Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry

Remote sensing methods are now used to assess rockmass characteristics along transportation corridors, in mines and tunnels, and in other areas where rock falls can affect humans and infrastructure. A variety of sensor methods, primarily LiDAR and photogrammetry, have seen recent use with widespread...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & geosciences Ročník 50; s. 106 - 114
Hlavní autoři: Lato, M., Kemeny, J., Harrap, R.M., Bevan, G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2013
Témata:
ISSN:0098-3004, 1873-7803
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Remote sensing methods are now used to assess rockmass characteristics along transportation corridors, in mines and tunnels, and in other areas where rock falls can affect humans and infrastructure. A variety of sensor methods, primarily LiDAR and photogrammetry, have seen recent use with widespread success and state of practice acceptance. Various commercial and custom tools exist to process the resulting data to extract geometry, surface and location based statistics, and to perform kinematic stability assessments. Although there is a widespread need to assess how different sensors and processing workflows actually perform, these are often compared anecdotally solely with the field practices they replace and using site and sensor data unavailable to other researchers. Two principles must be established to move across-the-board comparisons of remote rockmass characterization forward: (i) establishment of accessible, documented test sites, and (ii) test databases that are accessible to all. We propose the establishment of several key sites for equipment tests, including already-studied areas in Europe and North America, as well as an open approach to adding sites and related data to the collection. Site descriptions must include detailed local geology, photographs, LiDAR and/or photogrammetry datasets, and access notes. Second, we describe and provide a prototype data repository for storing this information, and in particular for providing open access to benchmark data into the future. This initiative will allow for meaningful comparisons of sensors and algorithms, and specifically will support better methodologies for benchmarking rock mass data in the geosciences. Data and metadata will be hosted at the www.rockbench.org domain. ► Established a repository for LiDAR and photogrammetry data for engineering geology. ► Provide data from ten sites across Canada, USA, and Europe for benchmarking. ► Develop metadata forms and guidelines for development of the online repository.
AbstractList Remote sensing methods are now used to assess rockmass characteristics along transportation corridors, in mines and tunnels, and in other areas where rock falls can affect humans and infrastructure. A variety of sensor methods, primarily LiDAR and photogrammetry, have seen recent use with widespread success and state of practice acceptance. Various commercial and custom tools exist to process the resulting data to extract geometry, surface and location based statistics, and to perform kinematic stability assessments. Although there is a widespread need to assess how different sensors and processing workflows actually perform, these are often compared anecdotally solely with the field practices they replace and using site and sensor data unavailable to other researchers. Two principles must be established to move across-the-board comparisons of remote rockmass characterization forward: (i) establishment of accessible, documented test sites, and (ii) test databases that are accessible to all. We propose the establishment of several key sites for equipment tests, including already-studied areas in Europe and North America, as well as an open approach to adding sites and related data to the collection. Site descriptions must include detailed local geology, photographs, LiDAR and/or photogrammetry datasets, and access notes. Second, we describe and provide a prototype data repository for storing this information, and in particular for providing open access to benchmark data into the future. This initiative will allow for meaningful comparisons of sensors and algorithms, and specifically will support better methodologies for benchmarking rock mass data in the geosciences. Data and metadata will be hosted at the www.rockbench.org domain.
Remote sensing methods are now used to assess rockmass characteristics along transportation corridors, in mines and tunnels, and in other areas where rock falls can affect humans and infrastructure. A variety of sensor methods, primarily LiDAR and photogrammetry, have seen recent use with widespread success and state of practice acceptance. Various commercial and custom tools exist to process the resulting data to extract geometry, surface and location based statistics, and to perform kinematic stability assessments. Although there is a widespread need to assess how different sensors and processing workflows actually perform, these are often compared anecdotally solely with the field practices they replace and using site and sensor data unavailable to other researchers. Two principles must be established to move across-the-board comparisons of remote rockmass characterization forward: (i) establishment of accessible, documented test sites, and (ii) test databases that are accessible to all. We propose the establishment of several key sites for equipment tests, including already-studied areas in Europe and North America, as well as an open approach to adding sites and related data to the collection. Site descriptions must include detailed local geology, photographs, LiDAR and/or photogrammetry datasets, and access notes. Second, we describe and provide a prototype data repository for storing this information, and in particular for providing open access to benchmark data into the future. This initiative will allow for meaningful comparisons of sensors and algorithms, and specifically will support better methodologies for benchmarking rock mass data in the geosciences. Data and metadata will be hosted at the www.rockbench.org domain. ► Established a repository for LiDAR and photogrammetry data for engineering geology. ► Provide data from ten sites across Canada, USA, and Europe for benchmarking. ► Develop metadata forms and guidelines for development of the online repository.
Author Bevan, G.
Kemeny, J.
Lato, M.
Harrap, R.M.
Author_xml – sequence: 1
  givenname: M.
  surname: Lato
  fullname: Lato, M.
  email: mjlato@gmail.com
  organization: Norwegian Geotechnical Institute, Geomatics and Integrated Geosciences, Norway
– sequence: 2
  givenname: J.
  surname: Kemeny
  fullname: Kemeny, J.
  organization: University of Arizona, Mining and Geological Engineering, AZ, USA
– sequence: 3
  givenname: R.M.
  surname: Harrap
  fullname: Harrap, R.M.
  organization: Queen's University, Geological Sciences and Geological Engineering, Canada
– sequence: 4
  givenname: G.
  surname: Bevan
  fullname: Bevan, G.
  organization: Queen's University, Classics, Canada
BookMark eNqFkcFuEzEQhi1UJNLCE3DARy67HdvdXS8Sh6oUihQJqdCz5bVnE4fsOngcpNx4dJyEEwc4WWN__9jz-ZJdzHFGxl4LqAWI9npTO7vCWEsQsoa2BnHzjC2E7lTVaVAXbAHQ60oB3Lxgl0QbAJBSNwv26zG673zA2a3f8XvKdtgGWod5xS13cZrizBPuIoUc04Hb2fPCzN4mT3yMiVsiJDryqTSaSsnd2ibrMqZAOTji-9PxMny4fTw12K1jjqtkpwlzOrxkz0e7JXz1Z71iTx_vv909VMsvnz7f3S4rq7TKldcebKuk73qEAQD1KIXHRg2jll3fai1LVYaSDY7Y-G5wjWh6dKIXsmyoK_b23HeX4o89UjZTIIfbrZ0x7snIogTapgVZUHVGXYpECUezS2Gy6WAEmKNvszEn3-bo20Briu-S6v9KuZBtDnHOyYbtf7JvztnRRmNXxZx5-lqA9vgmVaYrxPszgcXRz4DJkAvl19CHhC4bH8M_b_gNf-uqrg
CitedBy_id crossref_primary_10_1007_s10064_025_04227_w
crossref_primary_10_1016_j_cageo_2024_105573
crossref_primary_10_3390_infrastructures7040049
crossref_primary_10_1109_JSTARS_2021_3104845
crossref_primary_10_1016_j_jii_2021_100292
crossref_primary_10_3390_app14052050
crossref_primary_10_1080_13505033_2016_1182773
crossref_primary_10_51946_melid_927270
crossref_primary_10_1016_j_undsp_2024_09_007
crossref_primary_10_1007_s00603_020_02181_5
crossref_primary_10_1080_1064119X_2018_1542760
crossref_primary_10_1016_j_ijmst_2022_09_022
crossref_primary_10_3390_rs16173291
crossref_primary_10_1007_s10064_024_03743_5
crossref_primary_10_1016_j_cageo_2016_06_015
crossref_primary_10_1007_s00603_023_03587_7
crossref_primary_10_1016_j_undsp_2023_11_018
crossref_primary_10_1016_j_enggeo_2019_105442
crossref_primary_10_1016_j_enggeo_2019_105326
crossref_primary_10_1016_j_tust_2024_106117
crossref_primary_10_1016_j_ijrmms_2024_106005
crossref_primary_10_1007_s00603_018_1519_9
crossref_primary_10_3390_rs14153688
crossref_primary_10_1007_s11440_023_01803_w
crossref_primary_10_1038_s41598_022_11351_0
crossref_primary_10_1016_j_ijrmms_2022_105072
crossref_primary_10_1007_s42452_024_05876_4
crossref_primary_10_1080_00934690_2024_2392972
crossref_primary_10_3390_rs4103006
crossref_primary_10_1007_s10706_025_03226_8
crossref_primary_10_1016_j_ijrmms_2015_12_008
crossref_primary_10_1007_s00371_019_01648_z
crossref_primary_10_1016_j_ijrmms_2021_105008
crossref_primary_10_1016_j_tust_2015_11_005
crossref_primary_10_3390_s20154209
crossref_primary_10_3390_rs14051200
crossref_primary_10_3390_buildings9080176
crossref_primary_10_1016_j_tust_2024_105859
crossref_primary_10_1016_j_rse_2016_08_018
crossref_primary_10_1109_TGRS_2022_3171625
crossref_primary_10_1049_iet_smt_2014_0053
crossref_primary_10_1016_j_cageo_2019_104325
crossref_primary_10_3390_buildings11020077
crossref_primary_10_3390_app13084977
crossref_primary_10_1007_s10064_024_03658_1
crossref_primary_10_1016_j_ijrmms_2023_105603
crossref_primary_10_1080_15230406_2013_819201
crossref_primary_10_1016_j_sue_2025_05_004
crossref_primary_10_1007_s10064_025_04453_2
crossref_primary_10_1016_j_cageo_2014_03_014
crossref_primary_10_1029_2018JB016319
crossref_primary_10_3390_rs13152894
crossref_primary_10_1016_j_ijrmms_2019_104132
crossref_primary_10_1016_j_cageo_2013_10_013
crossref_primary_10_1016_j_jrmge_2025_05_010
crossref_primary_10_1007_s11704_016_6191_1
crossref_primary_10_1016_j_ijrmms_2012_06_003
crossref_primary_10_1016_j_enggeo_2025_107987
crossref_primary_10_3390_rs8020130
crossref_primary_10_3390_rs17020345
crossref_primary_10_1007_s11704_016_6170_6
crossref_primary_10_1002_gj_4708
crossref_primary_10_1016_j_enggeo_2024_107585
crossref_primary_10_3390_rs11060635
crossref_primary_10_3390_app10082960
crossref_primary_10_3390_jimaging10050106
crossref_primary_10_3390_rs14215314
crossref_primary_10_1016_j_cageo_2022_105241
crossref_primary_10_1007_s11042_019_08189_6
crossref_primary_10_1016_j_cageo_2022_105121
crossref_primary_10_3390_rs11182154
crossref_primary_10_1007_s10346_016_0773_8
crossref_primary_10_1016_j_tust_2025_106993
crossref_primary_10_1016_j_ijrmms_2025_106246
crossref_primary_10_1007_s12517_021_07209_w
crossref_primary_10_1007_s00603_024_03804_x
crossref_primary_10_1016_j_cageo_2012_12_001
crossref_primary_10_1016_j_ijrmms_2018_07_012
crossref_primary_10_1007_s00603_025_04415_w
crossref_primary_10_1109_ACCESS_2017_2771201
crossref_primary_10_1007_s00603_022_02966_w
crossref_primary_10_1111_phor_12145
crossref_primary_10_1109_TGRS_2019_2926201
crossref_primary_10_1007_s00603_025_04874_1
crossref_primary_10_3390_rs13081540
crossref_primary_10_1007_s00603_024_04109_9
crossref_primary_10_1088_1755_1315_861_2_022048
Cites_doi 10.1016/j.ijrmms.2012.06.003
10.5194/nhess-9-267-2009
10.1109/34.121791
10.1130/GES00104.1
10.1016/j.ijrmms.2010.11.009
10.1109/CVPR.1997.609468
10.1016/S0098-3004(02)00106-1
10.1016/j.tust.2010.04.008
10.5194/nhess-10-1877-2010
10.1007/s00603-010-0086-5
10.1117/1.1330700
10.1016/j.enggeo.2009.03.004
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID FBQ
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cageo.2012.06.014
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Statistics
EISSN 1873-7803
EndPage 114
ExternalDocumentID 10_1016_j_cageo_2012_06_014
US201600063968
S0098300412002099
GeographicLocations North America
Europe
GeographicLocations_xml – name: Europe
– name: North America
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a383t-d8d0a632d79e0b00e8f21de53bf82796882de502225efe5d7bc5159ec1912fe53
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313611100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3004
IngestDate Sun Sep 28 02:52:08 EDT 2025
Sat Nov 29 07:23:21 EST 2025
Tue Nov 18 22:07:41 EST 2025
Wed Dec 27 19:07:47 EST 2023
Fri Feb 23 02:34:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Engineering geology
Benchmarking
Photogrammetry
Remote sensing
LiDAR
Rockfall
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a383t-d8d0a632d79e0b00e8f21de53bf82796882de502225efe5d7bc5159ec1912fe53
Notes http://dx.doi.org/10.1016/j.cageo.2012.06.014
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000065602
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2000065602
crossref_primary_10_1016_j_cageo_2012_06_014
crossref_citationtrail_10_1016_j_cageo_2012_06_014
fao_agris_US201600063968
elsevier_sciencedirect_doi_10_1016_j_cageo_2012_06_014
PublicationCentury 2000
PublicationDate January 2013
2013
2013-01-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationTitle Computers & geosciences
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kemeny, Post (bib17) 2003; 29
ClimChAlp (bib8) 2008
Heikkila, J., Silven, O., 1997. A four-step camera calibration procedure with implicity image correction. In: Proceedings of the Computer Vision and Pattern Recognition, 1997, San Juan, Puerto Rico, pp. 1106–1112.
Besl, McKay (bib2) 1992; 14
Gigi, Casagli (bib11) 2011; 48
Kemeny, J., Turner, K., 2008. Ground-Based LiDAR: Rock Slope Mapping and Assessment. US Department of Transportation Federal Highways Administration, Central Federal Lands Highway Division (Publication no. FHWACFL/TD-08-006).
Derron, Jaboyedoff (bib3) 2010; 10
Lato, Vöge (bib19) 2012
Sturzenegger, Stead (bib24) 2009; 106
Hudson, Harrison. (bib15) 2000
Sturzenegger, Stead (bib26) 2009; 9
Amann, Bosch, Lescure, Myllyla (bib1) 2001; 40
Goodman (bib12) 1989
Borrmann, Elseberg, Lingemann, Nüchter (bib6) 2011
Fekete, Diederichs, Lato (bib10) 2010; 25
Lato, Diederichs, Hutchinson (bib20) 2010; 23
Mauthe, Thomas (bib21) 2005
Priest (bib23) 1993
.
Hoek, E., 2007. Practical Rock Engineering.
Vöge, M., Lato, M. Automated rockmass discontinuity mapping from 3D surface data: development of a new algorithm exploiting multi-core based computational resources. ISPRS Journal of Photogrammetry and Remote Sensing, submitted for publication (Manuscript no. PHOTO-D-12-00073).
Nicholas, Sims (bib22) 2001
Bieniawski (bib4) 1989
Feng, Roshoff (bib9) 2004; 41
Sturzenegger, M., Stead, D., Beveridge A., Lee, S., 2009b. Long-range terrestrial digital photogrammetry for discontinuity characterization at Palabora open-pit mine. In: Didrichs, M., Grasselli, G. (eds), Proceedings of the 3rd CANUS Rock Mechanics Symposium, ROCKGEN09, May 2009, Toronto, paper 3984.
Bonnaffe, Jennette, Andrews (bib5) 2007; 3
ISRM (bib16) 1978; 15
Call, R.D., J.P., Savely, D.E., Nicholas, 1976. Estimation of joint set characteristics from surface mapping data. In: Proceedings of the 17th Symposium on Rock Mechanics, SME of AIME.
Goodman (10.1016/j.cageo.2012.06.014_bib12) 1989
10.1016/j.cageo.2012.06.014_bib13
Mauthe (10.1016/j.cageo.2012.06.014_bib21) 2005
10.1016/j.cageo.2012.06.014_bib14
Gigi (10.1016/j.cageo.2012.06.014_bib11) 2011; 48
Fekete (10.1016/j.cageo.2012.06.014_bib10) 2010; 25
Hudson (10.1016/j.cageo.2012.06.014_bib15) 2000
Amann (10.1016/j.cageo.2012.06.014_bib1) 2001; 40
ISRM (10.1016/j.cageo.2012.06.014_bib16) 1978; 15
10.1016/j.cageo.2012.06.014_bib27
Lato (10.1016/j.cageo.2012.06.014_bib20) 2010; 23
Nicholas (10.1016/j.cageo.2012.06.014_bib22) 2001
Bieniawski (10.1016/j.cageo.2012.06.014_bib4) 1989
10.1016/j.cageo.2012.06.014_bib25
Bonnaffe (10.1016/j.cageo.2012.06.014_bib5) 2007; 3
Kemeny (10.1016/j.cageo.2012.06.014_bib17) 2003; 29
Borrmann (10.1016/j.cageo.2012.06.014_bib6) 2011
Priest (10.1016/j.cageo.2012.06.014_bib23) 1993
Sturzenegger (10.1016/j.cageo.2012.06.014_bib26) 2009; 9
Besl (10.1016/j.cageo.2012.06.014_bib2) 1992; 14
10.1016/j.cageo.2012.06.014_bib7
Sturzenegger (10.1016/j.cageo.2012.06.014_bib24) 2009; 106
Derron (10.1016/j.cageo.2012.06.014_bib3) 2010; 10
Feng (10.1016/j.cageo.2012.06.014_bib9) 2004; 41
10.1016/j.cageo.2012.06.014_bib18
Lato (10.1016/j.cageo.2012.06.014_bib19) 2012
ClimChAlp (10.1016/j.cageo.2012.06.014_bib8) 2008
References_xml – volume: 3
  start-page: 501
  year: 2007
  end-page: 510
  ident: bib5
  article-title: A method for acquiring and processing ground-based LiDAR data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models
  publication-title: Geosphere
– volume: 48
  start-page: 187
  year: 2011
  end-page: 198
  ident: bib11
  article-title: Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– reference: Kemeny, J., Turner, K., 2008. Ground-Based LiDAR: Rock Slope Mapping and Assessment. US Department of Transportation Federal Highways Administration, Central Federal Lands Highway Division (Publication no. FHWACFL/TD-08-006).
– year: 2012
  ident: bib19
  article-title: Automated mapping of rock discontinuities in 3D lidar models
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– volume: 15
  start-page: 319
  year: 1978
  end-page: 368
  ident: bib16
  article-title: Suggested methods for the quantitative description of discontinuities in rock masses
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– reference: Vöge, M., Lato, M. Automated rockmass discontinuity mapping from 3D surface data: development of a new algorithm exploiting multi-core based computational resources. ISPRS Journal of Photogrammetry and Remote Sensing, submitted for publication (Manuscript no. PHOTO-D-12-00073).
– volume: 40
  start-page: 10
  year: 2001
  end-page: 19
  ident: bib1
  article-title: Laser ranging: a critical review of usual techniques for distance measurement
  publication-title: Optical Engineering
– reference: Hoek, E., 2007. Practical Rock Engineering.
– volume: 25
  start-page: 614
  year: 2010
  end-page: 628
  ident: bib10
  article-title: Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels
  publication-title: Tunnelling and Underground Space Technology
– reference: Sturzenegger, M., Stead, D., Beveridge A., Lee, S., 2009b. Long-range terrestrial digital photogrammetry for discontinuity characterization at Palabora open-pit mine. In: Didrichs, M., Grasselli, G. (eds), Proceedings of the 3rd CANUS Rock Mechanics Symposium, ROCKGEN09, May 2009, Toronto, paper 3984.
– year: 2011
  ident: bib6
  article-title: The 3D hough transform for plane detection in point clouds: a review and a new accumulator design
  publication-title: 3DR Express
– volume: 29
  start-page: 65
  year: 2003
  end-page: 77
  ident: bib17
  article-title: Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces
  publication-title: Computers & Geoscience
– reference: Heikkila, J., Silven, O., 1997. A four-step camera calibration procedure with implicity image correction. In: Proceedings of the Computer Vision and Pattern Recognition, 1997, San Juan, Puerto Rico, pp. 1106–1112.
– reference: Call, R.D., J.P., Savely, D.E., Nicholas, 1976. Estimation of joint set characteristics from surface mapping data. In: Proceedings of the 17th Symposium on Rock Mechanics, SME of AIME.
– volume: 41
  start-page: 1
  year: 2004
  end-page: 6
  ident: bib9
  article-title: In situ mapping and documentation of rock fases using a full-coverage 3-D laser scanning technique
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– start-page: 11
  year: 2001
  end-page: 26
  ident: bib22
  article-title: Collecting and using geologic structure data for slope design
  publication-title: Slope Stability in Surface Mining
– year: 1993
  ident: bib23
  article-title: Discontinuity Analysis for Rock Engineering
– volume: 9
  start-page: 267
  year: 2009
  end-page: 287
  ident: bib26
  article-title: Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques
  publication-title: Natural Hazards and Earth System Sciences
– volume: 106
  start-page: 163
  year: 2009
  end-page: 182
  ident: bib24
  article-title: Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts
  publication-title: Engineering Geology
– volume: 10
  start-page: 1877
  year: 2010
  end-page: 1879
  ident: bib3
  article-title: LIDAR and DEM techniques for landslides monitoring and characterization
  publication-title: Natural Hazards and Earth System Sciences
– reference: .
– year: 2005
  ident: bib21
  article-title: Professional Content Management Systems: Handling Digital Media Assets
– volume: 14
  start-page: 239
  year: 1992
  end-page: 256
  ident: bib2
  article-title: A method for registration of 3-D shapes
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 23
  start-page: 615
  year: 2010
  end-page: 628
  ident: bib20
  article-title: Bias correction for static LiDAR scanning of rock outcrops for structural characterization
  publication-title: Rock Mechanics and Rock Engineering
– year: 2008
  ident: bib8
  article-title: Slope Monitoring Methods: A State of the Art Report. Strategic Interreg III B Project ClimChAlp Report
– year: 2000
  ident: bib15
  article-title: Engineering Rock Mechanics
– year: 1989
  ident: bib12
  publication-title: Rock Mechanics
– year: 1989
  ident: bib4
  article-title: Engineering Rock Mass Classifications
– year: 2012
  ident: 10.1016/j.cageo.2012.06.014_bib19
  article-title: Automated mapping of rock discontinuities in 3D lidar models
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2012.06.003
– volume: 9
  start-page: 267
  year: 2009
  ident: 10.1016/j.cageo.2012.06.014_bib26
  article-title: Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques
  publication-title: Natural Hazards and Earth System Sciences
  doi: 10.5194/nhess-9-267-2009
– ident: 10.1016/j.cageo.2012.06.014_bib18
– volume: 14
  start-page: 239
  year: 1992
  ident: 10.1016/j.cageo.2012.06.014_bib2
  article-title: A method for registration of 3-D shapes
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.121791
– ident: 10.1016/j.cageo.2012.06.014_bib14
– ident: 10.1016/j.cageo.2012.06.014_bib25
– volume: 15
  start-page: 319
  year: 1978
  ident: 10.1016/j.cageo.2012.06.014_bib16
  article-title: Suggested methods for the quantitative description of discontinuities in rock masses
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– volume: 3
  start-page: 501
  year: 2007
  ident: 10.1016/j.cageo.2012.06.014_bib5
  article-title: A method for acquiring and processing ground-based LiDAR data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models
  publication-title: Geosphere
  doi: 10.1130/GES00104.1
– volume: 48
  start-page: 187
  year: 2011
  ident: 10.1016/j.cageo.2012.06.014_bib11
  article-title: Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2010.11.009
– year: 1989
  ident: 10.1016/j.cageo.2012.06.014_bib4
– ident: 10.1016/j.cageo.2012.06.014_bib7
– year: 2011
  ident: 10.1016/j.cageo.2012.06.014_bib6
  article-title: The 3D hough transform for plane detection in point clouds: a review and a new accumulator design
  publication-title: 3DR Express
– ident: 10.1016/j.cageo.2012.06.014_bib13
  doi: 10.1109/CVPR.1997.609468
– ident: 10.1016/j.cageo.2012.06.014_bib27
– start-page: 11
  year: 2001
  ident: 10.1016/j.cageo.2012.06.014_bib22
  article-title: Collecting and using geologic structure data for slope design
– year: 1989
  ident: 10.1016/j.cageo.2012.06.014_bib12
– year: 2000
  ident: 10.1016/j.cageo.2012.06.014_bib15
– volume: 29
  start-page: 65
  year: 2003
  ident: 10.1016/j.cageo.2012.06.014_bib17
  article-title: Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces
  publication-title: Computers & Geoscience
  doi: 10.1016/S0098-3004(02)00106-1
– year: 2005
  ident: 10.1016/j.cageo.2012.06.014_bib21
– volume: 25
  start-page: 614
  issue: 5
  year: 2010
  ident: 10.1016/j.cageo.2012.06.014_bib10
  article-title: Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2010.04.008
– year: 2008
  ident: 10.1016/j.cageo.2012.06.014_bib8
– volume: 10
  start-page: 1877
  year: 2010
  ident: 10.1016/j.cageo.2012.06.014_bib3
  article-title: LIDAR and DEM techniques for landslides monitoring and characterization
  publication-title: Natural Hazards and Earth System Sciences
  doi: 10.5194/nhess-10-1877-2010
– volume: 41
  start-page: 1
  issue: 3
  year: 2004
  ident: 10.1016/j.cageo.2012.06.014_bib9
  article-title: In situ mapping and documentation of rock fases using a full-coverage 3-D laser scanning technique
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– volume: 23
  start-page: 615
  year: 2010
  ident: 10.1016/j.cageo.2012.06.014_bib20
  article-title: Bias correction for static LiDAR scanning of rock outcrops for structural characterization
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-010-0086-5
– volume: 40
  start-page: 10
  issue: 1
  year: 2001
  ident: 10.1016/j.cageo.2012.06.014_bib1
  article-title: Laser ranging: a critical review of usual techniques for distance measurement
  publication-title: Optical Engineering
  doi: 10.1117/1.1330700
– year: 1993
  ident: 10.1016/j.cageo.2012.06.014_bib23
– volume: 106
  start-page: 163
  year: 2009
  ident: 10.1016/j.cageo.2012.06.014_bib24
  article-title: Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2009.03.004
SSID ssj0002285
Score 2.394414
Snippet Remote sensing methods are now used to assess rockmass characteristics along transportation corridors, in mines and tunnels, and in other areas where rock...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106
SubjectTerms algorithms
Benchmarking
computers
data collection
Engineering geology
Europe
humans
infrastructure
LiDAR
North America
Photogrammetry
Remote sensing
Rockfall
rockfalls
statistics
transportation
Title Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry
URI https://dx.doi.org/10.1016/j.cageo.2012.06.014
https://www.proquest.com/docview/2000065602
Volume 50
WOSCitedRecordID wos000313611100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DqS9TDBAG18yEm-QKXHSxN5bgbLxoQmVTepb5CROx9jSqWmn7Y1_g_-Wu3M-2lWb4IGXqLXs1PL9ej6f737H2GsBNqhKc-Wg_Y2k2pmjZBg6UZbrwPX9MMsTKjYRHR7K0Uh963R-17kwl2dRUcirK3XxX0UNbSBsTJ39B3E3L4UG-AxChyeIHZ5_JfghaLg3CczoBE_7A7D-GkeTxghymAjdFJQ_6H6dHOeVP6G0MZV0D4z9YXP7ea6Rv_oGrfO8tMlRH_pDyzRwMplRnNe5mS3nWNdVI0rC2NhU3Jlt5OJXTYWcWq_sF3RYXi_dWB3o6VRTIb3hbtPvnanusPYXPRc25dQ60upkmjZyiZSzkg4SgNmtyepjGflOJF1_UWFbptpK43puuLB5ezYjdWVfsC6KUzjzjynlEz3A4a7rBe022AQnHn8XSLtHxlso19g64FnJLlvvfxqMPjfbvBCyVxOy4qxrSisKHlz5ndvMnrVcT1bMALJtjh6wzepQwvsWTA9ZxxRb7P4-FX2-3mIbeCKxkn_EfiG-OOFrjy-ii2tu0cVbdHEAB2_QxQFdvEEXr9HFb6CLE7o4oYtesIyux-z44-Do_YFTlfFwtC_9mZPJzNWhL7JIGRe0vJG58DLT85NcigiWWAr4Ro4Hk5teFiUpGtkm9ZQnoMF_wrrFpDDbjKduEEUygKFSIO9RkghllPEDUAA6kMEOE_Uqx2nFcY-lVs7iOpjxNCbRxCiaGEM6PRj0thl0YSle7u4e1uKLq7-MtT5jANvdA7dB2LEew2rGyyDbYa9qBMSg3vHOThdmMi-xSiyeEkJXPL19-DO2IahKC3oGn7PubDo3L9i99BKwMX1ZAfcP6k7BOQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rock+bench%3A+Establishing+a+common+repository+and+standards+for+assessing+rockmass+characteristics+using+LiDAR+and+photogrammetry&rft.jtitle=Computers+%26+geosciences&rft.au=Lato%2C+M&rft.au=Kemeny%2C+J&rft.au=Harrap%2C+R.M&rft.au=Bevan%2C+G&rft.date=2013&rft.pub=Elsevier+Ltd&rft.issn=0098-3004&rft.eissn=1873-7803&rft.volume=50&rft.spage=106&rft.epage=114&rft_id=info:doi/10.1016%2Fj.cageo.2012.06.014&rft.externalDocID=US201600063968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon