The moduli space of cubic threefolds as a ball quotient
The moduli space of cubic threefolds in $\mathbb{C}P^4$, with some minor birational modifications, is the Baily-Borel compactification of the quotient of the complex 10-ball by a discrete group. The authors describe both the birational modifications and the discrete group explicitly.|The moduli spac...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | eBook Book |
| Language: | English |
| Published: |
Providence, Rhode Island
American Mathematical Society
2011
|
| Edition: | 1 |
| Series: | Memoirs of the American Mathematical Society |
| Subjects: | |
| ISBN: | 0821847511, 9780821847510 |
| ISSN: | 0065-9266, 1947-6221 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Table of Contents:
- Introduction -- Moduli of Smooth Cubic Threefolds -- The Discriminant near a Chordal Cubic -- Extension of the Period Map -- Degeneration to a Chordal Cubic -- Degeneration to a Nodal Cubic -- The Main Theorem -- The Monodromy Group and Hyperplane Arrangement
- Intro -- Contents -- Introduction -- Chapter 1. Moduli of Smooth Cubic Threefolds -- Chapter 2. The Discriminant near a Chordal Cubic -- Chapter 3. Extension of the Period Map -- Chapter 4. Degeneration to a Chordal Cubic -- 4.1. Statement of results -- 4.2. Overview of the calculations -- 4.3. Semistable reduction -- 4.4. Cohomology computations -- Chapter 5. Degeneration to a Nodal Cubic -- Chapter 6. The Main Theorem -- Chapter 7. The Monodromy Group and Hyperplane Arrangement -- Bibliography -- Index

