Adaptive spatial clustering in the presence of obstacles and facilitators

An intersection-and-combination strategy for clustering spatial point data in the presence of obstacles (e.g. mountain) and facilitators (e.g. highway) is proposed in this paper, and an adaptive spatial clustering algorithm, called ASCDT+, is also developed. The ASCDT+ algorithm can take both obstac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & geosciences Ročník 56; s. 104 - 118
Hlavní autoři: Liu, Qiliang, Deng, Min, Shi, Yan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2013
Témata:
ISSN:0098-3004, 1873-7803
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An intersection-and-combination strategy for clustering spatial point data in the presence of obstacles (e.g. mountain) and facilitators (e.g. highway) is proposed in this paper, and an adaptive spatial clustering algorithm, called ASCDT+, is also developed. The ASCDT+ algorithm can take both obstacles and facilitators into account without additional preprocessing, and automatically detects spatial clusters adjacent to each other with arbitrary shapes and/or different densities. In addition, the ASCDT+ algorithm has the ability to find clustering patterns at both global and local levels so that users can make a more complete interpretation of the clustering results. Several simulated and real-world datasets are utilized to evaluate the effectiveness of the ASCDT+ algorithm. Comparison with two related algorithms, AUTOCLUST+ and DBRS+, demonstrates the advantages of the ASCDT+ algorithm. •The ASCDT+ algorithm can consider both obstacles (e.g. mountain) and facilitators (e.g. highway).•The ASCDT+ algorithm can detect clusters with different shapes and densities at both global and local levels.•The ASCDT+ algorithm is easy to implement with no need of user-specified parameters.
AbstractList An intersection-and-combination strategy for clustering spatial point data in the presence of obstacles (e.g. mountain) and facilitators (e.g. highway) is proposed in this paper, and an adaptive spatial clustering algorithm, called ASCDT+, is also developed. The ASCDT+ algorithm can take both obstacles and facilitators into account without additional preprocessing, and automatically detects spatial clusters adjacent to each other with arbitrary shapes and/or different densities. In addition, the ASCDT+ algorithm has the ability to find clustering patterns at both global and local levels so that users can make a more complete interpretation of the clustering results. Several simulated and real-world datasets are utilized to evaluate the effectiveness of the ASCDT+ algorithm. Comparison with two related algorithms, AUTOCLUST+ and DBRS+, demonstrates the advantages of the ASCDT+ algorithm. •The ASCDT+ algorithm can consider both obstacles (e.g. mountain) and facilitators (e.g. highway).•The ASCDT+ algorithm can detect clusters with different shapes and densities at both global and local levels.•The ASCDT+ algorithm is easy to implement with no need of user-specified parameters.
An intersection-and-combination strategy for clustering spatial point data in the presence of obstacles (e.g. mountain) and facilitators (e.g. highway) is proposed in this paper, and an adaptive spatial clustering algorithm, called ASCDT+, is also developed. The ASCDT+ algorithm can take both obstacles and facilitators into account without additional preprocessing, and automatically detects spatial clusters adjacent to each other with arbitrary shapes and/or different densities. In addition, the ASCDT+ algorithm has the ability to find clustering patterns at both global and local levels so that users can make a more complete interpretation of the clustering results. Several simulated and real-world datasets are utilized to evaluate the effectiveness of the ASCDT+ algorithm. Comparison with two related algorithms, AUTOCLUST+ and DBRS+, demonstrates the advantages of the ASCDT+ algorithm.
Author Deng, Min
Shi, Yan
Liu, Qiliang
Author_xml – sequence: 1
  givenname: Qiliang
  surname: Liu
  fullname: Liu, Qiliang
  email: qiliang.liu@connect.polyu.hk
  organization: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong
– sequence: 2
  givenname: Min
  surname: Deng
  fullname: Deng, Min
  email: dengmin028@yahoo.com
  organization: Department of Surveying and Geo-informatics, Central South University, Changsha, China
– sequence: 3
  givenname: Yan
  surname: Shi
  fullname: Shi, Yan
  email: shiyan0401060322@126.com
  organization: Department of Surveying and Geo-informatics, Central South University, Changsha, China
BookMark eNqFkD1PwzAQhi1UJErhFzDgkSXlHOfDGRgQ4qNSJQZgthznXFyFONguEv8ehzIxgHTSLc_re_0ck9ngBiTkjMGSAasut0utNuiWOTC-hDSQH5A5EzXPagF8RuYAjcg4QHFEjkPYQiJyUc7J6rpTY7QfSMOoolU91f0uRPR22FA70PiKdPQYcNBInaGuDVHpHgNVQ0eN0ra3UUXnwwk5NKoPePqzF-Tl7vb55iFbP96vbq7XmeKCx8yAwbYqNeNa8ZybtiiwMi0Y0eS1qKBhpWCmFGXbNS3WneC85i3ovGNYYMH4glzs3x29e99hiPLNBo19rwZ0uyDz9DeoBKt5Qps9qr0LwaOReipr3RC9sr1kICd9ciu_9clJn4Q0kKcs_5UdvX1T_vOf1Pk-ZZSTauNtkC9PCaimTqm8SMTVnsDk6MOil0HbyW5nPeooO2f_vPAF4ROVrA
CitedBy_id crossref_primary_10_3390_ijgi5050072
crossref_primary_10_1016_j_cageo_2020_104420
crossref_primary_10_1080_15230406_2020_1863862
crossref_primary_10_1080_24694452_2021_1935207
crossref_primary_10_1016_j_jenvman_2021_113673
crossref_primary_10_3390_ijgi5110205
crossref_primary_10_1111_tgis_12246
crossref_primary_10_3390_ijgi8050218
crossref_primary_10_3390_ijgi6090272
crossref_primary_10_1155_2014_160730
crossref_primary_10_1111_tgis_12481
crossref_primary_10_1111_tgis_12083
Cites_doi 10.1109/ICDM.2002.1184042
10.1016/j.isprsjprs.2003.12.003
10.1016/j.cageo.2005.12.004
10.1142/S0218213005002053
10.1109/ICDE.2001.914848
10.1016/j.patrec.2008.01.028
10.1007/3-540-36175-8_56
10.4236/jsea.2010.32018
10.1016/j.compenvurbsys.2011.02.003
10.1016/S0198-9715(01)00044-8
10.1023/A:1015279009755
10.1145/267825.267836
10.1016/j.cageo.2011.12.017
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID FBQ
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cageo.2013.03.002
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
EndPage 118
ExternalDocumentID 10_1016_j_cageo_2013_03_002
US201600064138
S0098300413000563
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a383t-f0feb65c13ca323fb44e6fb0f892786091581f585bd9be7d83373b0c2d1e4e413
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320221600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3004
IngestDate Sun Sep 28 11:39:57 EDT 2025
Tue Nov 18 22:19:11 EST 2025
Sat Nov 29 03:42:08 EST 2025
Wed Dec 27 19:06:03 EST 2023
Fri Feb 23 02:34:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Facilitator
Delaunay triangulation
Spatial clustering
Obstacle
Adaptive
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a383t-f0feb65c13ca323fb44e6fb0f892786091581f585bd9be7d83373b0c2d1e4e413
Notes http://dx.doi.org/10.1016/j.cageo.2013.03.002
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000068173
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2000068173
crossref_citationtrail_10_1016_j_cageo_2013_03_002
crossref_primary_10_1016_j_cageo_2013_03_002
fao_agris_US201600064138
elsevier_sciencedirect_doi_10_1016_j_cageo_2013_03_002
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers & geosciences
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li (bib10) 2007
Kolingerová, Žalik (bib9) 2006; 32
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A density-based algorithm for discovering clusters in large spatial databases with Noise. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, pp. 226-231.
Wang, X., Hamilton, H.J., 2003, DBRS: a density-based spatial clustering method with random sampling. Proceedings of the seventeenth Pacific-Asia Conference on Knowledge Discovery and Data Mining, Seoul, Korea, pp.563-576.
Liu, Nosovskiy, Sourina (bib13) 2008; 29
Eldershaw, C., Hegland, M., 1997. Cluster analysis using triangulation. Proceedings of Computational Techniques and Applications: CTAC97, Singapore, pp.201-208.
Estivill-Castro, Lee (bib6) 2002; 26
Estivill-Castro, Lee (bib7) 2004; 59
Wang, Rostoker, Hamilton (bib20) 2011
Wang, Hamilton (bib19) 2005; 14
Deng, Liu, Cheng, Shi (bib2) 2011; 25
Miller, Han (bib14) 2009
Zaïane, O.R., Lee, C.H., 2002. Clustering spatial data when facing physical constraints. In: Proceedings of the IEEE International Conference on Data Mining, Maebashi City, Japan, pp. 737–740.
Kang, I., Kim, T., Li, K., 1997. A spatial data mining method by Delaunay triangulation. In: Proceedings of 5th ACM Workshop on Advances in Geographic Information Systems. New York, USA, pp. 35–39.
Ng, R.T., Han, J., 1994. Efficient and effective clustering methods for spatial data mining. Proceedings of the 20th International Conference on Very Large Data Bases, Chile: Santiago, pp. 144-155.
Yang, Cui (bib21) 2010; 3
Liu, Deng, Shi, Wang (bib12) 2012; 46
Tung, A.K.H., Hou, J., Han, J., 2001. Spatial clustering in the presence of obstacles. Proceedings of International Conference on Data Engineering, Heidelberg, Germany, pp. 359-367.
Estivill-Castro, Lee (bib5) 2002; 6
Aldstadt (bib1) 2010
10.1016/j.cageo.2013.03.002_bib4
Estivill-Castro (10.1016/j.cageo.2013.03.002_bib5) 2002; 6
10.1016/j.cageo.2013.03.002_bib15
10.1016/j.cageo.2013.03.002_bib16
10.1016/j.cageo.2013.03.002_bib3
Kolingerová (10.1016/j.cageo.2013.03.002_bib9) 2006; 32
Wang (10.1016/j.cageo.2013.03.002_bib20) 2011
10.1016/j.cageo.2013.03.002_bib18
10.1016/j.cageo.2013.03.002_bib22
Deng (10.1016/j.cageo.2013.03.002_bib2) 2011; 25
Liu (10.1016/j.cageo.2013.03.002_bib12) 2012; 46
Li (10.1016/j.cageo.2013.03.002_bib10) 2007
Yang (10.1016/j.cageo.2013.03.002_bib21) 2010; 3
Estivill-Castro (10.1016/j.cageo.2013.03.002_bib6) 2002; 26
Aldstadt (10.1016/j.cageo.2013.03.002_bib1) 2010
Estivill-Castro (10.1016/j.cageo.2013.03.002_bib7) 2004; 59
Wang (10.1016/j.cageo.2013.03.002_bib19) 2005; 14
Miller (10.1016/j.cageo.2013.03.002_bib14) 2009
10.1016/j.cageo.2013.03.002_bib8
Liu (10.1016/j.cageo.2013.03.002_bib13) 2008; 29
References_xml – reference: Kang, I., Kim, T., Li, K., 1997. A spatial data mining method by Delaunay triangulation. In: Proceedings of 5th ACM Workshop on Advances in Geographic Information Systems. New York, USA, pp. 35–39.
– reference: Eldershaw, C., Hegland, M., 1997. Cluster analysis using triangulation. Proceedings of Computational Techniques and Applications: CTAC97, Singapore, pp.201-208.
– volume: 6
  start-page: 123
  year: 2002
  end-page: 152
  ident: bib5
  article-title: Multi-level clustering and its visualization for exploratory spatial analysis
  publication-title: GeoInformatica
– volume: 29
  start-page: 1261
  year: 2008
  end-page: 1273
  ident: bib13
  article-title: Effective clustering and boundary detection algorithm based on Delaunay triangulation
  publication-title: Pattern Recognition Letters
– start-page: 2011
  year: 2011
  ident: bib20
  article-title: A density-based spatial clustering for physical constrains
  publication-title: Journal of Intelligent Information Systems
– volume: 3
  start-page: 141
  year: 2010
  end-page: 149
  ident: bib21
  article-title: A novel spatial clustering algorithm based on Delaunay triangulation
  publication-title: Journal of Software Engineering and Applications
– year: 2007
  ident: bib10
  article-title: Algorithm foundation of multi-scale spatial representation
– volume: 25
  start-page: 320
  year: 2011
  end-page: 332
  ident: bib2
  article-title: An adaptive spatial clustering algorithm based on Delaunauy triangulation
  publication-title: Computers, Environment and Urban Systems
– reference: Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A density-based algorithm for discovering clusters in large spatial databases with Noise. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, pp. 226-231.
– year: 2009
  ident: bib14
  article-title: Geographic data mining and knowledge discovery
– volume: 14
  start-page: 177
  year: 2005
  end-page: 198
  ident: bib19
  article-title: Clustering spatial data in the presence of obstacles
  publication-title: International Journal on Artificial Tools
– volume: 26
  start-page: 315
  year: 2002
  end-page: 334
  ident: bib6
  article-title: Argument free clustering for large spatial point-data sets
  publication-title: Computers, Environment and Urban Systems
– start-page: 279
  year: 2010
  end-page: 300
  ident: bib1
  article-title: Spatial clustering. In: Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications
– reference: Wang, X., Hamilton, H.J., 2003, DBRS: a density-based spatial clustering method with random sampling. Proceedings of the seventeenth Pacific-Asia Conference on Knowledge Discovery and Data Mining, Seoul, Korea, pp.563-576.
– reference: Zaïane, O.R., Lee, C.H., 2002. Clustering spatial data when facing physical constraints. In: Proceedings of the IEEE International Conference on Data Mining, Maebashi City, Japan, pp. 737–740.
– volume: 59
  start-page: 21
  year: 2004
  end-page: 34
  ident: bib7
  article-title: clustering with obstacles for geographic data mining
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– reference: Ng, R.T., Han, J., 1994. Efficient and effective clustering methods for spatial data mining. Proceedings of the 20th International Conference on Very Large Data Bases, Chile: Santiago, pp. 144-155.
– reference: Tung, A.K.H., Hou, J., Han, J., 2001. Spatial clustering in the presence of obstacles. Proceedings of International Conference on Data Engineering, Heidelberg, Germany, pp. 359-367.
– volume: 32
  start-page: 1310
  year: 2006
  end-page: 1319
  ident: bib9
  article-title: Reconstructing domain boundaries within a given set of points, using Delaunay triangulation
  publication-title: Computers and Geosciences
– volume: 46
  start-page: 296
  year: 2012
  end-page: 309
  ident: bib12
  article-title: A density-based spatial clustering algorithm considering both spatial proximity and attribute similarity
  publication-title: Computers and Geosciences
– ident: 10.1016/j.cageo.2013.03.002_bib22
  doi: 10.1109/ICDM.2002.1184042
– start-page: 2011
  year: 2011
  ident: 10.1016/j.cageo.2013.03.002_bib20
  article-title: A density-based spatial clustering for physical constrains
  publication-title: Journal of Intelligent Information Systems
– volume: 59
  start-page: 21
  issue: 1–2
  year: 2004
  ident: 10.1016/j.cageo.2013.03.002_bib7
  article-title: clustering with obstacles for geographic data mining
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2003.12.003
– volume: 32
  start-page: 1310
  issue: 9
  year: 2006
  ident: 10.1016/j.cageo.2013.03.002_bib9
  article-title: Reconstructing domain boundaries within a given set of points, using Delaunay triangulation
  publication-title: Computers and Geosciences
  doi: 10.1016/j.cageo.2005.12.004
– year: 2007
  ident: 10.1016/j.cageo.2013.03.002_bib10
– ident: 10.1016/j.cageo.2013.03.002_bib15
– volume: 14
  start-page: 177
  issue: 1-2
  year: 2005
  ident: 10.1016/j.cageo.2013.03.002_bib19
  article-title: Clustering spatial data in the presence of obstacles
  publication-title: International Journal on Artificial Tools
  doi: 10.1142/S0218213005002053
– ident: 10.1016/j.cageo.2013.03.002_bib16
  doi: 10.1109/ICDE.2001.914848
– ident: 10.1016/j.cageo.2013.03.002_bib4
– volume: 29
  start-page: 1261
  year: 2008
  ident: 10.1016/j.cageo.2013.03.002_bib13
  article-title: Effective clustering and boundary detection algorithm based on Delaunay triangulation
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2008.01.028
– ident: 10.1016/j.cageo.2013.03.002_bib3
– ident: 10.1016/j.cageo.2013.03.002_bib18
  doi: 10.1007/3-540-36175-8_56
– volume: 3
  start-page: 141
  year: 2010
  ident: 10.1016/j.cageo.2013.03.002_bib21
  article-title: A novel spatial clustering algorithm based on Delaunay triangulation
  publication-title: Journal of Software Engineering and Applications
  doi: 10.4236/jsea.2010.32018
– volume: 25
  start-page: 320
  issue: 4
  year: 2011
  ident: 10.1016/j.cageo.2013.03.002_bib2
  article-title: An adaptive spatial clustering algorithm based on Delaunauy triangulation
  publication-title: Computers, Environment and Urban Systems
  doi: 10.1016/j.compenvurbsys.2011.02.003
– volume: 26
  start-page: 315
  issue: 4
  year: 2002
  ident: 10.1016/j.cageo.2013.03.002_bib6
  article-title: Argument free clustering for large spatial point-data sets
  publication-title: Computers, Environment and Urban Systems
  doi: 10.1016/S0198-9715(01)00044-8
– volume: 6
  start-page: 123
  issue: 2
  year: 2002
  ident: 10.1016/j.cageo.2013.03.002_bib5
  article-title: Multi-level clustering and its visualization for exploratory spatial analysis
  publication-title: GeoInformatica
  doi: 10.1023/A:1015279009755
– ident: 10.1016/j.cageo.2013.03.002_bib8
  doi: 10.1145/267825.267836
– start-page: 279
  year: 2010
  ident: 10.1016/j.cageo.2013.03.002_bib1
– year: 2009
  ident: 10.1016/j.cageo.2013.03.002_bib14
– volume: 46
  start-page: 296
  year: 2012
  ident: 10.1016/j.cageo.2013.03.002_bib12
  article-title: A density-based spatial clustering algorithm considering both spatial proximity and attribute similarity
  publication-title: Computers and Geosciences
  doi: 10.1016/j.cageo.2011.12.017
SSID ssj0002285
Score 2.1119072
Snippet An intersection-and-combination strategy for clustering spatial point data in the presence of obstacles (e.g. mountain) and facilitators (e.g. highway) is...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms Adaptive
algorithms
computers
data collection
Delaunay triangulation
Facilitator
Obstacle
Spatial clustering
Title Adaptive spatial clustering in the presence of obstacles and facilitators
URI https://dx.doi.org/10.1016/j.cageo.2013.03.002
https://www.proquest.com/docview/2000068173
Volume 56
WOSCitedRecordID wos000320221600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdrusFexj5p9oUGe9sMtuQP-TGMbuvoykbakT0ZyZaCS7FDnZT2v9-dJNuBsLINBsEkxorN3c93J-nud4S8jVVUMRPJIBUmDGIpo0DqOAwSrcNS5UYntsL7x3F2ciIWi_ybT2LvbDuBrGnE9XW--q-qhnOgbCyd_Qt1D38KJ-A7KB2OoHY4_pHiZ5Vc2XygDpOlkf7jYoNsCL54xZVGYc1RaZcLWgXxIabG2W0EI0tH2936XZ6exMA3f-gsVJbaU2COCYjH9Qa19b3GZZPlEB5rZ0q-1gMG57aL8LufHpV-wQGbP2TbCw5DJcyYdmQtay4CZO9yfsUZU5HxIBMh37a2yba5jPrr3S9niXeMultfOIcJ-9LWa0bc8dKy0YcNmYVzfBDLIsYxHE35HtlnWZKLCdmfHR0uvgxumjGR9ISqOKCnpLLJfzu3-l3Ysmdku-PGbWxy-pA88JMKOnNgeETu6OYxuffJNm2-eUKOekhQDwk6QoLWDQVI0B4StDV0gAQFSNBtSDwlZx8PTz98DnwLjUBywdeBCY1WaVJGvJSccaPiWKdGhUbkLBMpBIuJiAxMGVWVK51VgvOMq7BkVaRjDUJ8RiZN2-gDQrFM2ahcx4JVsakqCGuSpIKItUpTlidqSlgvoaL0_PLY5uSi6BMJzwsr1gLFWoTwCdmUvB8GrRy9yu2Xp73oC49zF_kVgJXbBx6Aogq5BM9ZnM0Z8ipiNB5xMSVveu0VYFpxv0w2ut102KEVK6iijD__1_u-IPfHV-glmawvN_oVuVterevu8rWH5C8z5Jyt
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+spatial+clustering+in+the+presence+of+obstacles+and+facilitators&rft.jtitle=Computers+%26+geosciences&rft.au=Liu%2C+Qiliang&rft.au=Deng%2C+Min&rft.au=Shi%2C+Yan&rft.date=2013-07-01&rft.pub=Elsevier+Ltd&rft.issn=0098-3004&rft.eissn=1873-7803&rft.volume=56&rft.spage=104&rft.epage=118&rft_id=info:doi/10.1016%2Fj.cageo.2013.03.002&rft.externalDocID=S0098300413000563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon