Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry
Remote sensing methods are now used to assess rockmass characteristics along transportation corridors, in mines and tunnels, and in other areas where rock falls can affect humans and infrastructure. A variety of sensor methods, primarily LiDAR and photogrammetry, have seen recent use with widespread...
Uloženo v:
| Vydáno v: | Computers & geosciences Ročník 50; s. 106 - 114 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2013
|
| Témata: | |
| ISSN: | 0098-3004, 1873-7803 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Remote sensing methods are now used to assess rockmass characteristics along transportation corridors, in mines and tunnels, and in other areas where rock falls can affect humans and infrastructure. A variety of sensor methods, primarily LiDAR and photogrammetry, have seen recent use with widespread success and state of practice acceptance. Various commercial and custom tools exist to process the resulting data to extract geometry, surface and location based statistics, and to perform kinematic stability assessments. Although there is a widespread need to assess how different sensors and processing workflows actually perform, these are often compared anecdotally solely with the field practices they replace and using site and sensor data unavailable to other researchers.
Two principles must be established to move across-the-board comparisons of remote rockmass characterization forward: (i) establishment of accessible, documented test sites, and (ii) test databases that are accessible to all. We propose the establishment of several key sites for equipment tests, including already-studied areas in Europe and North America, as well as an open approach to adding sites and related data to the collection. Site descriptions must include detailed local geology, photographs, LiDAR and/or photogrammetry datasets, and access notes. Second, we describe and provide a prototype data repository for storing this information, and in particular for providing open access to benchmark data into the future. This initiative will allow for meaningful comparisons of sensors and algorithms, and specifically will support better methodologies for benchmarking rock mass data in the geosciences. Data and metadata will be hosted at the www.rockbench.org domain.
► Established a repository for LiDAR and photogrammetry data for engineering geology. ► Provide data from ten sites across Canada, USA, and Europe for benchmarking. ► Develop metadata forms and guidelines for development of the online repository. |
|---|---|
| AbstractList | Remote sensing methods are now used to assess rockmass characteristics along transportation corridors, in mines and tunnels, and in other areas where rock falls can affect humans and infrastructure. A variety of sensor methods, primarily LiDAR and photogrammetry, have seen recent use with widespread success and state of practice acceptance. Various commercial and custom tools exist to process the resulting data to extract geometry, surface and location based statistics, and to perform kinematic stability assessments. Although there is a widespread need to assess how different sensors and processing workflows actually perform, these are often compared anecdotally solely with the field practices they replace and using site and sensor data unavailable to other researchers. Two principles must be established to move across-the-board comparisons of remote rockmass characterization forward: (i) establishment of accessible, documented test sites, and (ii) test databases that are accessible to all. We propose the establishment of several key sites for equipment tests, including already-studied areas in Europe and North America, as well as an open approach to adding sites and related data to the collection. Site descriptions must include detailed local geology, photographs, LiDAR and/or photogrammetry datasets, and access notes. Second, we describe and provide a prototype data repository for storing this information, and in particular for providing open access to benchmark data into the future. This initiative will allow for meaningful comparisons of sensors and algorithms, and specifically will support better methodologies for benchmarking rock mass data in the geosciences. Data and metadata will be hosted at the www.rockbench.org domain. Remote sensing methods are now used to assess rockmass characteristics along transportation corridors, in mines and tunnels, and in other areas where rock falls can affect humans and infrastructure. A variety of sensor methods, primarily LiDAR and photogrammetry, have seen recent use with widespread success and state of practice acceptance. Various commercial and custom tools exist to process the resulting data to extract geometry, surface and location based statistics, and to perform kinematic stability assessments. Although there is a widespread need to assess how different sensors and processing workflows actually perform, these are often compared anecdotally solely with the field practices they replace and using site and sensor data unavailable to other researchers. Two principles must be established to move across-the-board comparisons of remote rockmass characterization forward: (i) establishment of accessible, documented test sites, and (ii) test databases that are accessible to all. We propose the establishment of several key sites for equipment tests, including already-studied areas in Europe and North America, as well as an open approach to adding sites and related data to the collection. Site descriptions must include detailed local geology, photographs, LiDAR and/or photogrammetry datasets, and access notes. Second, we describe and provide a prototype data repository for storing this information, and in particular for providing open access to benchmark data into the future. This initiative will allow for meaningful comparisons of sensors and algorithms, and specifically will support better methodologies for benchmarking rock mass data in the geosciences. Data and metadata will be hosted at the www.rockbench.org domain. ► Established a repository for LiDAR and photogrammetry data for engineering geology. ► Provide data from ten sites across Canada, USA, and Europe for benchmarking. ► Develop metadata forms and guidelines for development of the online repository. |
| Author | Bevan, G. Kemeny, J. Lato, M. Harrap, R.M. |
| Author_xml | – sequence: 1 givenname: M. surname: Lato fullname: Lato, M. email: mjlato@gmail.com organization: Norwegian Geotechnical Institute, Geomatics and Integrated Geosciences, Norway – sequence: 2 givenname: J. surname: Kemeny fullname: Kemeny, J. organization: University of Arizona, Mining and Geological Engineering, AZ, USA – sequence: 3 givenname: R.M. surname: Harrap fullname: Harrap, R.M. organization: Queen's University, Geological Sciences and Geological Engineering, Canada – sequence: 4 givenname: G. surname: Bevan fullname: Bevan, G. organization: Queen's University, Classics, Canada |
| BookMark | eNqFkcFuEzEQhi1UJNLCE3DARy67HdvdXS8Sh6oUihQJqdCz5bVnE4fsOngcpNx4dJyEEwc4WWN__9jz-ZJdzHFGxl4LqAWI9npTO7vCWEsQsoa2BnHzjC2E7lTVaVAXbAHQ60oB3Lxgl0QbAJBSNwv26zG673zA2a3f8XvKdtgGWod5xS13cZrizBPuIoUc04Hb2fPCzN4mT3yMiVsiJDryqTSaSsnd2ibrMqZAOTji-9PxMny4fTw12K1jjqtkpwlzOrxkz0e7JXz1Z71iTx_vv909VMsvnz7f3S4rq7TKldcebKuk73qEAQD1KIXHRg2jll3fai1LVYaSDY7Y-G5wjWh6dKIXsmyoK_b23HeX4o89UjZTIIfbrZ0x7snIogTapgVZUHVGXYpECUezS2Gy6WAEmKNvszEn3-bo20Briu-S6v9KuZBtDnHOyYbtf7JvztnRRmNXxZx5-lqA9vgmVaYrxPszgcXRz4DJkAvl19CHhC4bH8M_b_gNf-uqrg |
| CitedBy_id | crossref_primary_10_1007_s10064_025_04227_w crossref_primary_10_1016_j_cageo_2024_105573 crossref_primary_10_3390_infrastructures7040049 crossref_primary_10_1109_JSTARS_2021_3104845 crossref_primary_10_1016_j_jii_2021_100292 crossref_primary_10_3390_app14052050 crossref_primary_10_1080_13505033_2016_1182773 crossref_primary_10_51946_melid_927270 crossref_primary_10_1016_j_undsp_2024_09_007 crossref_primary_10_1007_s00603_020_02181_5 crossref_primary_10_1080_1064119X_2018_1542760 crossref_primary_10_1016_j_ijmst_2022_09_022 crossref_primary_10_3390_rs16173291 crossref_primary_10_1007_s10064_024_03743_5 crossref_primary_10_1016_j_cageo_2016_06_015 crossref_primary_10_1007_s00603_023_03587_7 crossref_primary_10_1016_j_undsp_2023_11_018 crossref_primary_10_1016_j_enggeo_2019_105442 crossref_primary_10_1016_j_enggeo_2019_105326 crossref_primary_10_1016_j_tust_2024_106117 crossref_primary_10_1016_j_ijrmms_2024_106005 crossref_primary_10_1007_s00603_018_1519_9 crossref_primary_10_3390_rs14153688 crossref_primary_10_1007_s11440_023_01803_w crossref_primary_10_1038_s41598_022_11351_0 crossref_primary_10_1016_j_ijrmms_2022_105072 crossref_primary_10_1007_s42452_024_05876_4 crossref_primary_10_1080_00934690_2024_2392972 crossref_primary_10_3390_rs4103006 crossref_primary_10_1007_s10706_025_03226_8 crossref_primary_10_1016_j_ijrmms_2015_12_008 crossref_primary_10_1007_s00371_019_01648_z crossref_primary_10_1016_j_ijrmms_2021_105008 crossref_primary_10_1016_j_tust_2015_11_005 crossref_primary_10_3390_s20154209 crossref_primary_10_3390_rs14051200 crossref_primary_10_3390_buildings9080176 crossref_primary_10_1016_j_tust_2024_105859 crossref_primary_10_1016_j_rse_2016_08_018 crossref_primary_10_1109_TGRS_2022_3171625 crossref_primary_10_1049_iet_smt_2014_0053 crossref_primary_10_1016_j_cageo_2019_104325 crossref_primary_10_3390_buildings11020077 crossref_primary_10_3390_app13084977 crossref_primary_10_1007_s10064_024_03658_1 crossref_primary_10_1016_j_ijrmms_2023_105603 crossref_primary_10_1080_15230406_2013_819201 crossref_primary_10_1016_j_sue_2025_05_004 crossref_primary_10_1007_s10064_025_04453_2 crossref_primary_10_1016_j_cageo_2014_03_014 crossref_primary_10_1029_2018JB016319 crossref_primary_10_3390_rs13152894 crossref_primary_10_1016_j_ijrmms_2019_104132 crossref_primary_10_1016_j_cageo_2013_10_013 crossref_primary_10_1016_j_jrmge_2025_05_010 crossref_primary_10_1007_s11704_016_6191_1 crossref_primary_10_1016_j_ijrmms_2012_06_003 crossref_primary_10_1016_j_enggeo_2025_107987 crossref_primary_10_3390_rs8020130 crossref_primary_10_3390_rs17020345 crossref_primary_10_1007_s11704_016_6170_6 crossref_primary_10_1002_gj_4708 crossref_primary_10_1016_j_enggeo_2024_107585 crossref_primary_10_3390_rs11060635 crossref_primary_10_3390_app10082960 crossref_primary_10_3390_jimaging10050106 crossref_primary_10_3390_rs14215314 crossref_primary_10_1016_j_cageo_2022_105241 crossref_primary_10_1007_s11042_019_08189_6 crossref_primary_10_1016_j_cageo_2022_105121 crossref_primary_10_3390_rs11182154 crossref_primary_10_1007_s10346_016_0773_8 crossref_primary_10_1016_j_tust_2025_106993 crossref_primary_10_1016_j_ijrmms_2025_106246 crossref_primary_10_1007_s12517_021_07209_w crossref_primary_10_1007_s00603_024_03804_x crossref_primary_10_1016_j_cageo_2012_12_001 crossref_primary_10_1016_j_ijrmms_2018_07_012 crossref_primary_10_1007_s00603_025_04415_w crossref_primary_10_1109_ACCESS_2017_2771201 crossref_primary_10_1007_s00603_022_02966_w crossref_primary_10_1111_phor_12145 crossref_primary_10_1109_TGRS_2019_2926201 crossref_primary_10_1007_s00603_025_04874_1 crossref_primary_10_3390_rs13081540 crossref_primary_10_1007_s00603_024_04109_9 crossref_primary_10_1088_1755_1315_861_2_022048 |
| Cites_doi | 10.1016/j.ijrmms.2012.06.003 10.5194/nhess-9-267-2009 10.1109/34.121791 10.1130/GES00104.1 10.1016/j.ijrmms.2010.11.009 10.1109/CVPR.1997.609468 10.1016/S0098-3004(02)00106-1 10.1016/j.tust.2010.04.008 10.5194/nhess-10-1877-2010 10.1007/s00603-010-0086-5 10.1117/1.1330700 10.1016/j.enggeo.2009.03.004 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Ltd |
| Copyright_xml | – notice: 2012 Elsevier Ltd |
| DBID | FBQ AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.cageo.2012.06.014 |
| DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Statistics |
| EISSN | 1873-7803 |
| EndPage | 114 |
| ExternalDocumentID | 10_1016_j_cageo_2012_06_014 US201600063968 S0098300412002099 |
| GeographicLocations | North America Europe |
| GeographicLocations_xml | – name: Europe – name: North America |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- ABPIF ABPTK FBQ 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a383t-d8d0a632d79e0b00e8f21de53bf82796882de502225efe5d7bc5159ec1912fe53 |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313611100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-3004 |
| IngestDate | Sun Sep 28 02:52:08 EDT 2025 Sat Nov 29 07:23:21 EST 2025 Tue Nov 18 22:07:41 EST 2025 Wed Dec 27 19:07:47 EST 2023 Fri Feb 23 02:34:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Engineering geology Benchmarking Photogrammetry Remote sensing LiDAR Rockfall |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a383t-d8d0a632d79e0b00e8f21de53bf82796882de502225efe5d7bc5159ec1912fe53 |
| Notes | http://dx.doi.org/10.1016/j.cageo.2012.06.014 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2000065602 |
| PQPubID | 24069 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2000065602 crossref_primary_10_1016_j_cageo_2012_06_014 crossref_citationtrail_10_1016_j_cageo_2012_06_014 fao_agris_US201600063968 elsevier_sciencedirect_doi_10_1016_j_cageo_2012_06_014 |
| PublicationCentury | 2000 |
| PublicationDate | January 2013 2013 2013-01-00 20130101 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: January 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | Computers & geosciences |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kemeny, Post (bib17) 2003; 29 ClimChAlp (bib8) 2008 Heikkila, J., Silven, O., 1997. A four-step camera calibration procedure with implicity image correction. In: Proceedings of the Computer Vision and Pattern Recognition, 1997, San Juan, Puerto Rico, pp. 1106–1112. Besl, McKay (bib2) 1992; 14 Gigi, Casagli (bib11) 2011; 48 Kemeny, J., Turner, K., 2008. Ground-Based LiDAR: Rock Slope Mapping and Assessment. US Department of Transportation Federal Highways Administration, Central Federal Lands Highway Division (Publication no. FHWACFL/TD-08-006). Derron, Jaboyedoff (bib3) 2010; 10 Lato, Vöge (bib19) 2012 Sturzenegger, Stead (bib24) 2009; 106 Hudson, Harrison. (bib15) 2000 Sturzenegger, Stead (bib26) 2009; 9 Amann, Bosch, Lescure, Myllyla (bib1) 2001; 40 Goodman (bib12) 1989 Borrmann, Elseberg, Lingemann, Nüchter (bib6) 2011 Fekete, Diederichs, Lato (bib10) 2010; 25 Lato, Diederichs, Hutchinson (bib20) 2010; 23 Mauthe, Thomas (bib21) 2005 Priest (bib23) 1993 . Hoek, E., 2007. Practical Rock Engineering. Vöge, M., Lato, M. Automated rockmass discontinuity mapping from 3D surface data: development of a new algorithm exploiting multi-core based computational resources. ISPRS Journal of Photogrammetry and Remote Sensing, submitted for publication (Manuscript no. PHOTO-D-12-00073). Nicholas, Sims (bib22) 2001 Bieniawski (bib4) 1989 Feng, Roshoff (bib9) 2004; 41 Sturzenegger, M., Stead, D., Beveridge A., Lee, S., 2009b. Long-range terrestrial digital photogrammetry for discontinuity characterization at Palabora open-pit mine. In: Didrichs, M., Grasselli, G. (eds), Proceedings of the 3rd CANUS Rock Mechanics Symposium, ROCKGEN09, May 2009, Toronto, paper 3984. Bonnaffe, Jennette, Andrews (bib5) 2007; 3 ISRM (bib16) 1978; 15 Call, R.D., J.P., Savely, D.E., Nicholas, 1976. Estimation of joint set characteristics from surface mapping data. In: Proceedings of the 17th Symposium on Rock Mechanics, SME of AIME. Goodman (10.1016/j.cageo.2012.06.014_bib12) 1989 10.1016/j.cageo.2012.06.014_bib13 Mauthe (10.1016/j.cageo.2012.06.014_bib21) 2005 10.1016/j.cageo.2012.06.014_bib14 Gigi (10.1016/j.cageo.2012.06.014_bib11) 2011; 48 Fekete (10.1016/j.cageo.2012.06.014_bib10) 2010; 25 Hudson (10.1016/j.cageo.2012.06.014_bib15) 2000 Amann (10.1016/j.cageo.2012.06.014_bib1) 2001; 40 ISRM (10.1016/j.cageo.2012.06.014_bib16) 1978; 15 10.1016/j.cageo.2012.06.014_bib27 Lato (10.1016/j.cageo.2012.06.014_bib20) 2010; 23 Nicholas (10.1016/j.cageo.2012.06.014_bib22) 2001 Bieniawski (10.1016/j.cageo.2012.06.014_bib4) 1989 10.1016/j.cageo.2012.06.014_bib25 Bonnaffe (10.1016/j.cageo.2012.06.014_bib5) 2007; 3 Kemeny (10.1016/j.cageo.2012.06.014_bib17) 2003; 29 Borrmann (10.1016/j.cageo.2012.06.014_bib6) 2011 Priest (10.1016/j.cageo.2012.06.014_bib23) 1993 Sturzenegger (10.1016/j.cageo.2012.06.014_bib26) 2009; 9 Besl (10.1016/j.cageo.2012.06.014_bib2) 1992; 14 10.1016/j.cageo.2012.06.014_bib7 Sturzenegger (10.1016/j.cageo.2012.06.014_bib24) 2009; 106 Derron (10.1016/j.cageo.2012.06.014_bib3) 2010; 10 Feng (10.1016/j.cageo.2012.06.014_bib9) 2004; 41 10.1016/j.cageo.2012.06.014_bib18 Lato (10.1016/j.cageo.2012.06.014_bib19) 2012 ClimChAlp (10.1016/j.cageo.2012.06.014_bib8) 2008 |
| References_xml | – volume: 3 start-page: 501 year: 2007 end-page: 510 ident: bib5 article-title: A method for acquiring and processing ground-based LiDAR data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models publication-title: Geosphere – volume: 48 start-page: 187 year: 2011 end-page: 198 ident: bib11 article-title: Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds publication-title: International Journal of Rock Mechanics and Mining Sciences – reference: Kemeny, J., Turner, K., 2008. Ground-Based LiDAR: Rock Slope Mapping and Assessment. US Department of Transportation Federal Highways Administration, Central Federal Lands Highway Division (Publication no. FHWACFL/TD-08-006). – year: 2012 ident: bib19 article-title: Automated mapping of rock discontinuities in 3D lidar models publication-title: International Journal of Rock Mechanics and Mining Sciences – volume: 15 start-page: 319 year: 1978 end-page: 368 ident: bib16 article-title: Suggested methods for the quantitative description of discontinuities in rock masses publication-title: International Journal of Rock Mechanics and Mining Sciences – reference: Vöge, M., Lato, M. Automated rockmass discontinuity mapping from 3D surface data: development of a new algorithm exploiting multi-core based computational resources. ISPRS Journal of Photogrammetry and Remote Sensing, submitted for publication (Manuscript no. PHOTO-D-12-00073). – volume: 40 start-page: 10 year: 2001 end-page: 19 ident: bib1 article-title: Laser ranging: a critical review of usual techniques for distance measurement publication-title: Optical Engineering – reference: Hoek, E., 2007. Practical Rock Engineering. – volume: 25 start-page: 614 year: 2010 end-page: 628 ident: bib10 article-title: Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels publication-title: Tunnelling and Underground Space Technology – reference: Sturzenegger, M., Stead, D., Beveridge A., Lee, S., 2009b. Long-range terrestrial digital photogrammetry for discontinuity characterization at Palabora open-pit mine. In: Didrichs, M., Grasselli, G. (eds), Proceedings of the 3rd CANUS Rock Mechanics Symposium, ROCKGEN09, May 2009, Toronto, paper 3984. – year: 2011 ident: bib6 article-title: The 3D hough transform for plane detection in point clouds: a review and a new accumulator design publication-title: 3DR Express – volume: 29 start-page: 65 year: 2003 end-page: 77 ident: bib17 article-title: Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces publication-title: Computers & Geoscience – reference: Heikkila, J., Silven, O., 1997. A four-step camera calibration procedure with implicity image correction. In: Proceedings of the Computer Vision and Pattern Recognition, 1997, San Juan, Puerto Rico, pp. 1106–1112. – reference: Call, R.D., J.P., Savely, D.E., Nicholas, 1976. Estimation of joint set characteristics from surface mapping data. In: Proceedings of the 17th Symposium on Rock Mechanics, SME of AIME. – volume: 41 start-page: 1 year: 2004 end-page: 6 ident: bib9 article-title: In situ mapping and documentation of rock fases using a full-coverage 3-D laser scanning technique publication-title: International Journal of Rock Mechanics and Mining Sciences – start-page: 11 year: 2001 end-page: 26 ident: bib22 article-title: Collecting and using geologic structure data for slope design publication-title: Slope Stability in Surface Mining – year: 1993 ident: bib23 article-title: Discontinuity Analysis for Rock Engineering – volume: 9 start-page: 267 year: 2009 end-page: 287 ident: bib26 article-title: Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques publication-title: Natural Hazards and Earth System Sciences – volume: 106 start-page: 163 year: 2009 end-page: 182 ident: bib24 article-title: Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts publication-title: Engineering Geology – volume: 10 start-page: 1877 year: 2010 end-page: 1879 ident: bib3 article-title: LIDAR and DEM techniques for landslides monitoring and characterization publication-title: Natural Hazards and Earth System Sciences – reference: . – year: 2005 ident: bib21 article-title: Professional Content Management Systems: Handling Digital Media Assets – volume: 14 start-page: 239 year: 1992 end-page: 256 ident: bib2 article-title: A method for registration of 3-D shapes publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 23 start-page: 615 year: 2010 end-page: 628 ident: bib20 article-title: Bias correction for static LiDAR scanning of rock outcrops for structural characterization publication-title: Rock Mechanics and Rock Engineering – year: 2008 ident: bib8 article-title: Slope Monitoring Methods: A State of the Art Report. Strategic Interreg III B Project ClimChAlp Report – year: 2000 ident: bib15 article-title: Engineering Rock Mechanics – year: 1989 ident: bib12 publication-title: Rock Mechanics – year: 1989 ident: bib4 article-title: Engineering Rock Mass Classifications – year: 2012 ident: 10.1016/j.cageo.2012.06.014_bib19 article-title: Automated mapping of rock discontinuities in 3D lidar models publication-title: International Journal of Rock Mechanics and Mining Sciences doi: 10.1016/j.ijrmms.2012.06.003 – volume: 9 start-page: 267 year: 2009 ident: 10.1016/j.cageo.2012.06.014_bib26 article-title: Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques publication-title: Natural Hazards and Earth System Sciences doi: 10.5194/nhess-9-267-2009 – ident: 10.1016/j.cageo.2012.06.014_bib18 – volume: 14 start-page: 239 year: 1992 ident: 10.1016/j.cageo.2012.06.014_bib2 article-title: A method for registration of 3-D shapes publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.121791 – ident: 10.1016/j.cageo.2012.06.014_bib14 – ident: 10.1016/j.cageo.2012.06.014_bib25 – volume: 15 start-page: 319 year: 1978 ident: 10.1016/j.cageo.2012.06.014_bib16 article-title: Suggested methods for the quantitative description of discontinuities in rock masses publication-title: International Journal of Rock Mechanics and Mining Sciences – volume: 3 start-page: 501 year: 2007 ident: 10.1016/j.cageo.2012.06.014_bib5 article-title: A method for acquiring and processing ground-based LiDAR data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models publication-title: Geosphere doi: 10.1130/GES00104.1 – volume: 48 start-page: 187 year: 2011 ident: 10.1016/j.cageo.2012.06.014_bib11 article-title: Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds publication-title: International Journal of Rock Mechanics and Mining Sciences doi: 10.1016/j.ijrmms.2010.11.009 – year: 1989 ident: 10.1016/j.cageo.2012.06.014_bib4 – ident: 10.1016/j.cageo.2012.06.014_bib7 – year: 2011 ident: 10.1016/j.cageo.2012.06.014_bib6 article-title: The 3D hough transform for plane detection in point clouds: a review and a new accumulator design publication-title: 3DR Express – ident: 10.1016/j.cageo.2012.06.014_bib13 doi: 10.1109/CVPR.1997.609468 – ident: 10.1016/j.cageo.2012.06.014_bib27 – start-page: 11 year: 2001 ident: 10.1016/j.cageo.2012.06.014_bib22 article-title: Collecting and using geologic structure data for slope design – year: 1989 ident: 10.1016/j.cageo.2012.06.014_bib12 – year: 2000 ident: 10.1016/j.cageo.2012.06.014_bib15 – volume: 29 start-page: 65 year: 2003 ident: 10.1016/j.cageo.2012.06.014_bib17 article-title: Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces publication-title: Computers & Geoscience doi: 10.1016/S0098-3004(02)00106-1 – year: 2005 ident: 10.1016/j.cageo.2012.06.014_bib21 – volume: 25 start-page: 614 issue: 5 year: 2010 ident: 10.1016/j.cageo.2012.06.014_bib10 article-title: Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2010.04.008 – year: 2008 ident: 10.1016/j.cageo.2012.06.014_bib8 – volume: 10 start-page: 1877 year: 2010 ident: 10.1016/j.cageo.2012.06.014_bib3 article-title: LIDAR and DEM techniques for landslides monitoring and characterization publication-title: Natural Hazards and Earth System Sciences doi: 10.5194/nhess-10-1877-2010 – volume: 41 start-page: 1 issue: 3 year: 2004 ident: 10.1016/j.cageo.2012.06.014_bib9 article-title: In situ mapping and documentation of rock fases using a full-coverage 3-D laser scanning technique publication-title: International Journal of Rock Mechanics and Mining Sciences – volume: 23 start-page: 615 year: 2010 ident: 10.1016/j.cageo.2012.06.014_bib20 article-title: Bias correction for static LiDAR scanning of rock outcrops for structural characterization publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/s00603-010-0086-5 – volume: 40 start-page: 10 issue: 1 year: 2001 ident: 10.1016/j.cageo.2012.06.014_bib1 article-title: Laser ranging: a critical review of usual techniques for distance measurement publication-title: Optical Engineering doi: 10.1117/1.1330700 – year: 1993 ident: 10.1016/j.cageo.2012.06.014_bib23 – volume: 106 start-page: 163 year: 2009 ident: 10.1016/j.cageo.2012.06.014_bib24 article-title: Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts publication-title: Engineering Geology doi: 10.1016/j.enggeo.2009.03.004 |
| SSID | ssj0002285 |
| Score | 2.394414 |
| Snippet | Remote sensing methods are now used to assess rockmass characteristics along transportation corridors, in mines and tunnels, and in other areas where rock... |
| SourceID | proquest crossref fao elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106 |
| SubjectTerms | algorithms Benchmarking computers data collection Engineering geology Europe humans infrastructure LiDAR North America Photogrammetry Remote sensing Rockfall rockfalls statistics transportation |
| Title | Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry |
| URI | https://dx.doi.org/10.1016/j.cageo.2012.06.014 https://www.proquest.com/docview/2000065602 |
| Volume | 50 |
| WOSCitedRecordID | wos000313611100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DqS9TDBAG18yEm-QKXHSxN5bgbLxoQmVTepb5CROx9jSqWmn7Y1_g_-Wu3M-2lWb4IGXqLXs1PL9ej6f737H2GsBNqhKc-Wg_Y2k2pmjZBg6UZbrwPX9MMsTKjYRHR7K0Uh963R-17kwl2dRUcirK3XxX0UNbSBsTJ39B3E3L4UG-AxChyeIHZ5_JfghaLg3CczoBE_7A7D-GkeTxghymAjdFJQ_6H6dHOeVP6G0MZV0D4z9YXP7ea6Rv_oGrfO8tMlRH_pDyzRwMplRnNe5mS3nWNdVI0rC2NhU3Jlt5OJXTYWcWq_sF3RYXi_dWB3o6VRTIb3hbtPvnanusPYXPRc25dQ60upkmjZyiZSzkg4SgNmtyepjGflOJF1_UWFbptpK43puuLB5ezYjdWVfsC6KUzjzjynlEz3A4a7rBe022AQnHn8XSLtHxlso19g64FnJLlvvfxqMPjfbvBCyVxOy4qxrSisKHlz5ndvMnrVcT1bMALJtjh6wzepQwvsWTA9ZxxRb7P4-FX2-3mIbeCKxkn_EfiG-OOFrjy-ii2tu0cVbdHEAB2_QxQFdvEEXr9HFb6CLE7o4oYtesIyux-z44-Do_YFTlfFwtC_9mZPJzNWhL7JIGRe0vJG58DLT85NcigiWWAr4Ro4Hk5teFiUpGtkm9ZQnoMF_wrrFpDDbjKduEEUygKFSIO9RkghllPEDUAA6kMEOE_Uqx2nFcY-lVs7iOpjxNCbRxCiaGEM6PRj0thl0YSle7u4e1uKLq7-MtT5jANvdA7dB2LEew2rGyyDbYa9qBMSg3vHOThdmMi-xSiyeEkJXPL19-DO2IahKC3oGn7PubDo3L9i99BKwMX1ZAfcP6k7BOQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rock+bench%3A+Establishing+a+common+repository+and+standards+for+assessing+rockmass+characteristics+using+LiDAR+and+photogrammetry&rft.jtitle=Computers+%26+geosciences&rft.au=Lato%2C+M&rft.au=Kemeny%2C+J&rft.au=Harrap%2C+R.M&rft.au=Bevan%2C+G&rft.date=2013&rft.pub=Elsevier+Ltd&rft.issn=0098-3004&rft.eissn=1873-7803&rft.volume=50&rft.spage=106&rft.epage=114&rft_id=info:doi/10.1016%2Fj.cageo.2012.06.014&rft.externalDocID=US201600063968 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |