | 2.4857495 |
| Snippet | Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A... Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A... |
| SourceID | pubmedcentral proquest pubmed crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 5730 |
| Title | Advancing Molecular Sieving via Å‑Scale Pore Tuning in Bottom-Up Graphene Synthesis |
| URI | http://dx.doi.org/10.1021/acsnano.3c11885 https://www.ncbi.nlm.nih.gov/pubmed/38324377 https://www.proquest.com/docview/2923323210 https://pubmed.ncbi.nlm.nih.gov/PMC10883125 |
| Volume | 18 |
| WOSCitedRecordID | wos001173824700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1R4AAH9qVsMhIHLoHWznoExHKACqkt6i2yHUfk4lRNWokbFz6Ab-JP-BLGaVpaKiS4RbJlJTP2zBvP5A3AiZSKupGMLdcNhGVzYwd5TVluTF2HBpETRwWJ673XaPidTvD4TRb9M4NP6-dcZprr9IxJxMK-U4EFiiDXVO9dXDVHRtfsO3eYQMYAGVHEmMVnZgHjhmQ27YZmsOXPEskJn3Oz-o-3XYOVEliSi-FOWIc5pTdgeYJucBOeihbKEp_Jw6grLmkmytwpkEHCycfb5-t7E7WmyGPaU6TVN7cmJNHkMs1ztKbtLrk1DNdoIEnzRSN4zJJsC9o3162rO6vsq2Bx5tu5FTDBWCB9RWktFowiCrMjXucOF8rwy3H0ajjoMxXTyJXc9LCKfYkxuOdJIQK2DfM61WoXiOS24IwJRL22LeOIOzjdc0UkaMwiKqtwghIJy3ORhUXKm9bDUkxhKaYqnI60EXaHLBu_Tz0eaSvEk2DSG1yrtJ-FFLEqo-afpCrsDLU3XgzjcMO86FXBn9LreIJh2Z4e0clzwbZdRzvMEAbu_e1T9mGJIu4pCru9A5jPe311CItykCdZ7wgqXsc_KrbuF2jw7Z4 |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBfSmrkThwCbR21iMgNlEqpBbELbIdR-TioCZF4saFD-Cb-BO-hHGaFApCgltkW5YzY888e-w3ALtSKupGMrZcNxCWzY0d5HVluTF1HRpEThwVJK5Nr9Xy7-6C6xGoV29hcBAZ9pQVQfxPdoHGAZZprtN9JhES-84ojDvoXE3OgsPjdmV7zfRz-3Fk3CcjmBiQ-fzowHgjmQ17ox8Q8_tNyS-u53T2_4Oeg5kSZpLD_ryYhxGlF2D6C_ngItwWCZUlfpOrKkcuaSfKnDCQx4STt5f359c26lCR67SrSKdnzlBIoslRmudoW28eyJnhu0ZzSdpPGqFklmRLcHN60jk-t8osCxZnvp1bAROMBdJXlNZjwShiMjviDe5woQzbHEcfh5U-UzGNXMlNRqvYl7gj9zwpRMCWYUynWq0CkdwWnDGBGNi2ZRxxB5t7rogEjVlEZQ12USJhuUqysAiA00ZYiiksxVSDvUop4UOfc-P3pjuV0kJcFybYwbVKe1lIEbkyal4o1WClr8RBZ7grNzyMXg38IfUOGhjO7eEandwX3NsNtMoMQeHa335lGybPO1fNsHnRulyHKYqIqLjy7W3AWN7tqU2YkI95knW3inn8AYRm9Rw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB6VFCF6aPknbQEjceCyQOz9Paa0AQREkQKI28q_Yi_eKLtB6q2XPkCfqW_CkzDebCICQkLcVrZleT32zGeP5xuAPSk1DZU0XhgmwvO504P8SHuhoWFAExUYVZG4XkTdbnx7m_TqoDAXC4ODKLCnonLiu109UKZmGGgdYrnlNj9gEmFxHMzBxwDNuctb0D7uT_SvW4Lh2JeMZ2UEFFNCnxcdOIski1mL9AJmPn8t-cT8dL68b-BL8LmGm6Q9Xh_L8EHbFfj0hIRwFW6qxMoSv8nlJFcu6Wfa3TSQ-4yT_38f_vzroyw16eVDTa5G7i6FZJb8yMsSdez1gJw43mtUm6T_2yKkLLJiDa47v66OT70624LHWeyXXsIEY4mMNaVHRjCK2MxXvMUDLrRjneNo67AyZtpQFUruMluZWOLJPIqkEAlbh4bNrd4EIrkvOGMCsbDvS6N4gM2jUChBDVNUNmEPZyStd0uRVo5w2krraUrraWrC_kQw6WDMvfF6092J4FLcH87pwa3OR0VKEcEy6iKVmrAxFuS0MzydOz7GqAnxjIinDRz39myNze4qDu4WameG4PDr235lBxZ6PzvpxVn3_BssUgRG1cvv6Ds0yuFIb8G8vC-zYrhdLeVHR7z3lg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+Molecular+Sieving+via+%C3%85-Scale+Pore+Tuning+in+Bottom-Up+Graphene+Synthesis&rft.jtitle=ACS+nano&rft.au=Goethem%2C+C%C3%A9dric+Van&rft.au=Shen%2C+Yueqing&rft.au=Chi%2C+Heng-Yu&rft.au=Mensi%2C+Mounir&rft.date=2024-02-07&rft.issn=1936-086X&rft.eissn=1936-086X&rft_id=info:doi/10.1021%2Facsnano.3c11885&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |