A coupled CFD‐DEM investigation of suffusion of gap graded soil: Coupling effect of confining pressure and fines content
Suffusion involves fine particles migration within the matrix of coarse fraction under seepage flow, which usually occurs in the gap‐graded material of dams and levees. Key factors controlling the soil erodibility include confining pressure (p′) and fines content (Fc), of which the coupling effect o...
Uloženo v:
| Vydáno v: | International journal for numerical and analytical methods in geomechanics Ročník 44; číslo 18; s. 2473 - 2500 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bognor Regis
Wiley Subscription Services, Inc
01.12.2020
|
| Témata: | |
| ISSN: | 0363-9061, 1096-9853 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Suffusion involves fine particles migration within the matrix of coarse fraction under seepage flow, which usually occurs in the gap‐graded material of dams and levees. Key factors controlling the soil erodibility include confining pressure (p′) and fines content (Fc), of which the coupling effect on suffusion still remains contradictory, as concluded from different studies considering narrow scope of these factors. For this reason, a systematical numerical simulation that considers a relative wide range of p′ and Fc was performed with the coupled discrete element method and computational fluid dynamics approach. Two distinct macroresponses of soil suffusion to p′ were revealed, ie, for a given hydraulic gradient i = 2, an increase in p′ intensifies the suffusion of soil with fines overfilling the voids (eg, Fc = 35%), but have negligible effects on the suffusion of gap‐graded soil containing fines underfilling the voids (eg, Fc = 20%). The micromechanical analyses, including force chain buckling and strain energy release, reveal that when the fines overfilled the voids between coarse particles (eg, Fc = 35%) and participated heavily in load‐bearing, the erosion of fines under high i could cause the collapse of the original force transmission structure. The release of higher strain energy within samples under higher p′ accelerated particle movement and intensified suffusion. Conversely, in the case where the fines underfilled the voids between coarse particles (eg, Fc = 20%), the selective erosion of fines had little influence on the force network. High p′ in this case prevented suffusion. |
|---|---|
| AbstractList | Suffusion involves fine particles migration within the matrix of coarse fraction under seepage flow, which usually occurs in the gap‐graded material of dams and levees. Key factors controlling the soil erodibility include confining pressure (
p
′) and fines content (
F
c
), of which the coupling effect on suffusion still remains contradictory, as concluded from different studies considering narrow scope of these factors. For this reason, a systematical numerical simulation that considers a relative wide range of
p
′ and
F
c
was performed with the coupled discrete element method and computational fluid dynamics approach. Two distinct macroresponses of soil suffusion to
p
′ were revealed, ie, for a given hydraulic gradient
i
= 2, an increase in
p
′ intensifies the suffusion of soil with fines overfilling the voids (eg,
F
c
= 35%), but have negligible effects on the suffusion of gap‐graded soil containing fines underfilling the voids (eg,
F
c
= 20%). The micromechanical analyses, including force chain buckling and strain energy release, reveal that when the fines overfilled the voids between coarse particles (eg,
F
c
= 35%) and participated heavily in load‐bearing, the erosion of fines under high
i
could cause the collapse of the original force transmission structure. The release of higher strain energy within samples under higher
p
′ accelerated particle movement and intensified suffusion. Conversely, in the case where the fines underfilled the voids between coarse particles (eg,
F
c
= 20%), the selective erosion of fines had little influence on the force network. High
p
′ in this case prevented suffusion. Suffusion involves fine particles migration within the matrix of coarse fraction under seepage flow, which usually occurs in the gap‐graded material of dams and levees. Key factors controlling the soil erodibility include confining pressure (p′) and fines content (Fc), of which the coupling effect on suffusion still remains contradictory, as concluded from different studies considering narrow scope of these factors. For this reason, a systematical numerical simulation that considers a relative wide range of p′ and Fc was performed with the coupled discrete element method and computational fluid dynamics approach. Two distinct macroresponses of soil suffusion to p′ were revealed, ie, for a given hydraulic gradient i = 2, an increase in p′ intensifies the suffusion of soil with fines overfilling the voids (eg, Fc = 35%), but have negligible effects on the suffusion of gap‐graded soil containing fines underfilling the voids (eg, Fc = 20%). The micromechanical analyses, including force chain buckling and strain energy release, reveal that when the fines overfilled the voids between coarse particles (eg, Fc = 35%) and participated heavily in load‐bearing, the erosion of fines under high i could cause the collapse of the original force transmission structure. The release of higher strain energy within samples under higher p′ accelerated particle movement and intensified suffusion. Conversely, in the case where the fines underfilled the voids between coarse particles (eg, Fc = 20%), the selective erosion of fines had little influence on the force network. High p′ in this case prevented suffusion. Suffusion involves fine particles migration within the matrix of coarse fraction under seepage flow, which usually occurs in the gap‐graded material of dams and levees. Key factors controlling the soil erodibility include confining pressure (p′) and fines content (Fc), of which the coupling effect on suffusion still remains contradictory, as concluded from different studies considering narrow scope of these factors. For this reason, a systematical numerical simulation that considers a relative wide range of p′ and Fc was performed with the coupled discrete element method and computational fluid dynamics approach. Two distinct macroresponses of soil suffusion to p′ were revealed, ie, for a given hydraulic gradient i = 2, an increase in p′ intensifies the suffusion of soil with fines overfilling the voids (eg, Fc = 35%), but have negligible effects on the suffusion of gap‐graded soil containing fines underfilling the voids (eg, Fc = 20%). The micromechanical analyses, including force chain buckling and strain energy release, reveal that when the fines overfilled the voids between coarse particles (eg, Fc = 35%) and participated heavily in load‐bearing, the erosion of fines under high i could cause the collapse of the original force transmission structure. The release of higher strain energy within samples under higher p′ accelerated particle movement and intensified suffusion. Conversely, in the case where the fines underfilled the voids between coarse particles (eg, Fc = 20%), the selective erosion of fines had little influence on the force network. High p′ in this case prevented suffusion. |
| Author | Wang, Lizhong Hong, Yi Liu, Yajing Yin, Zhen‐Yu Zhao, Jidong |
| Author_xml | – sequence: 1 givenname: Yajing surname: Liu fullname: Liu, Yajing organization: Zhejiang University – sequence: 2 givenname: Lizhong surname: Wang fullname: Wang, Lizhong organization: Zhejiang University – sequence: 3 givenname: Yi orcidid: 0000-0002-5984-8204 surname: Hong fullname: Hong, Yi email: yi_hong@zju.edu.cn organization: Zhejiang University – sequence: 4 givenname: Jidong orcidid: 0000-0002-6344-638X surname: Zhao fullname: Zhao, Jidong organization: The Hong Kong University of Science and Technology – sequence: 5 givenname: Zhen‐Yu surname: Yin fullname: Yin, Zhen‐Yu organization: The Hong Kong Polytechnic University |
| BookMark | eNp1kE1OwzAQhS1UJNqCxBEssWGTMq4TJ2FXtfxJ_GxgHbnuOHIV7GAnoLLiCJyRk5DQrhCsRjPvezOaNyID6ywScsxgwgCmZ1aWE84StkeGDHIR5VnCB2QIXPAoB8EOyCiENQAknTok7zOqXFtXuKLzy8XXx-fi4o4a-4qhMaVsjLPUaRparduwa0pZ09LLVWcJzlTndN4vMLakqDWqpmeUs9rYflZ7DKH1SKVd0W6GoRcbtM0h2deyCni0q2PydHnxOL-Obh-ubuaz20jybMoilCLLUpYjFzkuhdQSYlRTAETN0zxWCVcqXmY8SZlIhQauk2Um2UooEcNS8jE52e6tvXtpu8eKtWu97U4W01hAIiBjaUdNtpTyLgSPulCm-Qmg8dJUBYOiz7fo8i36fDvD6S9D7c2z9Ju_0GiLvpkKN_9yxf3s6of_BqX1jL4 |
| CitedBy_id | crossref_primary_10_1080_19386362_2024_2438873 crossref_primary_10_1680_jgeot_21_00335 crossref_primary_10_1016_j_soildyn_2021_106924 crossref_primary_10_1016_j_compgeo_2021_104527 crossref_primary_10_1061_IJGNAI_GMENG_10234 crossref_primary_10_1016_j_compgeo_2024_106709 crossref_primary_10_1007_s11440_025_02746_0 crossref_primary_10_1007_s11600_023_01273_4 crossref_primary_10_1007_s11440_022_01755_7 crossref_primary_10_1016_j_engfailanal_2024_108810 crossref_primary_10_1007_s11440_024_02451_4 crossref_primary_10_1016_j_compgeo_2025_107316 crossref_primary_10_1016_j_enggeo_2025_108138 crossref_primary_10_1016_j_compgeo_2022_105013 crossref_primary_10_1016_j_compgeo_2023_105695 crossref_primary_10_3390_app14156702 crossref_primary_10_1007_s00024_021_02875_z crossref_primary_10_1016_j_conbuildmat_2025_141469 crossref_primary_10_1016_j_trgeo_2024_101181 crossref_primary_10_1016_j_compgeo_2022_105058 crossref_primary_10_1002_nag_3519 crossref_primary_10_1016_j_compgeo_2021_104518 crossref_primary_10_1007_s40430_022_03922_z crossref_primary_10_1520_GTJ20220045 crossref_primary_10_1016_j_compgeo_2023_105925 crossref_primary_10_1371_journal_pone_0319184 crossref_primary_10_1016_j_jrmge_2024_05_038 crossref_primary_10_3390_w17162461 crossref_primary_10_1520_GTJ20200298 crossref_primary_10_1680_jgeot_24_01093 crossref_primary_10_1061_IJGNAI_GMENG_10162 crossref_primary_10_1680_jgeot_23_00265 crossref_primary_10_1007_s10035_025_01511_0 crossref_primary_10_1007_s11440_021_01301_x crossref_primary_10_1002_nag_70063 crossref_primary_10_1016_j_compgeo_2024_106950 crossref_primary_10_1061_JGGEFK_GTENG_11891 crossref_primary_10_1007_s11440_022_01734_y crossref_primary_10_1002_nag_3844 crossref_primary_10_1002_hyp_14677 crossref_primary_10_1016_j_compgeo_2023_105680 crossref_primary_10_1061_IJGNAI_GMENG_9078 crossref_primary_10_1007_s11440_024_02369_x crossref_primary_10_1016_j_apm_2022_12_011 crossref_primary_10_1016_j_enggeo_2022_106644 crossref_primary_10_1007_s11069_021_04842_2 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127319 crossref_primary_10_1016_j_jrmge_2025_02_031 crossref_primary_10_1016_j_compgeo_2024_106558 crossref_primary_10_1016_j_compgeo_2023_105248 crossref_primary_10_1016_j_powtec_2024_119859 crossref_primary_10_1631_jzus_A2200108 crossref_primary_10_1680_jgele_22_00130 crossref_primary_10_1680_jgeot_23_00458 crossref_primary_10_1016_j_enggeo_2024_107829 crossref_primary_10_1007_s10035_025_01536_5 crossref_primary_10_1002_nag_3454 crossref_primary_10_1080_19648189_2025_2527407 crossref_primary_10_1007_s11440_022_01515_7 crossref_primary_10_1139_cgj_2024_0303 crossref_primary_10_1002_nag_3611 crossref_primary_10_1016_j_compgeo_2023_105395 crossref_primary_10_1016_j_compgeo_2021_104383 crossref_primary_10_1007_s11440_024_02281_4 crossref_primary_10_1016_j_compgeo_2022_104745 crossref_primary_10_1631_jzus_A2200198 crossref_primary_10_1016_j_conbuildmat_2023_133817 crossref_primary_10_1007_s10035_024_01425_3 crossref_primary_10_1007_s11440_024_02377_x crossref_primary_10_1016_j_compgeo_2024_106818 crossref_primary_10_1016_j_compgeo_2022_105092 crossref_primary_10_1016_j_jhydrol_2024_131601 crossref_primary_10_1002_nag_3983 crossref_primary_10_1016_j_compgeo_2025_107448 crossref_primary_10_1002_nag_3345 crossref_primary_10_3390_app14093796 crossref_primary_10_1016_j_ijsolstr_2023_112487 crossref_primary_10_1002_nag_3348 crossref_primary_10_1002_nag_3701 crossref_primary_10_1139_cgj_2024_0215 crossref_primary_10_1016_j_soildyn_2022_107210 crossref_primary_10_1038_s41598_025_87411_y crossref_primary_10_1016_j_jhydrol_2023_129908 crossref_primary_10_1007_s11440_023_01870_z crossref_primary_10_1016_j_jhydrol_2023_130370 crossref_primary_10_1016_j_compgeo_2023_105467 crossref_primary_10_1016_j_compgeo_2023_105303 |
| Cites_doi | 10.1061/(ASCE)GT.1943-5606.0001327 10.1061/(ASCE)GT.1943-5606.0000871 10.1016/j.sandf.2018.05.008 10.1007/s11440-018-0747-1 10.5194/npg-21-505-2014 10.1016/j.ces.2003.09.037 10.1007/s10035-017-0702-0 10.1016/j.powtec.2012.04.008 10.1139/t85-029 10.1007/s10035-011-0262-7 10.1016/0301-9322(94)90011-6 10.1002/nag.3057 10.1007/s10035-013-0455-3 10.1061/(ASCE)GT.1943-5606.0001661 10.1061/(ASCE)GT.1943-5606.0001184 10.1016/j.partic.2012.05.002 10.1007/s10035-016-0654-9 10.1017/S002211201000306X 10.1007/s10035-016-0609-1 10.1016/j.jmps.2010.10.007 10.1139/t99-116 10.1007/s10035-009-0138-2 10.1007/s11440-012-0176-5 10.1504/PCFD.2012.047457 10.1061/(ASCE)GT.1943-5606.0002386 10.1061/(ASCE)1090-0241(2007)133:1(104) 10.1016/j.ces.2006.12.089 10.1098/rsta.1998.0296 10.1002/nag.2152 10.1680/geot.10.T.019 10.1520/GTJ20120094 10.1520/GTJ102246 10.1115/1.4010702 10.1016/j.powtec.2013.02.003 10.1007/s11440-019-00789-8 10.1680/jgeot.16.P.317 10.1002/nag.154 10.1016/j.sandf.2014.06.024 10.1016/j.compgeo.2017.11.006 10.1061/(ASCE)1090-0241(2008)134:1(57) 10.1007/s11440-019-00787-w 10.1103/PhysRevLett.80.61 10.1103/PhysRevE.98.042909 10.1080/19648189.2017.1359110 10.1680/geot.1979.29.1.47 10.1016/j.cma.2018.12.001 10.1016/j.compgeo.2016.10.006 10.1007/s11069-014-1243-z 10.1007/s11440-017-0622-5 10.1007/s11440-019-00859-x 10.1002/nag.2877 10.1061/(ASCE)GT.1943-5606.0002062 10.14356/kona.2009006 10.1002/nag.2866 10.1021/i160024a007 10.1080/17486020902767347 10.1007/s10035-019-0919-1 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2020 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 7UA 8FD C1K F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| DOI | 10.1002/nag.3151 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-9853 |
| EndPage | 2500 |
| ExternalDocumentID | 10_1002_nag_3151 NAG3151 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51939010; 51779221 – fundername: GRF funderid: 15209119 – fundername: National Key Research and Development Program funderid: 2016YFC0800200 – fundername: Key Research and Development Program of Zhejiang Province funderid: 2018C03031 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 7UA 8FD C1K F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-a3821-ea688719e369eb6afa04ec200eef3794c53cc4b83571676f03f5b8a1d6c640ba3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000575654800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0363-9061 |
| IngestDate | Fri Jul 25 10:34:27 EDT 2025 Sat Nov 29 04:24:28 EST 2025 Tue Nov 18 22:31:41 EST 2025 Wed Jan 22 16:31:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3821-ea688719e369eb6afa04ec200eef3794c53cc4b83571676f03f5b8a1d6c640ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6344-638X 0000-0002-5984-8204 |
| PQID | 2460560817 |
| PQPubID | 996377 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_2460560817 crossref_citationtrail_10_1002_nag_3151 crossref_primary_10_1002_nag_3151 wiley_primary_10_1002_nag_3151_NAG3151 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal for numerical and analytical methods in geomechanics |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 141 2017; 82 2019; 15 2019; 14 2010; 661 2011; 13 1998; 80 1998; 356 2011; 59 1985; 22 2013; 8 2012; 12 2012; 10 1979 2014; 21 1994; 20 2009; 56 2009; 11 1979; 29 2019; 21 2007; 133 2013; 239 2014; 16 2020; 44 2007; 62 2014; 54 1953; 20 2012; 62 2010; 33 2012 2019; 346 2019; 146 2016; 18 2012; 225 2001; 25 2009; 27 2019; 145 2018; 68 1967; 6 2013; 37 2013; 36 1952; 48 2000; 37 2019; 43 2020 2004; 59 2013; 139 2019 2017; 19 2014; 140 2018; 95 2009; 4 2017; 143 2008; 134 2014; 74 2018; 98 2018; 58 2018; 14 2018; 13 Widuliński L (e_1_2_9_40_1) 2009; 56 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_33_1 Israr J (e_1_2_9_24_1) 2019; 145 Richards KS (e_1_2_9_5_1) 2010; 33 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 Zhang F (e_1_2_9_54_1) 2018; 14 e_1_2_9_45_1 Nicot F (e_1_2_9_53_1) 2017; 19 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Kezdi A (e_1_2_9_38_1) 1979 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 Luo YL (e_1_2_9_22_1) 2019; 15 Xiong H (e_1_2_9_18_1) 2020 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 Liang Y (e_1_2_9_13_1) 2019 e_1_2_9_32_1 e_1_2_9_55_1 Luo YL (e_1_2_9_7_1) 2013; 36 Jin T (e_1_2_9_19_1) 2012; 225 Mindlin RD (e_1_2_9_27_1) 1953; 20 Israr J (e_1_2_9_62_1) 2017; 143 Wautier A (e_1_2_9_60_1) 2018; 98 e_1_2_9_15_1 Kawano K (e_1_2_9_16_1) 2018; 58 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_61_1 Tomlinson SS (e_1_2_9_2_1) 2000; 37 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 Wu C (e_1_2_9_47_1) 2019; 146 e_1_2_9_65_1 e_1_2_9_3_1 Ergun S (e_1_2_9_37_1) 1952; 48 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_48_1 Wang S (e_1_2_9_12_1) 2014; 74 e_1_2_9_29_1 |
| References_xml | – volume: 15 start-page: 1607 year: 2019 end-page: 1617 article-title: Effect of deviator stress on the initiation of suffusion publication-title: Acta Geotech – volume: 239 start-page: 248 year: 2013 end-page: 258 article-title: Coupled CFD‐DEM simulation of fluid‐particle interaction in geomechanics publication-title: Powder Technol – volume: 62 start-page: 3378 year: 2007 end-page: 3396 article-title: Discrete particle simulation of particulate systems: theoretical developments publication-title: Chem Eng Sci – volume: 37 start-page: 2563 issue: 15 year: 2013 end-page: 2589 article-title: Dominant grains network and behavior of sand‐silt mixtures: stress‐strain modeling publication-title: Int J Numer Anal Methods Geomech – volume: 21 start-page: 505 year: 2014 end-page: 519 article-title: Force chain and contact cycle evolution in a dense granular material under shallow penetration publication-title: Nonlinear Processes Geophys – volume: 18 start-page: 1 year: 2016 end-page: 10 article-title: Kinetic energy and collapse of granular materials publication-title: Granular Matter – volume: 21 start-page: 67 year: 2019 article-title: Preferential growth of force network in granular media publication-title: Granular Matter – volume: 661 start-page: 482 year: 2010 end-page: 510 article-title: Discrete particle simulation of particle‐fluid flow: model formulations and their applicability publication-title: J Fluid Mech – volume: 48 start-page: 89 issue: 2 year: 1952 end-page: 94 article-title: Fluid flow through packed columns publication-title: Chem Eng Prog – volume: 54 start-page: 713 issue: 4 year: 2014 end-page: 730 article-title: Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil publication-title: Soils Foundations – year: 1979 – volume: 59 start-page: 525 issue: 3 year: 2004 end-page: 541 article-title: Comparison of contact‐force models for the simulation of collisions in DEM‐based granular flow codes publication-title: Chem Eng Sci – volume: 43 start-page: 339 year: 2019 end-page: 352 article-title: DEM investigations of internal erosion: grain transport in the light of micromechanics publication-title: Int J Numer Anal Meth Geomech – volume: 139 start-page: 1454 issue: 9 year: 2013 end-page: 1467 article-title: Critical hydraulic gradients of internal erosion under complex stress states publication-title: J Geotech Geoenviron Eng – volume: 11 start-page: 221 year: 2009 end-page: 236 article-title: Influence of relative density on granular materials behavior: dEM simulations of triaxial tests publication-title: Granular Matter – volume: 14 start-page: 795 issue: 3 year: 2019 end-page: 814 article-title: Suffusion‐induced deformation and microstructural change of granular soils: a coupled CFD–DEM study publication-title: Acta Geotechnica – volume: 58 start-page: 972 issue: 4 year: 2018 end-page: 985 article-title: Coupled particle‐fluid simulations of the initiation of suffusion publication-title: Soils Foundations – volume: 95 start-page: 30 year: 2018 end-page: 39 article-title: A discrete numerical model involving partial fluid‐solid coupling to describe suffusion effects in soils publication-title: Comput Geotech – volume: 143 issue: 6 year: 2017 article-title: Internal stability of granular filters under static and cyclic loading publication-title: J Geotech Geoenviron Eng – volume: 146 year: 2019 article-title: Biogrouting method for stronger bond strength for aggregates publication-title: J Geotech Geoenviron Eng – volume: 14 start-page: 1 issue: 66 year: 2018 end-page: 17 article-title: Three‐dimensional DEM modeling of the stress‐strain behavior for the gap‐graded soils subjected to internal erosion publication-title: Acta Geotech – volume: 43 start-page: 663 issue: 3 year: 2019 end-page: 683 article-title: Internal erosion in dike‐on‐foundation modeled by a coupled hydro‐mechanical approach publication-title: Int J Numer Anal Methods Geomech – volume: 27 start-page: 18 year: 2009 end-page: 37 article-title: Settling velocities of particulate systems publication-title: KONA Powder Particle J – volume: 62 start-page: 77 issue: 1 year: 2012 end-page: 80 article-title: A theoretical envelope for internal instability of cohesionless soil publication-title: Géotechnique – volume: 44 start-page: 1200 issue: 8 year: 2020 end-page: 1218 article-title: Three‐dimensional hydro‐mechanical modelling of internal erosion in dike‐on‐foundation publication-title: Int J Numer Anal Methods Geomech – volume: 12 start-page: 140 issue: 2‐3 year: 2012 end-page: 152 article-title: Models, algorithms and validation for opensource DEM and CFDDEM publication-title: Progr Comput Fluid Dyn – volume: 4 start-page: 3 year: 2009 end-page: 16 article-title: Buckling force chains in dense granular assemblies: physical and numerical experiments publication-title: Geomech Geoeng – volume: 133 start-page: 104 issue: 1 year: 2007 end-page: 109 article-title: Simulation of upward seepage flow in a single column of spheres using discrete‐element method with fluid‐particle interaction publication-title: J Geotech Geoenviron Eng – volume: 68 start-page: 421 issue: 5 year: 2018 end-page: 433 article-title: Energy dissipation in soil samples during drained triaxial shearing publication-title: Géotechnique – volume: 134 start-page: 57 year: 2008 end-page: 67 article-title: Experimental parametric study of suffusion and backward erosion publication-title: J Geotech Geoenviron Eng – volume: 10 start-page: 582 year: 2012 end-page: 591 article-title: Influence of rolling friction on single spout fluidized bed simulation publication-title: Particuology – year: 2019 article-title: Onset of suffusion in upward seepage under isotropic and anisotropic stress conditions publication-title: Eur J Environ Civil Eng – volume: 14 start-page: 795 issue: 3 year: 2019 end-page: 814 article-title: Suffusion‐induced deformation and microstructural change of granular soils: a coupled CFD‐DEM study publication-title: Acta Geotech – volume: 98 year: 2018 article-title: Flow impact on granular force chains and induced instability publication-title: Phys Rev E – volume: 8 start-page: 81 year: 2013 end-page: 90 article-title: Micromechanical assessment of an internal stability criterion publication-title: Acta Geotech – volume: 36 start-page: 256 year: 2013 end-page: 263 article-title: A new apparatus for evaluation of contact erosion at the soil‐structure interface publication-title: Geotech Test J – volume: 140 issue: 12 year: 2014 article-title: Fabric and effective stress distribution in internally unstable soils publication-title: J Geotech Geoenviron Eng – volume: 346 start-page: 109 year: 2019 end-page: 125 article-title: A novel algorithm of immersed moving boundary scheme for fluid–particle interactions in DEM–LBM publication-title: Comput Meth Appl Mech Eng – volume: 80 start-page: 61 year: 1998 end-page: 64 article-title: Bimodal character of stress transmission in granular packings publication-title: Phys Rev Lett – volume: 356 start-page: 2763 year: 1998 end-page: 2782 article-title: Quasi‐static deformation of particulate media publication-title: Philos Trans R Soc A – volume: 59 start-page: 265 year: 2011 end-page: 296 article-title: Structural stability and jamming of self‐organized cluster conformations in dense granular materials publication-title: J Mech Phys Solids – volume: 145 issue: 7 year: 2019 article-title: Study of critical hydraulic gradients for seepage‐induced failures in granular soils publication-title: J Geotech Geoenviron Eng – volume: 20 start-page: 327 year: 1953 end-page: 344 article-title: Elastic spheres in contact under varying oblique forces publication-title: Trans ASME Ser E J Appl Mech – volume: 37 start-page: 1 year: 2000 end-page: 13 article-title: Seepage forces and confining pressure effects on piping erosion publication-title: Can Geotech J – volume: 56 start-page: 149 issue: 3‐4 year: 2009 end-page: 171 article-title: Numerical simulations of triaxial test with sand using DEM publication-title: Arch Hydro‐Eng Environ Mech – volume: 33 start-page: 83 issue: 1 year: 2010 end-page: 95 article-title: True triaxial piping test apparatus for evaluation of piping potential in earth structures publication-title: J ASTM Geotech Test – volume: 29 start-page: 47 issue: 1 year: 1979 end-page: 65 article-title: A discrete numerical model for granular assemblies publication-title: Geotechnique – volume: 16 start-page: 69 year: 2014 end-page: 78 article-title: Strong force networks in granular mixtures publication-title: Granular Matter – volume: 22 start-page: 215 issue: 2 year: 1985 end-page: 225 article-title: Internal stability of granular filters publication-title: Can Geotech J – volume: 18 start-page: 52 year: 2016 article-title: The influence of fines content and size‐ratio on the micro‐scale properties of dense bimodal materials publication-title: Granular Matter – volume: 20 start-page: 153 year: 1994 end-page: 159 article-title: The voidage function for fluid‐particle interaction systems publication-title: Intl J Multiphase Flow – volume: 25 start-page: 789 year: 2001 end-page: 808 article-title: Volumetric sand production model and experiment publication-title: Int J Numer Anal Meth Geomech – volume: 14 start-page: 749 year: 2019 end-page: 765 article-title: Experimental investigation of microstructural changes in soils eroded by suffusion using X‐ray tomography publication-title: Acta Geotech – volume: 82 start-page: 134 year: 2017 end-page: 143 article-title: Numerical modelling of fluid‐induced soil erosion in granular filters using a coupled bonded particle lattice Boltzmann method publication-title: Comput Geotech – year: 2012 – volume: 14 start-page: 673 issue: 3 year: 2019 end-page: 683 article-title: Microbially induced calcite precipitation along a circular flow channel under a constant flow condition publication-title: Acta Geotech – volume: 13 start-page: 503 year: 2011 end-page: 510 article-title: Numerical study on energy transformation in granular matter under biaxial compression publication-title: Granular Matter – volume: 6 start-page: 527 year: 1967 end-page: 539 article-title: Fluid mechanical description of fluidized beds. Equations of motion publication-title: Ind Eng Chem Fundam – volume: 74 start-page: 1163 year: 2014 end-page: 1178 article-title: Experiments on internal erosion in sandy gravel foundations containing a suspended cutoff wall under complex stress states publication-title: Nat Hazards – volume: 19 start-page: 18 issue: 1‐12 year: 2017 article-title: Force chain collapse as grain column buckling in granular materials publication-title: Granular Matter – volume: 12 start-page: 140 year: 2012 end-page: 152 article-title: Models, algorithms and validation for opensource DEM and CFD‐DEM publication-title: Prog Comput Fluid Dyn Int J – year: 2020 article-title: Investigating the effect of flow direction on suffusion and its impacts on gap‐graded granular soils publication-title: Acta Geotech – volume: 13 start-page: 1075 year: 2018 end-page: 1083 article-title: Energy distribution during the quasi‐static confined comminution of granular materials publication-title: Acta Geotechnica – volume: 225 start-page: 196 year: 2012 end-page: 205 article-title: Immersed boundary method for simulations of erosion on staggered tube bank by coal ash particles publication-title: Powder Technol – volume: 141 year: 2015 article-title: Drained monotonic responses of suffusional cohesionless soils publication-title: J Geotech Geoenviron Eng – ident: e_1_2_9_45_1 doi: 10.1061/(ASCE)GT.1943-5606.0001327 – volume: 56 start-page: 149 issue: 3 year: 2009 ident: e_1_2_9_40_1 article-title: Numerical simulations of triaxial test with sand using DEM publication-title: Arch Hydro‐Eng Environ Mech – ident: e_1_2_9_8_1 doi: 10.1061/(ASCE)GT.1943-5606.0000871 – volume: 14 start-page: 1 issue: 66 year: 2018 ident: e_1_2_9_54_1 article-title: Three‐dimensional DEM modeling of the stress‐strain behavior for the gap‐graded soils subjected to internal erosion publication-title: Acta Geotech – volume: 58 start-page: 972 issue: 4 year: 2018 ident: e_1_2_9_16_1 article-title: Coupled particle‐fluid simulations of the initiation of suffusion publication-title: Soils Foundations doi: 10.1016/j.sandf.2018.05.008 – ident: e_1_2_9_48_1 doi: 10.1007/s11440-018-0747-1 – ident: e_1_2_9_52_1 doi: 10.5194/npg-21-505-2014 – volume-title: Soil Physics‐Selected Topics year: 1979 ident: e_1_2_9_38_1 – ident: e_1_2_9_28_1 doi: 10.1016/j.ces.2003.09.037 – volume: 19 start-page: 18 issue: 1 year: 2017 ident: e_1_2_9_53_1 article-title: Force chain collapse as grain column buckling in granular materials publication-title: Granular Matter doi: 10.1007/s10035-017-0702-0 – volume: 225 start-page: 196 year: 2012 ident: e_1_2_9_19_1 article-title: Immersed boundary method for simulations of erosion on staggered tube bank by coal ash particles publication-title: Powder Technol doi: 10.1016/j.powtec.2012.04.008 – ident: e_1_2_9_39_1 doi: 10.1139/t85-029 – ident: e_1_2_9_55_1 doi: 10.1007/s10035-011-0262-7 – ident: e_1_2_9_31_1 doi: 10.1016/0301-9322(94)90011-6 – year: 2020 ident: e_1_2_9_18_1 article-title: Investigating the effect of flow direction on suffusion and its impacts on gap‐graded granular soils publication-title: Acta Geotech – ident: e_1_2_9_15_1 doi: 10.1002/nag.3057 – ident: e_1_2_9_46_1 doi: 10.1007/s10035-013-0455-3 – volume: 143 start-page: 04017012 issue: 6 year: 2017 ident: e_1_2_9_62_1 article-title: Internal stability of granular filters under static and cyclic loading publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0001661 – ident: e_1_2_9_10_1 doi: 10.1061/(ASCE)GT.1943-5606.0001184 – ident: e_1_2_9_25_1 doi: 10.1016/j.partic.2012.05.002 – ident: e_1_2_9_59_1 doi: 10.1007/s10035-016-0654-9 – ident: e_1_2_9_32_1 doi: 10.1017/S002211201000306X – ident: e_1_2_9_56_1 doi: 10.1007/s10035-016-0609-1 – ident: e_1_2_9_58_1 doi: 10.1016/j.jmps.2010.10.007 – volume: 37 start-page: 1 year: 2000 ident: e_1_2_9_2_1 article-title: Seepage forces and confining pressure effects on piping erosion publication-title: Can Geotech J doi: 10.1139/t99-116 – ident: e_1_2_9_42_1 doi: 10.1007/s10035-009-0138-2 – ident: e_1_2_9_9_1 doi: 10.1007/s11440-012-0176-5 – ident: e_1_2_9_26_1 doi: 10.1504/PCFD.2012.047457 – volume: 146 start-page: 06020021 year: 2019 ident: e_1_2_9_47_1 article-title: Biogrouting method for stronger bond strength for aggregates publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0002386 – ident: e_1_2_9_36_1 doi: 10.1061/(ASCE)1090-0241(2007)133:1(104) – ident: e_1_2_9_29_1 doi: 10.1016/j.ces.2006.12.089 – ident: e_1_2_9_50_1 doi: 10.1098/rsta.1998.0296 – ident: e_1_2_9_43_1 doi: 10.1002/nag.2152 – ident: e_1_2_9_6_1 doi: 10.1680/geot.10.T.019 – volume: 36 start-page: 256 year: 2013 ident: e_1_2_9_7_1 article-title: A new apparatus for evaluation of contact erosion at the soil‐structure interface publication-title: Geotech Test J doi: 10.1520/GTJ20120094 – volume: 33 start-page: 83 issue: 1 year: 2010 ident: e_1_2_9_5_1 article-title: True triaxial piping test apparatus for evaluation of piping potential in earth structures publication-title: J ASTM Geotech Test doi: 10.1520/GTJ102246 – volume: 20 start-page: 327 year: 1953 ident: e_1_2_9_27_1 article-title: Elastic spheres in contact under varying oblique forces publication-title: Trans ASME Ser E J Appl Mech doi: 10.1115/1.4010702 – ident: e_1_2_9_35_1 doi: 10.1016/j.powtec.2013.02.003 – ident: e_1_2_9_66_1 doi: 10.1007/s11440-019-00789-8 – ident: e_1_2_9_44_1 doi: 10.1680/jgeot.16.P.317 – ident: e_1_2_9_17_1 doi: 10.1007/s11440-019-00789-8 – ident: e_1_2_9_3_1 doi: 10.1002/nag.154 – ident: e_1_2_9_11_1 doi: 10.1016/j.sandf.2014.06.024 – ident: e_1_2_9_30_1 doi: 10.1016/j.compgeo.2017.11.006 – ident: e_1_2_9_4_1 doi: 10.1061/(ASCE)1090-0241(2008)134:1(57) – ident: e_1_2_9_64_1 doi: 10.1007/s11440-019-00787-w – ident: e_1_2_9_49_1 doi: 10.1103/PhysRevLett.80.61 – volume: 98 start-page: 042909 year: 2018 ident: e_1_2_9_60_1 article-title: Flow impact on granular force chains and induced instability publication-title: Phys Rev E doi: 10.1103/PhysRevE.98.042909 – volume: 48 start-page: 89 issue: 2 year: 1952 ident: e_1_2_9_37_1 article-title: Fluid flow through packed columns publication-title: Chem Eng Prog – year: 2019 ident: e_1_2_9_13_1 article-title: Onset of suffusion in upward seepage under isotropic and anisotropic stress conditions publication-title: Eur J Environ Civil Eng doi: 10.1080/19648189.2017.1359110 – ident: e_1_2_9_41_1 doi: 10.1680/geot.1979.29.1.47 – ident: e_1_2_9_21_1 doi: 10.1016/j.cma.2018.12.001 – ident: e_1_2_9_20_1 doi: 10.1016/j.compgeo.2016.10.006 – volume: 74 start-page: 1163 year: 2014 ident: e_1_2_9_12_1 article-title: Experiments on internal erosion in sandy gravel foundations containing a suspended cutoff wall under complex stress states publication-title: Nat Hazards doi: 10.1007/s11069-014-1243-z – ident: e_1_2_9_65_1 doi: 10.1007/s11440-017-0622-5 – volume: 15 start-page: 1607 year: 2019 ident: e_1_2_9_22_1 article-title: Effect of deviator stress on the initiation of suffusion publication-title: Acta Geotech doi: 10.1007/s11440-019-00859-x – ident: e_1_2_9_14_1 doi: 10.1002/nag.2877 – volume: 145 start-page: 04019025 issue: 7 year: 2019 ident: e_1_2_9_24_1 article-title: Study of critical hydraulic gradients for seepage‐induced failures in granular soils publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0002062 – ident: e_1_2_9_63_1 doi: 10.1504/PCFD.2012.047457 – ident: e_1_2_9_34_1 doi: 10.14356/kona.2009006 – ident: e_1_2_9_23_1 doi: 10.1002/nag.2866 – ident: e_1_2_9_33_1 doi: 10.1021/i160024a007 – ident: e_1_2_9_61_1 – ident: e_1_2_9_51_1 doi: 10.1080/17486020902767347 – ident: e_1_2_9_57_1 doi: 10.1007/s10035-019-0919-1 |
| SSID | ssj0005096 |
| Score | 2.5564842 |
| Snippet | Suffusion involves fine particles migration within the matrix of coarse fraction under seepage flow, which usually occurs in the gap‐graded material of dams... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2473 |
| SubjectTerms | CFD‐DEM Computational fluid dynamics Computer applications Confining confining pressure Coupling Discrete element method Fines fines content Fluid dynamics force chain buckling Hydraulic gradient Hydrodynamics Levees Mathematical models Pressure effects Seepage Soil Soil dynamics Soil erosion Soil investigations Soils Strain strain energy suffusion Voids |
| Title | A coupled CFD‐DEM investigation of suffusion of gap graded soil: Coupling effect of confining pressure and fines content |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.3151 https://www.proquest.com/docview/2460560817 |
| Volume | 44 |
| WOSCitedRecordID | wos000575654800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1096-9853 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005096 issn: 0363-9061 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6k9aAH32K1ygqip2Ce28Rbaa0eShGx0FvY3eyWQklK0njw5E_wN_pLnE3Sh6AgeAohM0vYmdmZ2Z39BuDKFx7lypWG8oVvuIwpI1BKX31qoX-OuDTLriX91mDgj0bBU1VVqe_ClPgQyw03bRnFeq0NnPHsdg00lI0x4dS3p-s2qq1bg3r3uTfsrwo8zGB5Uhmg21pAz5r27YL3uzNaRZjrcWrhaHq7__nFPdipwkvSLvVhHzZkfADba6CDh_DWJiLJZ1MZkU6v-_n-gaIgkxXcRhKTRJEsVyrPqpcxm5FxyiJkyZLJ9I509AA4GinLQTQN5tWqaDZBitLaPJWExRFRuqxef8TYfH4Ew979S-fRqDowGMzxbcuQjOIiZAXSoYHklClmulKgYUmpHLRk4TlCuByjOEy7WlSZjvK4z6yICuqanDnHUIuTWJ4AwVSbUuSzkMYV3OJO4PkKFSXCEMwz7QbcLEQRigqeXHfJmIYlsLId4myGejYbcLmknJWQHD_QNBfSDCujzEJbnwFTjIFaDbgu5PYrfzhoP-jn6V8Jz2DL1pl4UejShNo8zeU5bIrX-SRLLyrV_AIZc-in |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kFdSDb7FadQXRUzDPbaKnUq0VaxFR8BY2m91SKElpGg-e_An-Rn-Js3m0FRQETyFkZgk7Mzszu7PfAJy43KGBtIUmXe5qNmNS86RUV58a6J_DQOh515Juo9dzX168hwW4LO_C5PgQ0w03ZRnZeq0MXG1In8-hhrI-Zpzq-nTVRi1yKlC9emw_d2cVHro3Par00G-V2LO6eV7yfvdGsxBzPlDNPE177V__uA6rRYBJmrlGbMCCiDZhZQ52cAvemoTH6WgoQtJqX32-f6AwyGAGuBFHJJYkSaVMk-Klz0akP2YhsiTxYHhBWmoAHI3kBSGKBjNrmbWbIFlxbToWhEUhkaqwXn3E6HyyDc_t66dWRyt6MGjMck1DE4ziMmR4wqKeCCiTTLcFR9MSQlpoy9yxOLcDjOMw8WpQqVvSCVxmhJRTWw-YtQOVKI7ELhBMtilFPgNpbB4YgeU5rkRVCTEIc3SzBmelLHxeAJSrPhlDP4dWNn2cTV_NZg2Op5SjHJTjB5p6KU6_MMvEN9UpMMUoqFGD00xwv_L7veaNeu79lfAIljpP912_e9u724dlU-XlWdlLHSqTcSoOYJG_TgbJ-LDQ0y8GuOyX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6KiujBt1ifK4iegnluEz2V1qhYShEFb2Gz2S2FkpSm8eDJn-Bv9Jc4m0dbQUHwFEJmQtjZ2fkmO_sNwJnLHRpKW2jS5a5mMyY1T0p19KmB8TkKhV50Lek0ul335cXr1eC6OgtT8ENMf7gpz8jXa-XgYhTJyznWUNbHjFMdn160HY-iVy62H_3nzqzCQ_emW5Uexq2Ke1Y3Lyvd79FoBjHngWoeafz1f33jBqyVAJM0ixmxCTURb8HqHO3gNrw1CU-y0VBEpOW3P98_0BhkMCPcSGKSSJJmUmZpedNnI9IfswhV0mQwvCIt9QJ8GykKQpQMZtYybzdB8uLabCwIiyMiVWG9eojofLIDz_7NU-tOK3swaMxyTUMTjOIyZHjCop4IKZNMtwVH1xJCWujL3LE4t0PEcZh4NajULemELjMiyqmth8zahYU4icUeEEy2KUU9A2VsHhqh5TmuxKkSIQhzdLMOF5UtAl4SlKs-GcOgoFY2AxzNQI1mHU6nkqOClOMHmcPKnEHplmlgql1giiioUYfz3HC_6gfd5q267v9V8ASWe20_6Nx3Hw5gxVRpeV71cggLk3EmjmCJv04G6fi4nKZfru_sEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+coupled+CFD%E2%80%90DEM+investigation+of+suffusion+of+gap+graded+soil%3A+Coupling+effect+of+confining+pressure+and+fines+content&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=Liu%2C+Yajing&rft.au=Wang%2C+Lizhong&rft.au=Hong%2C+Yi&rft.au=Zhao%2C+Jidong&rft.date=2020-12-01&rft.issn=0363-9061&rft.eissn=1096-9853&rft.volume=44&rft.issue=18&rft.spage=2473&rft.epage=2500&rft_id=info:doi/10.1002%2Fnag.3151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nag_3151 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon |