Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation
Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues into defined-sequence DNA primed-RNA templates. 3'-Azido-3'-deoxythymidine 5'-triphosphate (AZTTP) was almost as efficient a su...
Uloženo v:
| Vydáno v: | Biochemistry (Easton) Ročník 31; číslo 18; s. 4473 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
12.05.1992
|
| Témata: | |
| ISSN: | 0006-2960 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues into defined-sequence DNA primed-RNA templates. 3'-Azido-3'-deoxythymidine 5'-triphosphate (AZTTP) was almost as efficient a substrate (kcat/Km) as dTTP for the enzyme. In contrast, the four 2',3'-dideoxynucleoside 5'-triphosphates and 3'-deoxy-2',3'-didehydrothymidine 5'-triphosphate (d4TTP) were 6-30-fold less efficient substrates of the enzyme. The kcat values for all nucleotide analogues were similar, consistent with a kinetic model in which the steady-state rate-limiting step was dissociation of the template-primer from the enzyme [Reardon, J. E., & Miller, W. H. (1990) J. Biol. Chem. 265, 20302-20307]. The pre-steady-state kinetics of single-nucleotide incorporation were consistent with the kinetic model: [formula: see text] where E, TP, and dNTP represent reverse transcriptase, a defined-sequence DNA primed-RNA template, and 2'-deoxynucleoside 5'-triphosphate (or analogue), respectively. The dissociation constant (Kd1) for template-primer binding was 10 nM, and the estimated rate constants for association and dissociation of the enzyme.template-primer complex were 4 x 10(6) M-1 s-1 and 0.04 s-1, respectively. The dissociation constants (Kd2) for dTTP, AZTTP, and 3'-deoxythymidine 5'-triphosphate (ddTTP) were 9, 11, and 4.6 microM, respectively. Thus, the differences in steady-state Km values were not due to differences in binding of the nucleotide analogues to the enzyme. In contrast, the rate-limiting step during single-nucleotide incorporation (kp) was sensitive to the structure of the nucleotide substrate. |
|---|---|
| AbstractList | Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues into defined-sequence DNA primed-RNA templates. 3'-Azido-3'-deoxythymidine 5'-triphosphate (AZTTP) was almost as efficient a substrate (kcat/Km) as dTTP for the enzyme. In contrast, the four 2',3'-dideoxynucleoside 5'-triphosphates and 3'-deoxy-2',3'-didehydrothymidine 5'-triphosphate (d4TTP) were 6-30-fold less efficient substrates of the enzyme. The kcat values for all nucleotide analogues were similar, consistent with a kinetic model in which the steady-state rate-limiting step was dissociation of the template-primer from the enzyme [Reardon, J. E., & Miller, W. H. (1990) J. Biol. Chem. 265, 20302-20307]. The pre-steady-state kinetics of single-nucleotide incorporation were consistent with the kinetic model: [formula: see text] where E, TP, and dNTP represent reverse transcriptase, a defined-sequence DNA primed-RNA template, and 2'-deoxynucleoside 5'-triphosphate (or analogue), respectively. The dissociation constant (Kd1) for template-primer binding was 10 nM, and the estimated rate constants for association and dissociation of the enzyme.template-primer complex were 4 x 10(6) M-1 s-1 and 0.04 s-1, respectively. The dissociation constants (Kd2) for dTTP, AZTTP, and 3'-deoxythymidine 5'-triphosphate (ddTTP) were 9, 11, and 4.6 microM, respectively. Thus, the differences in steady-state Km values were not due to differences in binding of the nucleotide analogues to the enzyme. In contrast, the rate-limiting step during single-nucleotide incorporation (kp) was sensitive to the structure of the nucleotide substrate.Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues into defined-sequence DNA primed-RNA templates. 3'-Azido-3'-deoxythymidine 5'-triphosphate (AZTTP) was almost as efficient a substrate (kcat/Km) as dTTP for the enzyme. In contrast, the four 2',3'-dideoxynucleoside 5'-triphosphates and 3'-deoxy-2',3'-didehydrothymidine 5'-triphosphate (d4TTP) were 6-30-fold less efficient substrates of the enzyme. The kcat values for all nucleotide analogues were similar, consistent with a kinetic model in which the steady-state rate-limiting step was dissociation of the template-primer from the enzyme [Reardon, J. E., & Miller, W. H. (1990) J. Biol. Chem. 265, 20302-20307]. The pre-steady-state kinetics of single-nucleotide incorporation were consistent with the kinetic model: [formula: see text] where E, TP, and dNTP represent reverse transcriptase, a defined-sequence DNA primed-RNA template, and 2'-deoxynucleoside 5'-triphosphate (or analogue), respectively. The dissociation constant (Kd1) for template-primer binding was 10 nM, and the estimated rate constants for association and dissociation of the enzyme.template-primer complex were 4 x 10(6) M-1 s-1 and 0.04 s-1, respectively. The dissociation constants (Kd2) for dTTP, AZTTP, and 3'-deoxythymidine 5'-triphosphate (ddTTP) were 9, 11, and 4.6 microM, respectively. Thus, the differences in steady-state Km values were not due to differences in binding of the nucleotide analogues to the enzyme. In contrast, the rate-limiting step during single-nucleotide incorporation (kp) was sensitive to the structure of the nucleotide substrate. Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues into defined-sequence DNA primed-RNA templates. 3'-Azido-3'-deoxythymidine 5'-triphosphate (AZTTP) was almost as efficient a substrate (kcat/Km) as dTTP for the enzyme. In contrast, the four 2',3'-dideoxynucleoside 5'-triphosphates and 3'-deoxy-2',3'-didehydrothymidine 5'-triphosphate (d4TTP) were 6-30-fold less efficient substrates of the enzyme. The kcat values for all nucleotide analogues were similar, consistent with a kinetic model in which the steady-state rate-limiting step was dissociation of the template-primer from the enzyme [Reardon, J. E., & Miller, W. H. (1990) J. Biol. Chem. 265, 20302-20307]. The pre-steady-state kinetics of single-nucleotide incorporation were consistent with the kinetic model: [formula: see text] where E, TP, and dNTP represent reverse transcriptase, a defined-sequence DNA primed-RNA template, and 2'-deoxynucleoside 5'-triphosphate (or analogue), respectively. The dissociation constant (Kd1) for template-primer binding was 10 nM, and the estimated rate constants for association and dissociation of the enzyme.template-primer complex were 4 x 10(6) M-1 s-1 and 0.04 s-1, respectively. The dissociation constants (Kd2) for dTTP, AZTTP, and 3'-deoxythymidine 5'-triphosphate (ddTTP) were 9, 11, and 4.6 microM, respectively. Thus, the differences in steady-state Km values were not due to differences in binding of the nucleotide analogues to the enzyme. In contrast, the rate-limiting step during single-nucleotide incorporation (kp) was sensitive to the structure of the nucleotide substrate. |
| Author | Reardon, J E |
| Author_xml | – sequence: 1 givenname: J E surname: Reardon fullname: Reardon, J E organization: Division of Experimental Therapy, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/1374638$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVkD1PwzAYhD0UlVKYmJE8sQX8ETkJG6qAIlVigTl6a7-WDIkd_FGp_Hoi0YXlTnd6dMNdkIUPHgm55uyOM8Hv944xLiXMsiArxpiqRKfYOblI6XOONWvqJVly2dRKtivysy0jeOrGsfhg0Drt0OsjPbhYEo14wJiQ5gg-6eimDAkfaMoI5lilDBkpeEOniNW_8st5zE4nGiz1RQ8YsjNIndchTiFCdsFfkjMLQ8Krk6_Jx_PT-2Zb7d5eXjePuwpkK3OlAFTD67pWbWcADSIzFpS2DQNlODPGtnxvpEUhtZYWhASlhOikZqppO7Emt3-7UwzfBVPuR5c0DgN4DCX1zYx2tRQzeHMCy35E00_RjRCP_eks8QuWDG8r |
| CitedBy_id | crossref_primary_10_1016_j_jmoldx_2014_01_006 crossref_primary_10_5483_BMBRep_2003_36_3_243 crossref_primary_10_1016_S0300_9084_97_86734_X crossref_primary_10_1074_jbc_M110_178582 crossref_primary_10_1177_095632029500600601 crossref_primary_10_1016_j_bmc_2007_05_047 crossref_primary_10_1007_s00253_007_0919_7 crossref_primary_10_1093_nar_gkq169 crossref_primary_10_1074_jbc_RA120_015273 crossref_primary_10_1016_S0021_9258_19_51068_7 crossref_primary_10_1016_S0021_9258_19_61933_2 crossref_primary_10_1016_0958_1669_94_90051_5 crossref_primary_10_1074_jbc_M604460200 crossref_primary_10_1371_journal_pone_0041712 crossref_primary_10_1016_S0301_4622_99_00049_6 crossref_primary_10_1074_jbc_M205303200 crossref_primary_10_1074_jbc_RA118_004324 crossref_primary_10_1002_elps_200900419 crossref_primary_10_1016_j_jmb_2010_06_001 crossref_primary_10_1128_AAC_43_8_1835 crossref_primary_10_1074_jbc_M109_022525 crossref_primary_10_1016_S0021_9258_19_36820_6 crossref_primary_10_1074_jbc_270_17_9740 crossref_primary_10_1126_science_7516580 crossref_primary_10_1016_S0021_9258_17_33964_9 crossref_primary_10_1186_s12977_017_0347_4 crossref_primary_10_1002_pro_3559 crossref_primary_10_1074_jbc_M206725200 crossref_primary_10_3390_life11111209 crossref_primary_10_1093_nar_gkx720 crossref_primary_10_1016_j_ab_2020_113768 crossref_primary_10_1073_pnas_94_21_11279 crossref_primary_10_3390_life15091338 crossref_primary_10_1016_0166_3542_94_90021_3 crossref_primary_10_1110_ps_072829007 crossref_primary_10_1016_S0021_9258_18_35706_5 crossref_primary_10_1074_jbc_274_50_35768 crossref_primary_10_1080_07328319908044627 crossref_primary_10_1002_qua_10580 crossref_primary_10_1016_S0021_9258_18_82414_0 crossref_primary_10_1016_S0021_9258_19_73999_4 crossref_primary_10_1074_jbc_274_49_34547 crossref_primary_10_1016_S1368_7646_98_80211_2 crossref_primary_10_1128_AAC_04163_14 crossref_primary_10_1074_jbc_271_21_12213 crossref_primary_10_1002_cbic_200700308 crossref_primary_10_1016_0006_2952_95_96620_A crossref_primary_10_1016_j_virol_2019_08_010 crossref_primary_10_1128_AAC_00904_07 crossref_primary_10_1021_ja4018418 crossref_primary_10_1016_0968_0896_95_00030_K crossref_primary_10_1128_AAC_44_5_1186_1194_2000 crossref_primary_10_1074_jbc_270_40_23605 crossref_primary_10_1128_JVI_76_8_3865_3872_2002 crossref_primary_10_1074_jbc_M107003200 crossref_primary_10_1016_0166_3542_95_00910_8 crossref_primary_10_1016_j_jmb_2008_10_071 crossref_primary_10_1074_jbc_M803094200 crossref_primary_10_1517_13543784_5_8_985 crossref_primary_10_1016_S0021_9258_18_98417_6 crossref_primary_10_1016_S0021_9258_18_52937_9 crossref_primary_10_1110_ps_051445605 crossref_primary_10_1002_pro_5560030903 crossref_primary_10_1074_jbc_273_38_24425 crossref_primary_10_1016_S0021_9258_18_53227_0 crossref_primary_10_1016_j_febslet_2012_12_007 crossref_primary_10_1515_hsz_2015_0115 crossref_primary_10_1016_S0021_9258_18_46899_8 crossref_primary_10_1074_jbc_M302928200 crossref_primary_10_1074_jbc_273_23_14596 crossref_primary_10_1126_science_1279806 crossref_primary_10_1016_0014_5793_94_01123_0 crossref_primary_10_1016_S0891_5849_98_00199_3 crossref_primary_10_1006_jmbi_1999_3057 crossref_primary_10_1016_j_antiviral_2014_12_016 crossref_primary_10_1074_jbc_275_8_5329 crossref_primary_10_1016_0006_2952_94_90077_9 crossref_primary_10_1016_0166_3542_93_90039_L crossref_primary_10_1093_nar_gkx1168 crossref_primary_10_1006_abio_2001_5053 crossref_primary_10_1128_AAC_44_1_217_221_2000 crossref_primary_10_1016_S0960_894X_00_00123_2 crossref_primary_10_1128_JVI_73_8_6700_6707_1999 crossref_primary_10_1074_jbc_M115_691576 crossref_primary_10_1074_jbc_M100513200 crossref_primary_10_1016_j_ejps_2016_01_016 crossref_primary_10_1016_j_antiviral_2009_09_014 crossref_primary_10_1021_bi991992s crossref_primary_10_1016_S0021_9258_19_74509_8 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/bi00133a013 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| ExternalDocumentID | 1374638 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X .55 .GJ .HR .K2 186 1WB 23N 3O- 53G 55A 5GY 5RE 5VS 6TJ 85S AABXI AAYJJ ABDPE ABHMW ABJNI ABMVS ABOCM ACGFS ACJ ACNCT ACRPL ACS ADNMO AENEX AEYZD AFFNX AGXLV AIDAL ALMA_UNASSIGNED_HOLDINGS ANPPW ANTXH AQSVZ BAANH CGR CS3 CUPRZ CUY CVF D0L DU5 EBS ECM EIF F5P GGK J5H JG~ L7B LG6 MVM NHB NPM OHT P2P RNS ROL TN5 VG9 VQA VXZ W1F WH7 X7M XOL YQJ YXE YYP YZZ ZCA ZE2 ZGI ZXP ~02 ~KM 7X8 ABBLG AETEA AGQPQ |
| ID | FETCH-LOGICAL-a383t-6aa671444689daedee0dfa6cf70a6d10ddf81bd3fe23cc3fa23a662293c067892 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 158 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1021_bi00133a013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-2960 |
| IngestDate | Thu Oct 02 11:21:52 EDT 2025 Wed Feb 19 02:36:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a383t-6aa671444689daedee0dfa6cf70a6d10ddf81bd3fe23cc3fa23a662293c067892 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 1374638 |
| PQID | 72939432 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_72939432 pubmed_primary_1374638 |
| PublicationCentury | 1900 |
| PublicationDate | 1992-05-12 |
| PublicationDateYYYYMMDD | 1992-05-12 |
| PublicationDate_xml | – month: 05 year: 1992 text: 1992-05-12 day: 12 |
| PublicationDecade | 1990 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Biochemistry (Easton) |
| PublicationTitleAlternate | Biochemistry |
| PublicationYear | 1992 |
| SSID | ssj0004074 |
| Score | 1.7700453 |
| Snippet | Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4473 |
| SubjectTerms | Antiviral Agents - pharmacology Base Sequence Binding, Competitive Dideoxynucleotides HIV - enzymology Molecular Sequence Data Oligonucleotide Probes - chemistry Reverse Transcriptase Inhibitors RNA-Directed DNA Polymerase - chemistry Templates, Genetic Thionucleotides - chemistry Thymine Nucleotides - pharmacokinetics Thymine Nucleotides - pharmacology Zidovudine - analogs & derivatives Zidovudine - pharmacology |
| Title | Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/1374638 https://www.proquest.com/docview/72939432 |
| Volume | 31 |
| WOSCitedRecordID | wos10_1021_bi00133a013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gV58VIv1uQfxtphmk00qghRRPGjxoNJb2e4DgpjUNhb01zuzSUAP4sFLDoFAmJ3M981k5huAkzA1obFyzBViF4-UCziSes0NYZHCiKl8Kfv5LhkM0uGw97AAF80sDLVVNjHRB2pTaKqRnyEJFL1IhJeTN047o-jfar1AYxGWBRIZauhKht-0woNagxlz5hCJej2dh6B2Ns6I-ggV0FaD35ilR5ibjf-92yas18yS9StX2IIFm7dgu59jVv36wU6Z7_X0RfQWrF41e9624dPX8VlGgyKFsaQoQeOYbJ5N32eMFJ6mM8tKwjQfYRD2zpn3jQ_ux5GYyg2jbpIfN1-QvpIENCscy0k0uSgzYxmJQVTayegQO_B0c_14dcvrjQxcYSZbcqmUTDAFi2TaM8oaawPjlNQuCZQ03cAYhzTYCGdDobVwCs9byhDNowkVe2EblvIit7vAUszTYqQfwVh3o7GJVRBroWWc2MQlWscdOG5sPUKD0G8MldvifTZqrN2BdnVco0klzDHqiiTCeLL356P7sFa13ca8Gx7AssNP3R7Cip6X2Wx65P0Ir4OH-y97Ktbx |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+immunodeficiency+virus+reverse+transcriptase%3A+steady-state+and+pre-steady-state+kinetics+of+nucleotide+incorporation&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Reardon%2C+J+E&rft.date=1992-05-12&rft.issn=0006-2960&rft.volume=31&rft.issue=18&rft.spage=4473&rft_id=info:doi/10.1021%2Fbi00133a013&rft_id=info%3Apmid%2F1374638&rft_id=info%3Apmid%2F1374638&rft.externalDocID=1374638 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |