Scaling betweenness centrality using communication-efficient sparse matrix multiplication
Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Centrality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs...
Gespeichert in:
| Veröffentlicht in: | International Conference for High Performance Computing, Networking, Storage and Analysis (Online) S. 1 - 14 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY, USA
ACM
12.11.2017
|
| Schriftenreihe: | ACM Conferences |
| Schlagworte: |
Computing methodologies
> Parallel computing methodologies
> Parallel algorithms
> Massively parallel algorithms
Computing methodologies
> Symbolic and algebraic manipulation
> Symbolic and algebraic algorithms
> Algebraic algorithms
|
| ISBN: | 9781450351140, 145035114X |
| ISSN: | 2167-4337 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!

