Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation

Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues into defined-sequence DNA primed-RNA templates. 3'-Azido-3'-deoxythymidine 5'-triphosphate (AZTTP) was almost as efficient a su...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biochemistry (Easton) Ročník 31; číslo 18; s. 4473
Hlavní autor: Reardon, J E
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 12.05.1992
Témata:
ISSN:0006-2960
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues into defined-sequence DNA primed-RNA templates. 3'-Azido-3'-deoxythymidine 5'-triphosphate (AZTTP) was almost as efficient a substrate (kcat/Km) as dTTP for the enzyme. In contrast, the four 2',3'-dideoxynucleoside 5'-triphosphates and 3'-deoxy-2',3'-didehydrothymidine 5'-triphosphate (d4TTP) were 6-30-fold less efficient substrates of the enzyme. The kcat values for all nucleotide analogues were similar, consistent with a kinetic model in which the steady-state rate-limiting step was dissociation of the template-primer from the enzyme [Reardon, J. E., & Miller, W. H. (1990) J. Biol. Chem. 265, 20302-20307]. The pre-steady-state kinetics of single-nucleotide incorporation were consistent with the kinetic model: [formula: see text] where E, TP, and dNTP represent reverse transcriptase, a defined-sequence DNA primed-RNA template, and 2'-deoxynucleoside 5'-triphosphate (or analogue), respectively. The dissociation constant (Kd1) for template-primer binding was 10 nM, and the estimated rate constants for association and dissociation of the enzyme.template-primer complex were 4 x 10(6) M-1 s-1 and 0.04 s-1, respectively. The dissociation constants (Kd2) for dTTP, AZTTP, and 3'-deoxythymidine 5'-triphosphate (ddTTP) were 9, 11, and 4.6 microM, respectively. Thus, the differences in steady-state Km values were not due to differences in binding of the nucleotide analogues to the enzyme. In contrast, the rate-limiting step during single-nucleotide incorporation (kp) was sensitive to the structure of the nucleotide substrate.
AbstractList Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues into defined-sequence DNA primed-RNA templates. 3'-Azido-3'-deoxythymidine 5'-triphosphate (AZTTP) was almost as efficient a substrate (kcat/Km) as dTTP for the enzyme. In contrast, the four 2',3'-dideoxynucleoside 5'-triphosphates and 3'-deoxy-2',3'-didehydrothymidine 5'-triphosphate (d4TTP) were 6-30-fold less efficient substrates of the enzyme. The kcat values for all nucleotide analogues were similar, consistent with a kinetic model in which the steady-state rate-limiting step was dissociation of the template-primer from the enzyme [Reardon, J. E., & Miller, W. H. (1990) J. Biol. Chem. 265, 20302-20307]. The pre-steady-state kinetics of single-nucleotide incorporation were consistent with the kinetic model: [formula: see text] where E, TP, and dNTP represent reverse transcriptase, a defined-sequence DNA primed-RNA template, and 2'-deoxynucleoside 5'-triphosphate (or analogue), respectively. The dissociation constant (Kd1) for template-primer binding was 10 nM, and the estimated rate constants for association and dissociation of the enzyme.template-primer complex were 4 x 10(6) M-1 s-1 and 0.04 s-1, respectively. The dissociation constants (Kd2) for dTTP, AZTTP, and 3'-deoxythymidine 5'-triphosphate (ddTTP) were 9, 11, and 4.6 microM, respectively. Thus, the differences in steady-state Km values were not due to differences in binding of the nucleotide analogues to the enzyme. In contrast, the rate-limiting step during single-nucleotide incorporation (kp) was sensitive to the structure of the nucleotide substrate.Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues into defined-sequence DNA primed-RNA templates. 3'-Azido-3'-deoxythymidine 5'-triphosphate (AZTTP) was almost as efficient a substrate (kcat/Km) as dTTP for the enzyme. In contrast, the four 2',3'-dideoxynucleoside 5'-triphosphates and 3'-deoxy-2',3'-didehydrothymidine 5'-triphosphate (d4TTP) were 6-30-fold less efficient substrates of the enzyme. The kcat values for all nucleotide analogues were similar, consistent with a kinetic model in which the steady-state rate-limiting step was dissociation of the template-primer from the enzyme [Reardon, J. E., & Miller, W. H. (1990) J. Biol. Chem. 265, 20302-20307]. The pre-steady-state kinetics of single-nucleotide incorporation were consistent with the kinetic model: [formula: see text] where E, TP, and dNTP represent reverse transcriptase, a defined-sequence DNA primed-RNA template, and 2'-deoxynucleoside 5'-triphosphate (or analogue), respectively. The dissociation constant (Kd1) for template-primer binding was 10 nM, and the estimated rate constants for association and dissociation of the enzyme.template-primer complex were 4 x 10(6) M-1 s-1 and 0.04 s-1, respectively. The dissociation constants (Kd2) for dTTP, AZTTP, and 3'-deoxythymidine 5'-triphosphate (ddTTP) were 9, 11, and 4.6 microM, respectively. Thus, the differences in steady-state Km values were not due to differences in binding of the nucleotide analogues to the enzyme. In contrast, the rate-limiting step during single-nucleotide incorporation (kp) was sensitive to the structure of the nucleotide substrate.
Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues into defined-sequence DNA primed-RNA templates. 3'-Azido-3'-deoxythymidine 5'-triphosphate (AZTTP) was almost as efficient a substrate (kcat/Km) as dTTP for the enzyme. In contrast, the four 2',3'-dideoxynucleoside 5'-triphosphates and 3'-deoxy-2',3'-didehydrothymidine 5'-triphosphate (d4TTP) were 6-30-fold less efficient substrates of the enzyme. The kcat values for all nucleotide analogues were similar, consistent with a kinetic model in which the steady-state rate-limiting step was dissociation of the template-primer from the enzyme [Reardon, J. E., & Miller, W. H. (1990) J. Biol. Chem. 265, 20302-20307]. The pre-steady-state kinetics of single-nucleotide incorporation were consistent with the kinetic model: [formula: see text] where E, TP, and dNTP represent reverse transcriptase, a defined-sequence DNA primed-RNA template, and 2'-deoxynucleoside 5'-triphosphate (or analogue), respectively. The dissociation constant (Kd1) for template-primer binding was 10 nM, and the estimated rate constants for association and dissociation of the enzyme.template-primer complex were 4 x 10(6) M-1 s-1 and 0.04 s-1, respectively. The dissociation constants (Kd2) for dTTP, AZTTP, and 3'-deoxythymidine 5'-triphosphate (ddTTP) were 9, 11, and 4.6 microM, respectively. Thus, the differences in steady-state Km values were not due to differences in binding of the nucleotide analogues to the enzyme. In contrast, the rate-limiting step during single-nucleotide incorporation (kp) was sensitive to the structure of the nucleotide substrate.
Author Reardon, J E
Author_xml – sequence: 1
  givenname: J E
  surname: Reardon
  fullname: Reardon, J E
  organization: Division of Experimental Therapy, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709
BackLink https://www.ncbi.nlm.nih.gov/pubmed/1374638$$D View this record in MEDLINE/PubMed
BookMark eNpVkD1PwzAYhD0UlVKYmJE8sQX8ETkJG6qAIlVigTl6a7-WDIkd_FGp_Hoi0YXlTnd6dMNdkIUPHgm55uyOM8Hv944xLiXMsiArxpiqRKfYOblI6XOONWvqJVly2dRKtivysy0jeOrGsfhg0Drt0OsjPbhYEo14wJiQ5gg-6eimDAkfaMoI5lilDBkpeEOniNW_8st5zE4nGiz1RQ8YsjNIndchTiFCdsFfkjMLQ8Krk6_Jx_PT-2Zb7d5eXjePuwpkK3OlAFTD67pWbWcADSIzFpS2DQNlODPGtnxvpEUhtZYWhASlhOikZqppO7Emt3-7UwzfBVPuR5c0DgN4DCX1zYx2tRQzeHMCy35E00_RjRCP_eks8QuWDG8r
CitedBy_id crossref_primary_10_1016_j_jmoldx_2014_01_006
crossref_primary_10_5483_BMBRep_2003_36_3_243
crossref_primary_10_1016_S0300_9084_97_86734_X
crossref_primary_10_1074_jbc_M110_178582
crossref_primary_10_1177_095632029500600601
crossref_primary_10_1016_j_bmc_2007_05_047
crossref_primary_10_1007_s00253_007_0919_7
crossref_primary_10_1093_nar_gkq169
crossref_primary_10_1074_jbc_RA120_015273
crossref_primary_10_1016_S0021_9258_19_51068_7
crossref_primary_10_1016_S0021_9258_19_61933_2
crossref_primary_10_1016_0958_1669_94_90051_5
crossref_primary_10_1074_jbc_M604460200
crossref_primary_10_1371_journal_pone_0041712
crossref_primary_10_1016_S0301_4622_99_00049_6
crossref_primary_10_1074_jbc_M205303200
crossref_primary_10_1074_jbc_RA118_004324
crossref_primary_10_1002_elps_200900419
crossref_primary_10_1016_j_jmb_2010_06_001
crossref_primary_10_1128_AAC_43_8_1835
crossref_primary_10_1074_jbc_M109_022525
crossref_primary_10_1016_S0021_9258_19_36820_6
crossref_primary_10_1074_jbc_270_17_9740
crossref_primary_10_1126_science_7516580
crossref_primary_10_1016_S0021_9258_17_33964_9
crossref_primary_10_1186_s12977_017_0347_4
crossref_primary_10_1002_pro_3559
crossref_primary_10_1074_jbc_M206725200
crossref_primary_10_3390_life11111209
crossref_primary_10_1093_nar_gkx720
crossref_primary_10_1016_j_ab_2020_113768
crossref_primary_10_1073_pnas_94_21_11279
crossref_primary_10_3390_life15091338
crossref_primary_10_1016_0166_3542_94_90021_3
crossref_primary_10_1110_ps_072829007
crossref_primary_10_1016_S0021_9258_18_35706_5
crossref_primary_10_1074_jbc_274_50_35768
crossref_primary_10_1080_07328319908044627
crossref_primary_10_1002_qua_10580
crossref_primary_10_1016_S0021_9258_18_82414_0
crossref_primary_10_1016_S0021_9258_19_73999_4
crossref_primary_10_1074_jbc_274_49_34547
crossref_primary_10_1016_S1368_7646_98_80211_2
crossref_primary_10_1128_AAC_04163_14
crossref_primary_10_1074_jbc_271_21_12213
crossref_primary_10_1002_cbic_200700308
crossref_primary_10_1016_0006_2952_95_96620_A
crossref_primary_10_1016_j_virol_2019_08_010
crossref_primary_10_1128_AAC_00904_07
crossref_primary_10_1021_ja4018418
crossref_primary_10_1016_0968_0896_95_00030_K
crossref_primary_10_1128_AAC_44_5_1186_1194_2000
crossref_primary_10_1074_jbc_270_40_23605
crossref_primary_10_1128_JVI_76_8_3865_3872_2002
crossref_primary_10_1074_jbc_M107003200
crossref_primary_10_1016_0166_3542_95_00910_8
crossref_primary_10_1016_j_jmb_2008_10_071
crossref_primary_10_1074_jbc_M803094200
crossref_primary_10_1517_13543784_5_8_985
crossref_primary_10_1016_S0021_9258_18_98417_6
crossref_primary_10_1016_S0021_9258_18_52937_9
crossref_primary_10_1110_ps_051445605
crossref_primary_10_1002_pro_5560030903
crossref_primary_10_1074_jbc_273_38_24425
crossref_primary_10_1016_S0021_9258_18_53227_0
crossref_primary_10_1016_j_febslet_2012_12_007
crossref_primary_10_1515_hsz_2015_0115
crossref_primary_10_1016_S0021_9258_18_46899_8
crossref_primary_10_1074_jbc_M302928200
crossref_primary_10_1074_jbc_273_23_14596
crossref_primary_10_1126_science_1279806
crossref_primary_10_1016_0014_5793_94_01123_0
crossref_primary_10_1016_S0891_5849_98_00199_3
crossref_primary_10_1006_jmbi_1999_3057
crossref_primary_10_1016_j_antiviral_2014_12_016
crossref_primary_10_1074_jbc_275_8_5329
crossref_primary_10_1016_0006_2952_94_90077_9
crossref_primary_10_1016_0166_3542_93_90039_L
crossref_primary_10_1093_nar_gkx1168
crossref_primary_10_1006_abio_2001_5053
crossref_primary_10_1128_AAC_44_1_217_221_2000
crossref_primary_10_1016_S0960_894X_00_00123_2
crossref_primary_10_1128_JVI_73_8_6700_6707_1999
crossref_primary_10_1074_jbc_M115_691576
crossref_primary_10_1074_jbc_M100513200
crossref_primary_10_1016_j_ejps_2016_01_016
crossref_primary_10_1016_j_antiviral_2009_09_014
crossref_primary_10_1021_bi991992s
crossref_primary_10_1016_S0021_9258_19_74509_8
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/bi00133a013
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
ExternalDocumentID 1374638
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
.HR
.K2
186
1WB
23N
3O-
53G
55A
5GY
5RE
5VS
6TJ
85S
AABXI
AAYJJ
ABDPE
ABHMW
ABJNI
ABMVS
ABOCM
ACGFS
ACJ
ACNCT
ACRPL
ACS
ADNMO
AENEX
AEYZD
AFFNX
AGXLV
AIDAL
ALMA_UNASSIGNED_HOLDINGS
ANPPW
ANTXH
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
D0L
DU5
EBS
ECM
EIF
F5P
GGK
J5H
JG~
L7B
LG6
MVM
NHB
NPM
OHT
P2P
RNS
ROL
TN5
VG9
VQA
VXZ
W1F
WH7
X7M
XOL
YQJ
YXE
YYP
YZZ
ZCA
ZE2
ZGI
ZXP
~02
~KM
7X8
ABBLG
AETEA
AGQPQ
ID FETCH-LOGICAL-a383t-6aa671444689daedee0dfa6cf70a6d10ddf81bd3fe23cc3fa23a662293c067892
IEDL.DBID 7X8
ISICitedReferencesCount 158
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1021_bi00133a013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-2960
IngestDate Thu Oct 02 11:21:52 EDT 2025
Wed Feb 19 02:36:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a383t-6aa671444689daedee0dfa6cf70a6d10ddf81bd3fe23cc3fa23a662293c067892
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 1374638
PQID 72939432
PQPubID 23479
ParticipantIDs proquest_miscellaneous_72939432
pubmed_primary_1374638
PublicationCentury 1900
PublicationDate 1992-05-12
PublicationDateYYYYMMDD 1992-05-12
PublicationDate_xml – month: 05
  year: 1992
  text: 1992-05-12
  day: 12
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 1992
SSID ssj0004074
Score 1.7700453
Snippet Steady-state and pre-steady-state kinetic constants were determined for reverse transcriptase catalyzed incorporation of nucleotides and nucleotide analogues...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4473
SubjectTerms Antiviral Agents - pharmacology
Base Sequence
Binding, Competitive
Dideoxynucleotides
HIV - enzymology
Molecular Sequence Data
Oligonucleotide Probes - chemistry
Reverse Transcriptase Inhibitors
RNA-Directed DNA Polymerase - chemistry
Templates, Genetic
Thionucleotides - chemistry
Thymine Nucleotides - pharmacokinetics
Thymine Nucleotides - pharmacology
Zidovudine - analogs & derivatives
Zidovudine - pharmacology
Title Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation
URI https://www.ncbi.nlm.nih.gov/pubmed/1374638
https://www.proquest.com/docview/72939432
Volume 31
WOSCitedRecordID wos10_1021_bi00133a013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gV58VIv1uQfxtphmk00qghRRPGjxoNJb2e4DgpjUNhb01zuzSUAP4sFLDoFAmJ3M981k5huAkzA1obFyzBViF4-UCziSes0NYZHCiKl8Kfv5LhkM0uGw97AAF80sDLVVNjHRB2pTaKqRnyEJFL1IhJeTN047o-jfar1AYxGWBRIZauhKht-0woNagxlz5hCJej2dh6B2Ns6I-ggV0FaD35ilR5ibjf-92yas18yS9StX2IIFm7dgu59jVv36wU6Z7_X0RfQWrF41e9624dPX8VlGgyKFsaQoQeOYbJ5N32eMFJ6mM8tKwjQfYRD2zpn3jQ_ux5GYyg2jbpIfN1-QvpIENCscy0k0uSgzYxmJQVTayegQO_B0c_14dcvrjQxcYSZbcqmUTDAFi2TaM8oaawPjlNQuCZQ03cAYhzTYCGdDobVwCs9byhDNowkVe2EblvIit7vAUszTYqQfwVh3o7GJVRBroWWc2MQlWscdOG5sPUKD0G8MldvifTZqrN2BdnVco0klzDHqiiTCeLL356P7sFa13ca8Gx7AssNP3R7Cip6X2Wx65P0Ir4OH-y97Ktbx
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+immunodeficiency+virus+reverse+transcriptase%3A+steady-state+and+pre-steady-state+kinetics+of+nucleotide+incorporation&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Reardon%2C+J+E&rft.date=1992-05-12&rft.issn=0006-2960&rft.volume=31&rft.issue=18&rft.spage=4473&rft_id=info:doi/10.1021%2Fbi00133a013&rft_id=info%3Apmid%2F1374638&rft_id=info%3Apmid%2F1374638&rft.externalDocID=1374638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon