Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise

Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an e...

Full description

Saved in:
Bibliographic Details
Published in:ACM computing surveys Vol. 53; no. 2
Main Authors: Wu, Jian, Sheng, Victor S, Zhang, Jing, Li, Hua, Dadakova, Tetiana, Swisher, Christine Leon, Cui, Zhiming, Zhao, Pengpeng
Format: Journal Article
Language:English
Published: United States 01.06.2020
Subjects:
ISSN:0360-0300
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.
AbstractList Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.
Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.
Author Zhang, Jing
Li, Hua
Swisher, Christine Leon
Wu, Jian
Sheng, Victor S
Cui, Zhiming
Dadakova, Tetiana
Zhao, Pengpeng
Author_xml – sequence: 1
  givenname: Jian
  surname: Wu
  fullname: Wu, Jian
  organization: Soochow University, China and Human Longevity, Inc., USA
– sequence: 2
  givenname: Victor S
  surname: Sheng
  fullname: Sheng, Victor S
  organization: Texas Tech University, USA
– sequence: 3
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Nanjing University of Science and Technology, China
– sequence: 4
  givenname: Hua
  surname: Li
  fullname: Li, Hua
  organization: Washington University in St. Louis, USA
– sequence: 5
  givenname: Tetiana
  surname: Dadakova
  fullname: Dadakova, Tetiana
  organization: Human Longevity, Inc., USA
– sequence: 6
  givenname: Christine Leon
  surname: Swisher
  fullname: Swisher, Christine Leon
  organization: Human Longevity, Inc., USA
– sequence: 7
  givenname: Zhiming
  surname: Cui
  fullname: Cui, Zhiming
  organization: Suzhou University of Science and Technology, China
– sequence: 8
  givenname: Pengpeng
  surname: Zhao
  fullname: Zhao, Pengpeng
  organization: Soochow University, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34421185$$D View this record in MEDLINE/PubMed
BookMark eNo1kMtOwzAURL0oog8Qf4C8ZBPw2y27qqJQKagsYIcU3Tg3xchJip0U8fdUoqxmczRnNFMyarsWCbni7JZzpe-ktAvN1IhMmDQsY5KxMZmm9MkYE4qbczKWSgnO53pC3p-H0PsshxIDXbreH5DmCLH17Y4uw66Lvv9oEq27SDcN7JCuAqTka--g9117T7cHjAeP3xTaiq6HfohIX2LX-IQX5KyGkPDylDPytn54XT1l-fZxs1rmGci57DN0EjR3WpXAdamMWNTGHveBY-B0JefaLiyXUHMrhCtBoDKVlSVjjhuFIGbk5q93H7uvAVNfHO0OQ4AWuyEVQhtpmeFCH9HrEzqUDVbFPvoG4k_x_4j4BdmGYFk
CitedBy_id crossref_primary_10_1016_j_ins_2022_03_045
crossref_primary_10_1109_TMI_2022_3215017
crossref_primary_10_1016_j_patcog_2024_110411
crossref_primary_10_1016_j_knosys_2022_109226
crossref_primary_10_1371_journal_pone_0295674
crossref_primary_10_1007_s41060_024_00605_x
crossref_primary_10_1145_3689036
crossref_primary_10_1080_17517575_2022_2130014
crossref_primary_10_1007_s10489_021_03086_8
crossref_primary_10_1016_j_jenvman_2025_124969
crossref_primary_10_1016_j_neunet_2023_02_045
crossref_primary_10_3389_fmars_2022_840088
crossref_primary_10_1016_j_cviu_2025_104351
crossref_primary_10_1109_TPAMI_2025_3550526
crossref_primary_10_1016_j_patcog_2022_108615
crossref_primary_10_1038_s41597_022_01906_1
crossref_primary_10_3390_e22080906
crossref_primary_10_3390_e27040363
crossref_primary_10_1007_s10489_025_06837_z
crossref_primary_10_2478_amns_2025_0351
crossref_primary_10_1080_0960085X_2022_2103044
crossref_primary_10_1016_j_future_2023_05_028
crossref_primary_10_1111_itor_13059
crossref_primary_10_1109_ACCESS_2021_3101867
crossref_primary_10_1016_j_media_2023_103075
crossref_primary_10_1155_2022_7413588
crossref_primary_10_1016_j_knosys_2024_112092
crossref_primary_10_1016_j_inffus_2025_103669
crossref_primary_10_1155_2021_5573010
crossref_primary_10_1109_TII_2024_3431106
crossref_primary_10_1109_MGRS_2024_3403423
crossref_primary_10_1007_s10115_022_01717_1
crossref_primary_10_1109_ACCESS_2020_3042453
crossref_primary_10_1109_TPAMI_2021_3086895
crossref_primary_10_1109_TMM_2024_3521778
crossref_primary_10_1093_llc_fqae020
crossref_primary_10_1016_j_ultramic_2022_113567
crossref_primary_10_1109_ACCESS_2020_3025036
crossref_primary_10_1016_j_knosys_2025_113632
crossref_primary_10_1016_j_knosys_2025_114248
crossref_primary_10_1016_j_jksuci_2022_10_015
crossref_primary_10_1007_s10489_023_05008_2
crossref_primary_10_1117_1_JRS_18_014514
crossref_primary_10_1016_j_jss_2024_112090
crossref_primary_10_3390_cimb47080628
crossref_primary_10_1002_mp_15630
crossref_primary_10_3390_math11040820
crossref_primary_10_1007_s11257_022_09321_2
crossref_primary_10_1155_2021_8414503
crossref_primary_10_1145_3434775
crossref_primary_10_23919_JSC_2024_0030
crossref_primary_10_1007_s00521_024_10535_1
crossref_primary_10_1016_j_fmre_2025_09_014
crossref_primary_10_1016_j_wasman_2021_03_017
crossref_primary_10_1080_15700763_2024_2358303
ContentType Journal Article
DBID NPM
7X8
DOI 10.1145/3379504
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 34421185
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA233873
– fundername: NCI NIH HHS
  grantid: R21 CA223799
GroupedDBID --Z
-DZ
-~X
.4S
.DC
23M
4.4
41~
4R4
5GY
5VS
6J9
85S
8US
8VB
9M8
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
AAYOK
ABPPZ
ACBNA
ACGFO
ACGOD
ACM
ACNCT
ADBCU
ADL
ADMHC
ADMLS
ADPZR
AEBYY
AEGXH
AEMOZ
AENEX
AENSD
AFFNX
AFWIH
AFWXC
AGHSJ
AHQJS
AI.
AIAGR
AIKLT
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BAAKF
BDXCO
CCLIF
CS3
EBE
EBR
EBS
EBU
EDO
EJD
EMK
FEDTE
GUFHI
HF~
HGAVV
H~9
IAO
ICD
IEA
IGS
IOF
ITC
K1G
LHSKQ
MVM
N95
NPM
OHT
P1C
P2P
PKN
PQQKQ
QWB
RNS
ROL
RXW
TAE
TAF
TH9
U5U
UKR
UPT
VH1
VQA
W7O
WH7
X6Y
XH6
XI7
XJT
XOL
XSW
XZL
YR5
YXB
Z5M
ZCA
ZCG
ZL0
77I
7X8
ADXHL
AEFXT
AEJOY
AETEA
AKRVB
ID FETCH-LOGICAL-a383t-ec3a51c54ba15b4629f67211ac0ac5d38579713af1722cba2e46d73b00c164ea2
IEDL.DBID 7X8
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582585700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-0300
IngestDate Wed Oct 01 15:07:10 EDT 2025
Wed Feb 19 02:08:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords annotation
active learning
Additional Key Words and Phrases
sampling strategy
multi-label image
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a383t-ec3a51c54ba15b4629f67211ac0ac5d38579713af1722cba2e46d73b00c164ea2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dl.acm.org/doi/10.1145/3379504
PMID 34421185
PQID 2563706125
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2563706125
pubmed_primary_34421185
PublicationCentury 2000
PublicationDate 2020-Jun
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-Jun
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACM computing surveys
PublicationTitleAlternate ACM Comput Surv
PublicationYear 2020
SSID ssj0002416
Score 2.5811872
SecondaryResourceType review_article
Snippet Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
Title Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise
URI https://www.ncbi.nlm.nih.gov/pubmed/34421185
https://www.proquest.com/docview/2563706125
Volume 53
WOSCitedRecordID wos000582585700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qPHhxfju_iOA1bGuSpvEiQxwKc-6gsINQ0jSdgmvnWue_70uasZMgeCk9NOWR9_Le7_eSvIfQlYykYbqjCKBlQxjEGBJlKSddQBdaRUKFibsoPBDDYTQey5FPuJX-WOXSJzpHnRba5sjbEJqpcPH4ZvZJbNcou7vqW2isowYFKGOtWoxX1cIhOvm9yg4BY-7Ul2aBAfA2pUJy153tF1zp4ku_-V_JdtC2R5a4V5vCLloz-R5qLrs2YL-I99Gru3NLBiox8LVzd9hXWZ3g3scEfl29TUsMaBY_TMHdYNc40x4pclq8xk8L62DMN1Z5ivuuKAkezQuwGHOAXvp3z7f3xPdYIAq4aUWMpop3NWeJ6vKEhYHMQksKFehP85RGXEjgsSoDoBPoRAWGhamgsFg1EC2jgkO0kRe5OUZYa0ZDJY1kmsFbIrkRwH-yLOMCaJFqocvl_MUgkd2YULkpvsp4NYMtdFQrIZ7VxTZiyhiIE_GTP4w-RVuBpcMuSXKGGhmsYHOONvWiei_nF8444DkcPf4A2tXEFQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Label+Active+Learning+Algorithms+for+Image+Classification%3A+Overview+and+Future+Promise&rft.jtitle=ACM+computing+surveys&rft.au=Wu%2C+Jian&rft.au=Sheng%2C+Victor+S&rft.au=Zhang%2C+Jing&rft.au=Li%2C+Hua&rft.date=2020-06-01&rft.issn=0360-0300&rft.volume=53&rft.issue=2&rft_id=info:doi/10.1145%2F3379504&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon