Feasibility of Lithium Storage on Graphene and Its Derivatives

Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of physical chemistry letters Ročník 4; číslo 10; s. 1737
Hlavní autoři: Liu, Yuanyue, Artyukhov, Vasilii I, Liu, Mingjie, Harutyunyan, Avetik R, Yakobson, Boris I
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 16.05.2013
Témata:
ISSN:1948-7185, 1948-7185
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li). While the first-principles computations show that the Li capacity of pristine graphene, limited by Li clustering and phase separation, is lower than that offered by Li intercalation in graphite, we explore the feasibility of modifying graphene for better Li storage. It is found that certain structural defects in graphene can bind Li stably, yet a more efficacious approach is through substitution doping with boron (B). In particular, the layered C3B compound stands out as a promising Li storage medium. The monolayer C3B has a capacity of 714 mAh/g (as Li1.25C3B), and the capacity of stacked C3B is 857 mAh/g (as Li1.5C3B), which is about twice as large as graphite's 372 mAh/g (as LiC6). Our results help clarify the mechanism of Li storage in low-dimensional materials, and shed light on the rational design of nanoarchitectures for energy storage.
AbstractList Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li). While the first-principles computations show that the Li capacity of pristine graphene, limited by Li clustering and phase separation, is lower than that offered by Li intercalation in graphite, we explore the feasibility of modifying graphene for better Li storage. It is found that certain structural defects in graphene can bind Li stably, yet a more efficacious approach is through substitution doping with boron (B). In particular, the layered C3B compound stands out as a promising Li storage medium. The monolayer C3B has a capacity of 714 mAh/g (as Li1.25C3B), and the capacity of stacked C3B is 857 mAh/g (as Li1.5C3B), which is about twice as large as graphite's 372 mAh/g (as LiC6). Our results help clarify the mechanism of Li storage in low-dimensional materials, and shed light on the rational design of nanoarchitectures for energy storage.
Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li). While the first-principles computations show that the Li capacity of pristine graphene, limited by Li clustering and phase separation, is lower than that offered by Li intercalation in graphite, we explore the feasibility of modifying graphene for better Li storage. It is found that certain structural defects in graphene can bind Li stably, yet a more efficacious approach is through substitution doping with boron (B). In particular, the layered C3B compound stands out as a promising Li storage medium. The monolayer C3B has a capacity of 714 mAh/g (as Li1.25C3B), and the capacity of stacked C3B is 857 mAh/g (as Li1.5C3B), which is about twice as large as graphite's 372 mAh/g (as LiC6). Our results help clarify the mechanism of Li storage in low-dimensional materials, and shed light on the rational design of nanoarchitectures for energy storage.Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li). While the first-principles computations show that the Li capacity of pristine graphene, limited by Li clustering and phase separation, is lower than that offered by Li intercalation in graphite, we explore the feasibility of modifying graphene for better Li storage. It is found that certain structural defects in graphene can bind Li stably, yet a more efficacious approach is through substitution doping with boron (B). In particular, the layered C3B compound stands out as a promising Li storage medium. The monolayer C3B has a capacity of 714 mAh/g (as Li1.25C3B), and the capacity of stacked C3B is 857 mAh/g (as Li1.5C3B), which is about twice as large as graphite's 372 mAh/g (as LiC6). Our results help clarify the mechanism of Li storage in low-dimensional materials, and shed light on the rational design of nanoarchitectures for energy storage.
Author Artyukhov, Vasilii I
Harutyunyan, Avetik R
Liu, Mingjie
Liu, Yuanyue
Yakobson, Boris I
Author_xml – sequence: 1
  givenname: Yuanyue
  surname: Liu
  fullname: Liu, Yuanyue
  organization: †Department of Mechanical Engineering and Materials Science, Department of Chemistry, and the Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States
– sequence: 2
  givenname: Vasilii I
  surname: Artyukhov
  fullname: Artyukhov, Vasilii I
  organization: †Department of Mechanical Engineering and Materials Science, Department of Chemistry, and the Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States
– sequence: 3
  givenname: Mingjie
  surname: Liu
  fullname: Liu, Mingjie
  organization: †Department of Mechanical Engineering and Materials Science, Department of Chemistry, and the Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States
– sequence: 4
  givenname: Avetik R
  surname: Harutyunyan
  fullname: Harutyunyan, Avetik R
  organization: ‡Honda Research Institute USA, Inc., Columbus, Ohio 43212, United States
– sequence: 5
  givenname: Boris I
  surname: Yakobson
  fullname: Yakobson, Boris I
  organization: †Department of Mechanical Engineering and Materials Science, Department of Chemistry, and the Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26282987$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLAzEUhYNU7EMX_gHJ0s1oHpMm2QhSbS0MuFDXw83MHZsyjzrJFOqvt2AFV-csPj7OmZJR27VIyDVnd5wJfr_9ThlLLXdnZMJtahLNjRr962MyDWHL2Nwyoy_IWMyFEdboCXlYIgTvfO3jgXYVzXzc-KGhb7Hr4RNp19JVD7sNtkihLek6BvqEvd9D9HsMl-S8gjrg1Sln5GP5_L54SbLX1XrxmCUgDY-JBG0lMDDKKCEq56CUtnROlYbzolQulUqjlCCRCcmEOO50KS8KJxRjlRMzcvvr3fXd14Ah5o0PBdY1tNgNIeeaqVTPrTFH9OaEDq7BMt_1voH-kP99Fj8t91h2
CitedBy_id crossref_primary_10_1016_j_carbon_2023_03_002
crossref_primary_10_1016_j_carbon_2017_11_068
crossref_primary_10_1016_j_chemphys_2019_110583
crossref_primary_10_1038_srep37822
crossref_primary_10_1080_1536383X_2021_1938001
crossref_primary_10_1002_advs_201700659
crossref_primary_10_1016_j_ssc_2019_113770
crossref_primary_10_1039_C8EE03014F
crossref_primary_10_1016_j_electacta_2024_143763
crossref_primary_10_1016_j_physb_2023_415490
crossref_primary_10_1016_j_tsf_2020_137979
crossref_primary_10_1039_D0NR07580A
crossref_primary_10_1007_s10008_019_04383_6
crossref_primary_10_1016_j_electacta_2014_07_013
crossref_primary_10_1016_j_pnsc_2024_12_013
crossref_primary_10_1039_C5CP04675K
crossref_primary_10_1016_j_cocom_2018_e00314
crossref_primary_10_1016_j_jpowsour_2017_03_070
crossref_primary_10_3103_S0005105514040049
crossref_primary_10_1016_j_jpowsour_2016_11_110
crossref_primary_10_1002_anie_201412200
crossref_primary_10_1080_1536383X_2021_2000401
crossref_primary_10_1016_j_jallcom_2023_171306
crossref_primary_10_1016_j_surfin_2022_102603
crossref_primary_10_1103_rqrv_7hqt
crossref_primary_10_1063_1_4934865
crossref_primary_10_1016_j_commatsci_2017_08_023
crossref_primary_10_1016_j_mtcomm_2021_102100
crossref_primary_10_1016_j_desal_2022_115990
crossref_primary_10_1016_j_carbon_2022_05_018
crossref_primary_10_1016_j_jpowsour_2016_09_091
crossref_primary_10_1002_adma_201603421
crossref_primary_10_1016_j_ijhydene_2019_04_234
crossref_primary_10_1103_PhysRevApplied_12_014001
crossref_primary_10_1016_j_est_2024_111129
crossref_primary_10_1134_S1990793119010184
crossref_primary_10_1016_j_jtice_2024_105830
crossref_primary_10_1016_j_apsusc_2021_150468
crossref_primary_10_1063_1674_0068_cjcp2304035
crossref_primary_10_1002_adts_202300253
crossref_primary_10_1016_j_jpowsour_2020_229174
crossref_primary_10_1088_2053_1591_ac92c8
crossref_primary_10_3390_nano12081280
crossref_primary_10_1039_D5RA03426D
crossref_primary_10_1016_j_mssp_2025_109411
crossref_primary_10_1039_C5CS00147A
crossref_primary_10_1016_j_jenvman_2021_113312
crossref_primary_10_1016_j_physb_2023_414977
crossref_primary_10_1016_j_carbon_2017_12_109
crossref_primary_10_1016_j_molliq_2016_11_025
crossref_primary_10_1016_j_mtener_2020_100486
crossref_primary_10_1002_smll_202403656
crossref_primary_10_1016_j_apsusc_2020_145611
crossref_primary_10_3390_en18020337
crossref_primary_10_1002_cssc_201903095
crossref_primary_10_1016_j_electacta_2018_05_200
crossref_primary_10_1016_j_jpowsour_2021_229709
crossref_primary_10_1016_j_carbon_2020_11_048
crossref_primary_10_1039_C5CC07621H
crossref_primary_10_1016_j_carbon_2020_02_001
crossref_primary_10_1016_j_apsusc_2018_08_016
crossref_primary_10_1016_j_rser_2021_110849
crossref_primary_10_1016_j_matchemphys_2025_131057
crossref_primary_10_1039_D4NR05451B
crossref_primary_10_1016_j_mtcomm_2024_108254
crossref_primary_10_1016_j_electacta_2016_12_002
crossref_primary_10_1016_j_jmgm_2017_03_001
crossref_primary_10_1016_j_apsusc_2023_157171
crossref_primary_10_1134_S0036024418110262
crossref_primary_10_1007_s00894_020_04418_0
crossref_primary_10_1016_j_carbon_2015_02_078
crossref_primary_10_1088_1361_6463_ac4d4c
crossref_primary_10_1002_adem_201800891
crossref_primary_10_1016_j_solidstatesciences_2020_106170
crossref_primary_10_1016_j_cplett_2020_138085
crossref_primary_10_1038_srep16190
crossref_primary_10_1016_j_apsusc_2015_01_236
crossref_primary_10_1088_2053_1591_2_10_105016
crossref_primary_10_1016_j_cclet_2021_11_037
crossref_primary_10_1016_j_jpcs_2025_112779
crossref_primary_10_1016_j_surfin_2025_106253
crossref_primary_10_1016_j_inoche_2018_03_011
crossref_primary_10_1039_C5CP00543D
crossref_primary_10_1016_j_jpowsour_2013_11_103
crossref_primary_10_1007_s10008_023_05518_6
crossref_primary_10_1016_j_ssc_2021_114276
crossref_primary_10_1080_10667857_2015_1104824
crossref_primary_10_1039_C9NR09166A
crossref_primary_10_1016_j_apsusc_2013_08_140
crossref_primary_10_1039_C7CP04451H
crossref_primary_10_1002_adma_202210734
crossref_primary_10_1007_s11581_020_03497_6
crossref_primary_10_1088_1361_6528_aa56d0
crossref_primary_10_1016_j_jpcs_2024_112344
crossref_primary_10_1007_s10008_025_06268_3
crossref_primary_10_1016_j_molstruc_2024_139152
crossref_primary_10_1016_j_mtcomm_2024_108285
crossref_primary_10_1039_c3cp52891j
crossref_primary_10_1016_j_electacta_2017_03_111
crossref_primary_10_1021_jacs_6b09889
crossref_primary_10_1007_s00214_016_1910_0
crossref_primary_10_1016_j_pecs_2021_100929
crossref_primary_10_1039_D3RA08382A
crossref_primary_10_1039_C4CS00141A
crossref_primary_10_1002_adts_201800176
crossref_primary_10_1016_j_physleta_2017_04_022
crossref_primary_10_1016_j_commatsci_2014_04_010
crossref_primary_10_1039_C7CP00637C
crossref_primary_10_1155_2016_6375962
crossref_primary_10_1039_C8CP00805A
crossref_primary_10_1016_j_commatsci_2020_110000
crossref_primary_10_1021_ja403915m
crossref_primary_10_1039_D2CP02560D
crossref_primary_10_1016_j_carbon_2023_01_009
crossref_primary_10_1002_celc_201700301
crossref_primary_10_1016_j_apsusc_2020_145886
crossref_primary_10_1016_j_jssc_2016_05_014
crossref_primary_10_1016_j_jmgm_2021_107998
crossref_primary_10_1073_pnas_1602473113
crossref_primary_10_1016_j_carbon_2022_07_010
crossref_primary_10_1016_j_inoche_2018_06_021
crossref_primary_10_1002_adts_201800165
crossref_primary_10_1016_j_ssc_2018_01_002
crossref_primary_10_1016_j_joule_2018_04_027
crossref_primary_10_1016_j_carbon_2016_06_035
crossref_primary_10_1002_adma_201603613
crossref_primary_10_1016_j_cocom_2017_03_002
crossref_primary_10_1007_s40820_014_0004_6
crossref_primary_10_1016_j_apsusc_2023_158553
crossref_primary_10_1016_j_physleta_2024_129988
crossref_primary_10_1073_pnas_1618051114
crossref_primary_10_1007_s10008_024_06148_2
crossref_primary_10_1039_C5CP01502B
crossref_primary_10_1016_j_apsusc_2020_148039
crossref_primary_10_1016_j_carbon_2014_12_097
crossref_primary_10_1016_j_electacta_2017_11_017
crossref_primary_10_1063_1_5013617
crossref_primary_10_1038_s41467_018_04248_y
crossref_primary_10_1016_j_diamond_2024_111528
crossref_primary_10_1016_j_inoche_2023_111827
crossref_primary_10_1016_j_matlet_2017_04_001
crossref_primary_10_1016_j_surfin_2022_102091
crossref_primary_10_1016_j_apsusc_2021_150988
crossref_primary_10_1016_j_jallcom_2025_179324
crossref_primary_10_1016_j_est_2025_117481
crossref_primary_10_1021_ed500237r
crossref_primary_10_3389_fchem_2021_670833
crossref_primary_10_1002_adfm_202106315
crossref_primary_10_1039_C4CP01412J
crossref_primary_10_1007_s12034_018_1691_2
crossref_primary_10_3390_c9040092
crossref_primary_10_1002_ange_201412200
crossref_primary_10_3390_nano14110932
crossref_primary_10_1016_j_apsusc_2016_05_021
crossref_primary_10_1016_j_matchemphys_2015_02_045
crossref_primary_10_1016_j_diamond_2023_110645
crossref_primary_10_1177_0263617415623429
crossref_primary_10_1016_j_inoche_2025_114604
crossref_primary_10_1016_j_jallcom_2024_177773
crossref_primary_10_1016_j_apsusc_2018_10_107
crossref_primary_10_1016_j_physe_2024_116003
crossref_primary_10_1039_C4CP03890H
crossref_primary_10_1039_C4CP01045K
crossref_primary_10_1007_s10008_013_2338_2
crossref_primary_10_1039_C5CP05768J
crossref_primary_10_1016_j_jallcom_2019_07_040
crossref_primary_10_1016_j_carbon_2017_01_024
crossref_primary_10_1016_j_jallcom_2020_157432
crossref_primary_10_1016_j_apsusc_2022_154323
crossref_primary_10_1039_c3cp54320j
crossref_primary_10_1007_s00894_018_3604_0
crossref_primary_10_1016_j_est_2021_103924
crossref_primary_10_1016_j_apsusc_2015_11_264
crossref_primary_10_1016_j_jpowsour_2016_04_122
crossref_primary_10_1063_1_4862983
crossref_primary_10_1139_cjc_2017_0070
crossref_primary_10_1038_srep37911
crossref_primary_10_1016_j_apsusc_2020_145324
crossref_primary_10_1002_qua_26550
crossref_primary_10_1080_00268976_2018_1512725
crossref_primary_10_1016_j_jpcs_2023_111814
crossref_primary_10_1016_j_est_2023_108484
crossref_primary_10_1039_C9RA08707A
crossref_primary_10_3390_electronics9071161
crossref_primary_10_1016_j_jssc_2018_09_006
crossref_primary_10_1016_j_susc_2017_01_004
crossref_primary_10_1002_smll_202411311
crossref_primary_10_1016_j_mtcomm_2021_102938
crossref_primary_10_1021_acs_jpcc_5c00906
crossref_primary_10_1002_cphc_201700181
crossref_primary_10_1002_aenm_202100451
crossref_primary_10_1002_admi_201701261
crossref_primary_10_1007_s10008_018_04176_3
crossref_primary_10_1073_pnas_1505993112
crossref_primary_10_1088_1361_6528_aa52ac
crossref_primary_10_1039_C7CS00849J
crossref_primary_10_1016_j_cplett_2019_136896
crossref_primary_10_1002_celc_201801187
crossref_primary_10_1063_1_5085187
crossref_primary_10_1002_cnma_202200134
crossref_primary_10_1007_s11664_020_08371_9
crossref_primary_10_1007_s10876_018_1356_8
crossref_primary_10_3390_ma8095297
crossref_primary_10_1016_j_comptc_2025_115344
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/jz400491b
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
ExternalDocumentID 26282987
Genre Journal Article
GroupedDBID 4.4
53G
55A
5VS
7~N
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
DU5
EBS
ED~
EJD
GGK
GNL
IH9
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a381t-3a793a0a858522fbbad39dbb5d811cd5b4357e33a3e023022908b41ccb2500fb2
IEDL.DBID 7X8
ISICitedReferencesCount 325
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321793800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1948-7185
IngestDate Fri Jul 11 16:40:16 EDT 2025
Thu Jan 02 22:21:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords lithium storage
first-principle calculations
lithium ion battery
graphene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a381t-3a793a0a858522fbbad39dbb5d811cd5b4357e33a3e023022908b41ccb2500fb2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26282987
PQID 1705476988
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1705476988
pubmed_primary_26282987
PublicationCentury 2000
PublicationDate 2013-05-16
PublicationDateYYYYMMDD 2013-05-16
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J Phys Chem Lett
PublicationYear 2013
SSID ssj0069087
Score 2.5475807
Snippet Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1737
Title Feasibility of Lithium Storage on Graphene and Its Derivatives
URI https://www.ncbi.nlm.nih.gov/pubmed/26282987
https://www.proquest.com/docview/1705476988
Volume 4
WOSCitedRecordID wos000321793800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrx_agvVvC6mE2yyeaiSLUq1FLwQW9hn1jBpJq0oL_e2TTRkyB4yS0hmczOfjPf8n0InUgZcy0jSnikPRIaaYlIFCWMxsoqz4iwGl089eJ-nw-HyaAeuBX1scqmJlaFWufKzchPnexLGEcJ5-fjN-Jcoxy7WltozKNWAFDGZXU8_GYRoPGrDPKgT-cEajBrlIV8evry6ZI3ofJ3ZFntMN3V_77bGlqpsSW-mCXDOpoz2QZa6jSWbpvoDABffRz2A-cW90bl82jyiu-h8Ya6gvMMXzsBa6h_WGQa35YFvoQUnVbq4MUWeuxePXRuSG2gQARsxCUJBKw-4QnH_fm-lVLoINFSMs0pVZpJwEqxCQIRGNeKOOl3LkOqlARg5Fnpb6OFLM_MLsIBNwKgnVVJ5IeWMXgUpbE2TJqQySBqo-MmNCl8lGMdRGbySZH-BKeNdmbxTcczJY3UjxyRy-O9P9y9j5b9yoqCERodoJaF5WkO0aKalqPi_aj683DtD-6-AM2quQU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+Lithium+Storage+on+Graphene+and+Its+Derivatives&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Liu%2C+Yuanyue&rft.au=Artyukhov%2C+Vasilii+I&rft.au=Liu%2C+Mingjie&rft.au=Harutyunyan%2C+Avetik+R&rft.date=2013-05-16&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=4&rft.issue=10&rft.spage=1737&rft_id=info:doi/10.1021%2Fjz400491b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon