Scaling betweenness centrality using communication-efficient sparse matrix multiplication

Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Centrality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs...

Full description

Saved in:
Bibliographic Details
Published in:International Conference for High Performance Computing, Networking, Storage and Analysis (Online) pp. 1 - 14
Main Authors: Solomonik, Edgar, Besta, Maciej, Vella, Flavio, Hoefler, Torsten
Format: Conference Proceeding
Language:English
Published: New York, NY, USA ACM 12.11.2017
Series:ACM Conferences
Subjects:
ISBN:9781450351140, 145035114X
ISSN:2167-4337
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Centrality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs a factor of p1/3 less communication on p processors than the best known alternatives, for graphs with n vertices and average degree k = n/p2/3. We formulate, implement, and prove the correctness of MFBC for weighted graphs by leveraging monoids instead of semirings, which enables a surprisingly succinct formulation. MFBC scales well for both extremely sparse and relatively dense graphs. It automatically searches a space of distributed data decompositions and sparse matrix multiplication algorithms for the most advantageous configuration. The MFBC implementation outperforms the well-known CombBLAS library by up to 8x and shows more robust performance. Our design methodology is readily extensible to other graph problems.
AbstractList Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Centrality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs a factor of p1/3 less communication on p processors than the best known alternatives, for graphs with n vertices and average degree k = n/p2/3. We formulate, implement, and prove the correctness of MFBC for weighted graphs by leveraging monoids instead of semirings, which enables a surprisingly succinct formulation. MFBC scales well for both extremely sparse and relatively dense graphs. It automatically searches a space of distributed data decompositions and sparse matrix multiplication algorithms for the most advantageous configuration. The MFBC implementation outperforms the well-known CombBLAS library by up to 8x and shows more robust performance. Our design methodology is readily extensible to other graph problems.
Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We propose Maximal Frontier Betweenness Centrality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs a factor of p^{1/3} less communication on p processors than the best known alternatives, for graphs with n vertices and average degree k=n/p^{2/3}. We formulate, implement, and prove the correctness of MFBC for weighted graphs by leveraging monoids instead of semirings, which enables a surprisingly succinct formulation. MFBC scales well for both extremely sparse and relatively dense graphs. It automatically searches a space of distributed data decompositions and sparse matrix multiplication algorithms for the most advantageous configuration. The MFBC implementation outperforms the well-known CombBLAS library by up to 8x and shows more robust performance. Our design methodology is readily extensible to other graph problems. CCS CONCEPTS * Theory of computation → Massively parallel algorithms; * Mathematics of computing → Mathematical software performance; * Computing methodologies → Algebraic algorithms; Massively parallel algorithms;
Author Vella, Flavio
Solomonik, Edgar
Besta, Maciej
Hoefler, Torsten
Author_xml – sequence: 1
  givenname: Edgar
  surname: Solomonik
  fullname: Solomonik, Edgar
  email: solomon2@illinois.edu
  organization: University of Illinois at Urbana-Champaign
– sequence: 2
  givenname: Maciej
  surname: Besta
  fullname: Besta, Maciej
  email: maciej.besta@inf.ethz.ch
  organization: ETH Zurich
– sequence: 3
  givenname: Flavio
  surname: Vella
  fullname: Vella, Flavio
  email: vella@di.uniroma1.it
  organization: Sapienza University of Rome
– sequence: 4
  givenname: Torsten
  surname: Hoefler
  fullname: Hoefler, Torsten
  email: htor@inf.ethz.ch
  organization: ETH Zurich
BookMark eNqNkD1PwzAQhs2XRCmdGVgysqT4YscfI6r4kioxAAOTZVsXZJE4VZwK-Pe4NBMT0yvd89xJ956R49hHJOQC6BKA19cMKqGpWv6mhAOy0FJlQFmdOT0kswqELDlj8ugPOyWLlIKjNQUBNacz8vbsbRvie-Fw_ESMEVMqPMZxyOPxu9imHfR9121j8HYMfSyxaYIP2SnSxg4Ji86OQ_gqum07hk07aefkpLFtwsWUc_J6d_uyeijXT_ePq5t1aZliY9lwwQRqBmC9F5xygeBqC1qAzf854TX3GiSTjjNQta8kV5Y5qZqqkoqzObnc3w2IaDZD6OzwbbSuBOStObnaU-s74_r-IxmgZtejmXo0U49ZXf5TNW4I2LAfDiFwhA
ContentType Conference Proceeding
Copyright 2017 ACM
Copyright_xml – notice: 2017 ACM
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3126908.3126971
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781450351140
145035114X
EISSN 2167-4337
EndPage 14
ExternalDocumentID 9926117
Genre orig-research
GrantInformation_xml – fundername: Google
  funderid: 10.13039/100006785
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IL
6IN
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
6IH
6IK
AAWTH
ADZIZ
CHZPO
IPLJI
ID FETCH-LOGICAL-a383t-f4636e9311acc64046e1b5a1961a269b6c94c91737b43185c2748a3b78f227843
IEDL.DBID RIE
ISBN 9781450351140
145035114X
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458161700047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:19:15 EDT 2025
Wed Jan 31 06:44:12 EST 2024
Wed Jan 31 06:44:57 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords communication cost
sparse matrix multiplication
betweenness centrality
parallel algorithm
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
LinkModel DirectLink
MeetingName SC '17: The International Conference for High Performance Computing, Networking, Storage and Analysis
MergedId FETCHMERGED-LOGICAL-a383t-f4636e9311acc64046e1b5a1961a269b6c94c91737b43185c2748a3b78f227843
PageCount 14
ParticipantIDs acm_books_10_1145_3126908_3126971_brief
ieee_primary_9926117
acm_books_10_1145_3126908_3126971
PublicationCentury 2000
PublicationDate 2017-11-12
PublicationDateYYYYMMDD 2017-11-12
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-12
  day: 12
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle International Conference for High Performance Computing, Networking, Storage and Analysis (Online)
PublicationTitleAbbrev SC
PublicationYear 2017
Publisher ACM
Publisher_xml – name: ACM
SSID ssib050161540
ssj0003204180
Score 1.9238826
Snippet Betweenness centrality (BC) is a crucial graph problem that measures the significance of a vertex by the number of shortest paths leading through it. We...
SourceID ieee
acm
SourceType Publisher
StartPage 1
SubjectTerms Betweenness centrality
communication cost
Computing methodologies -- Parallel computing methodologies -- Parallel algorithms -- Massively parallel algorithms
Computing methodologies -- Symbolic and algebraic manipulation -- Symbolic and algebraic algorithms -- Algebraic algorithms
Design methodology
Distributed databases
High performance computing
Mathematics of computing -- Mathematical software -- Mathematical software performance
parallel algorithm
Program processors
Software algorithms
Software performance
sparse matrix multiplication
Tensors
Theory of computation -- Design and analysis of algorithms -- Parallel algorithms -- Massively parallel algorithms
Title Scaling betweenness centrality using communication-efficient sparse matrix multiplication
URI https://ieeexplore.ieee.org/document/9926117
WOSCitedRecordID wos000458161700047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4OnqZs4fxFB8GK2pU2b5qpseHBjMIV5KmmayA5uYz_EP9-XNpsMBPHUUh6hfH1J3pe-7z2AW2ljpXMhaWSNpdwmOZUiV9TEGMwmCv3aFl1LnsVwmEwmclSB-50WxhhTJJ-Ztrst_uXnc71xR2UdKTHeZ6IKVSFEqdXa-k5UhC6-bolbhcOgy1nS9dV8GI86IQuQCibt4uok81WlP_aaqhR7Sr_-v7c5guaPOI-MdtvOMVTM7ATq2-4MxE_WBryNEX60IA9lKpZb04g_zMXQm7iM93eyJxChvaKgBNqQ8QIZryEDV8H_iwzKtENv1oTXfu_l8Yn6RgpUIQFdU-uqghkZMqa0jjlSYsOySOHkYwqxyGItuUbeFoqMOzW1RqqaqDATiXVKWR6eQm02n5kzIPhZDbOCZyzHUZVFuoODaJtxxoXmUQtuENXUMYRVWoqeo9Qjn3rkW3D3p02aLafGtqDhcE8XZeWN1EN-_vvjCzgM3KbrkvSCS6itlxtzBQf6cz1dLa8Ld_kGuIm7Sg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7aKuipaivWZwTBi9s2u9nXVWmp2JZCK9RTyGYT6cG29CH-fCe7aaUgiKddliEsk0lmvmS-GYC7WAdCpmHs-Fpph-kodeIwFY4KMJiNBNq1zrqWdMN-PxqP40EBHrZcGKVUlnym6uY1u8tPZ3JtjsoacYzxPg2LsOcz5tKcrbWxHj8LXmzlErMPe26T0ahp6_lQ5jc86iIYjOrZ05Dmi0J-7LRVybxKu_y__zmC6g89jwy2jucYCmp6AuVNfwZil2sF3oY4AShBHvNkLLOrEXuci8E3MTnv72SHIuK0spISKEOGc8S8ivRMDf8v0ssTD61YFV7brdFTx7GtFByBEHTlaFMXTMUepULKgCEoVjTxBS4_KlAXSSBjJhG5eWHCDJ9aIliNhJeEkTZcWeadQmk6m6ozIDixiuqQJTTFUYVGwIODSJ0wykLJ_Brcola5wQhLntOefW41z63ma3D_pwxPFhOla1AxeufzvPYGtyo___3zDRx0Rr0u7z73Xy7g0DUu2KTsuZdQWi3W6gr25edqslxcZ6bzDabmvpE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=Scaling+betweenness+centrality+using+communication-efficient+sparse+matrix+multiplication&rft.au=Solomonik%2C+Edgar&rft.au=Besta%2C+Maciej&rft.au=Vella%2C+Flavio&rft.au=Hoefler%2C+Torsten&rft.series=ACM+Conferences&rft.date=2017-11-12&rft.pub=ACM&rft.isbn=9781450351140&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1145%2F3126908.3126971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450351140/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450351140/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450351140/sc.gif&client=summon&freeimage=true