The moduli space of cubic threefolds as a ball quotient

The moduli space of cubic threefolds in $\mathbb{C}P^4$, with some minor birational modifications, is the Baily-Borel compactification of the quotient of the complex 10-ball by a discrete group. The authors describe both the birational modifications and the discrete group explicitly.|The moduli spac...

Full description

Saved in:
Bibliographic Details
Main Authors: Allcock, Daniel, Carlson, James A., Toledo, Domingo
Format: eBook Book
Language:English
Published: Providence, Rhode Island American Mathematical Society 2011
Edition:1
Series:Memoirs of the American Mathematical Society
Subjects:
ISBN:0821847511, 9780821847510
ISSN:0065-9266, 1947-6221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The moduli space of cubic threefolds in $\mathbb{C}P^4$, with some minor birational modifications, is the Baily-Borel compactification of the quotient of the complex 10-ball by a discrete group. The authors describe both the birational modifications and the discrete group explicitly.|The moduli space of cubic threefolds in $\mathbb{C}P^4$, with some minor birational modifications, is the Baily-Borel compactification of the quotient of the complex 10-ball by a discrete group. The authors describe both the birational modifications and the discrete group explicitly.
AbstractList The moduli space of cubic threefolds in $\mathbb{C}P^4$, with some minor birational modifications, is the Baily-Borel compactification of the quotient of the complex 10-ball by a discrete group. The authors describe both the birational modifications and the discrete group explicitly.|The moduli space of cubic threefolds in $\mathbb{C}P^4$, with some minor birational modifications, is the Baily-Borel compactification of the quotient of the complex 10-ball by a discrete group. The authors describe both the birational modifications and the discrete group explicitly.
The moduli space of cubic threefolds in
Author Allcock, Daniel
Carlson, James A.
Toledo, Domingo
Author_xml – sequence: 1
  givenname: Daniel
  surname: Allcock
  fullname: Allcock, Daniel
  email: allcock@math.utexas.edu
  organization: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
– sequence: 2
  givenname: James A.
  surname: Carlson
  fullname: Carlson, James A.
  email: carlson@claymath.org
  organization: Clay Mathematics Institute, One Bow Street, Cambridge, Massachusetts 02138
– sequence: 3
  givenname: Domingo
  surname: Toledo
  fullname: Toledo, Domingo
  email: toledo@math.utah.edu
  organization: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
BackLink https://cir.nii.ac.jp/crid/1130000797282883840$$DView record in CiNii
BookMark eNo9kdtKAzEQhuMR2-ojCHshiBerMznnUks9gOCFxduQzaZ0ddvUZquvb7YthiGZhG8yw_8PyfEyLgMhlwi3CAbu3gGkKA2VskQoAYTBEg7IELkCnm9GHZIBGq5KSSkekSFoiporgXhMBv_FJ2RIAQGY0oCnZGAoNRqFlGfkIqVPyEtrA4oPiJrOQ7GI9aZtirRyPhRxVvhN1fiim69DmMW2ToXLUVSubYvvTeyasOzOycnMtSlc7M8R-XicTMfP5evb08v4_rV0THMKZeU947VjMlQMlQPIua5BCCZBBeHBO_DMOEm50A6UmqHQVNSOeudFJdmI3Ow-dukr_KZ5bLtkf9pQxfiVrFH6XxvM7PWOXa3j9yakzm4xn-ddu9ZOHsYMkQPnmbzakcumsb7pd0TWC6OMoppqnceHjN3tmy-S3bdEsL1XduuV7eXun7ZeWWB_K2V5IA
ContentType eBook
Book
Copyright Copyright 2010 American Mathematical Society
Copyright_xml – notice: Copyright 2010 American Mathematical Society
DBID RYH
DEWEY 516.3/5
DOI 10.1090/S0065-9266-10-00591-0
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 1470405997
9781470405991
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470405991
EBC3114044
BB04917426
10_1090_S0065_9266_10_00591_0
GroupedDBID --Z
-~X
123
4.4
6TJ
85S
AAFVP
ABPPZ
ACNCT
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
XOL
YNT
YQT
38.
50G
AABBV
AAWPO
ABARN
ABQPQ
ACLGV
ADVEM
AEKGI
AERYV
AFOJC
AHWGJ
AJFER
AZZ
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a38420-bcc34da36eb317a00da38d0553607e5c0ca0c39a62458a077f15825da2cac5b63
ISBN 0821847511
9780821847510
ISSN 0065-9266
IngestDate Fri Nov 08 05:38:04 EST 2024
Wed Dec 10 11:43:44 EST 2025
Fri Jun 27 00:28:41 EDT 2025
Thu Aug 14 15:25:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords moduli space
Ball quotient
period map
cubic threefold
LCCN 2010037801
LCCallNum_Ident QA564 .A48 2010
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a38420-bcc34da36eb317a00da38d0553607e5c0ca0c39a62458a077f15825da2cac5b63
Notes Includes bibliographical references (p. 67-68) and index
Volume 209, number 985 (fourth of 5 numbers).
OCLC 922981566
PQID EBC3114044
PageCount 89
ParticipantIDs askewsholts_vlebooks_9781470405991
proquest_ebookcentral_EBC3114044
nii_cinii_1130000797282883840
ams_ebooks_10_1090_S0065_9266_10_00591_0
PublicationCentury 2000
PublicationDate 2011.
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011.
PublicationDecade 2010
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, R.I
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2011
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssj0000889074
ssj0008047
Score 2.7336679
Snippet The moduli space of cubic threefolds in
The moduli space of cubic threefolds in $\mathbb{C}P^4$, with some minor birational modifications, is the Baily-Borel compactification of the quotient of the...
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Moduli theory
Surfaces, Cubic
Threefolds (Algebraic geometry)
TableOfContents Introduction -- Moduli of Smooth Cubic Threefolds -- The Discriminant near a Chordal Cubic -- Extension of the Period Map -- Degeneration to a Chordal Cubic -- Degeneration to a Nodal Cubic -- The Main Theorem -- The Monodromy Group and Hyperplane Arrangement
Intro -- Contents -- Introduction -- Chapter 1. Moduli of Smooth Cubic Threefolds -- Chapter 2. The Discriminant near a Chordal Cubic -- Chapter 3. Extension of the Period Map -- Chapter 4. Degeneration to a Chordal Cubic -- 4.1. Statement of results -- 4.2. Overview of the calculations -- 4.3. Semistable reduction -- 4.4. Cohomology computations -- Chapter 5. Degeneration to a Nodal Cubic -- Chapter 6. The Main Theorem -- Chapter 7. The Monodromy Group and Hyperplane Arrangement -- Bibliography -- Index
Title The moduli space of cubic threefolds as a ball quotient
URI https://www.ams.org/memo/0985/
https://cir.nii.ac.jp/crid/1130000797282883840
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3114044
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470405991&uid=none
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdo4UBP40t0Y8hCHJCqgBMndnxcpzIk0OAwpt0if1WKliXQtNP-fJ6dxBkMaeKAVFmNpT6n75f4vef3hdDbNTdEqSSNmKA2ciI3kiKmkSCacWuIkb6dz_kXfnqaX1yIb30nz9a3E-B1nd_ciB__FWqYA7Bd6uw_wB2IwgR8B9BhBNhh_EMjDpcj4leN2VXlArYJ7Q8D9E6V2jXjsXbdVKZ1bWXkQjl_9M9d40uqBsiratgcu7zz0T2xGUo6-pjaxdH78Wy6sqbpFPErEILN7UMEn0r3W0BG8A6FWrGuFkkTipEEixM0BrAJedbFot7Zf4kgnQeYZZEA2e_D3kCDg9VGgRPCAJdLsE_AJErYBE04A9v54cnq6_fP4ZDMxWCBjuPrdvbrxn3VpHAfQ1qWIB_-uq4vodvO0Ey2lyA3QKZs4WpSl-Ud8et1irM9NHV5Jk_QA1s_RbORJe0zxAFK3EGJPZS4WWMPJR6hxBI-2EGJByifo_OPq7PjT1Hf4SKSNE_BcFda0xTeB2YVKHKSuHcjNyTLKCPcZppoSTQVkiVplkvC-TrOwKY3MtFSZ4rRF2haN7V9ibDRmseGEy4FkFRSpdQSmjhHLJjUiZmjd8CHwvvg26KLPSCFZ1nhWOamPMsKMkdvbjGruK76H_n6aBy2faAYz9Eh8LDQpRtj5xUFdVNwZ8Ln8OeACB642y3aRxsXq-UxjV1Vp3T_HhIH6PH4sL5C0-1mZw_RI329LdvN6_5h-QVILk6o
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=The+moduli+space+of+cubic+threefolds+as+a+ball+quotient&rft.au=Allcock%2C+Daniel&rft.au=Carlson%2C+James+A.&rft.au=Toledo%2C+Domingo&rft.date=2011-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9780821847510&rft_id=info:doi/10.1090%2FS0065-9266-10-00591-0&rft.externalDocID=BB04917426
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470405991.jpg