Feasibility of Lithium Storage on Graphene and Its Derivatives
Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li)...
Uloženo v:
| Vydáno v: | The journal of physical chemistry letters Ročník 4; číslo 10; s. 1737 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
16.05.2013
|
| Témata: | |
| ISSN: | 1948-7185, 1948-7185 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li). While the first-principles computations show that the Li capacity of pristine graphene, limited by Li clustering and phase separation, is lower than that offered by Li intercalation in graphite, we explore the feasibility of modifying graphene for better Li storage. It is found that certain structural defects in graphene can bind Li stably, yet a more efficacious approach is through substitution doping with boron (B). In particular, the layered C3B compound stands out as a promising Li storage medium. The monolayer C3B has a capacity of 714 mAh/g (as Li1.25C3B), and the capacity of stacked C3B is 857 mAh/g (as Li1.5C3B), which is about twice as large as graphite's 372 mAh/g (as LiC6). Our results help clarify the mechanism of Li storage in low-dimensional materials, and shed light on the rational design of nanoarchitectures for energy storage. |
|---|---|
| AbstractList | Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li). While the first-principles computations show that the Li capacity of pristine graphene, limited by Li clustering and phase separation, is lower than that offered by Li intercalation in graphite, we explore the feasibility of modifying graphene for better Li storage. It is found that certain structural defects in graphene can bind Li stably, yet a more efficacious approach is through substitution doping with boron (B). In particular, the layered C3B compound stands out as a promising Li storage medium. The monolayer C3B has a capacity of 714 mAh/g (as Li1.25C3B), and the capacity of stacked C3B is 857 mAh/g (as Li1.5C3B), which is about twice as large as graphite's 372 mAh/g (as LiC6). Our results help clarify the mechanism of Li storage in low-dimensional materials, and shed light on the rational design of nanoarchitectures for energy storage. Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li). While the first-principles computations show that the Li capacity of pristine graphene, limited by Li clustering and phase separation, is lower than that offered by Li intercalation in graphite, we explore the feasibility of modifying graphene for better Li storage. It is found that certain structural defects in graphene can bind Li stably, yet a more efficacious approach is through substitution doping with boron (B). In particular, the layered C3B compound stands out as a promising Li storage medium. The monolayer C3B has a capacity of 714 mAh/g (as Li1.25C3B), and the capacity of stacked C3B is 857 mAh/g (as Li1.5C3B), which is about twice as large as graphite's 372 mAh/g (as LiC6). Our results help clarify the mechanism of Li storage in low-dimensional materials, and shed light on the rational design of nanoarchitectures for energy storage.Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li). While the first-principles computations show that the Li capacity of pristine graphene, limited by Li clustering and phase separation, is lower than that offered by Li intercalation in graphite, we explore the feasibility of modifying graphene for better Li storage. It is found that certain structural defects in graphene can bind Li stably, yet a more efficacious approach is through substitution doping with boron (B). In particular, the layered C3B compound stands out as a promising Li storage medium. The monolayer C3B has a capacity of 714 mAh/g (as Li1.25C3B), and the capacity of stacked C3B is 857 mAh/g (as Li1.5C3B), which is about twice as large as graphite's 372 mAh/g (as LiC6). Our results help clarify the mechanism of Li storage in low-dimensional materials, and shed light on the rational design of nanoarchitectures for energy storage. |
| Author | Artyukhov, Vasilii I Harutyunyan, Avetik R Liu, Mingjie Liu, Yuanyue Yakobson, Boris I |
| Author_xml | – sequence: 1 givenname: Yuanyue surname: Liu fullname: Liu, Yuanyue organization: †Department of Mechanical Engineering and Materials Science, Department of Chemistry, and the Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States – sequence: 2 givenname: Vasilii I surname: Artyukhov fullname: Artyukhov, Vasilii I organization: †Department of Mechanical Engineering and Materials Science, Department of Chemistry, and the Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States – sequence: 3 givenname: Mingjie surname: Liu fullname: Liu, Mingjie organization: †Department of Mechanical Engineering and Materials Science, Department of Chemistry, and the Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States – sequence: 4 givenname: Avetik R surname: Harutyunyan fullname: Harutyunyan, Avetik R organization: ‡Honda Research Institute USA, Inc., Columbus, Ohio 43212, United States – sequence: 5 givenname: Boris I surname: Yakobson fullname: Yakobson, Boris I organization: †Department of Mechanical Engineering and Materials Science, Department of Chemistry, and the Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26282987$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLAzEUhYNU7EMX_gHJ0s1oHpMm2QhSbS0MuFDXw83MHZsyjzrJFOqvt2AFV-csPj7OmZJR27VIyDVnd5wJfr_9ThlLLXdnZMJtahLNjRr962MyDWHL2Nwyoy_IWMyFEdboCXlYIgTvfO3jgXYVzXzc-KGhb7Hr4RNp19JVD7sNtkihLek6BvqEvd9D9HsMl-S8gjrg1Sln5GP5_L54SbLX1XrxmCUgDY-JBG0lMDDKKCEq56CUtnROlYbzolQulUqjlCCRCcmEOO50KS8KJxRjlRMzcvvr3fXd14Ah5o0PBdY1tNgNIeeaqVTPrTFH9OaEDq7BMt_1voH-kP99Fj8t91h2 |
| CitedBy_id | crossref_primary_10_1016_j_carbon_2023_03_002 crossref_primary_10_1016_j_carbon_2017_11_068 crossref_primary_10_1016_j_chemphys_2019_110583 crossref_primary_10_1038_srep37822 crossref_primary_10_1080_1536383X_2021_1938001 crossref_primary_10_1002_advs_201700659 crossref_primary_10_1016_j_ssc_2019_113770 crossref_primary_10_1039_C8EE03014F crossref_primary_10_1016_j_electacta_2024_143763 crossref_primary_10_1016_j_physb_2023_415490 crossref_primary_10_1016_j_tsf_2020_137979 crossref_primary_10_1039_D0NR07580A crossref_primary_10_1007_s10008_019_04383_6 crossref_primary_10_1016_j_electacta_2014_07_013 crossref_primary_10_1016_j_pnsc_2024_12_013 crossref_primary_10_1039_C5CP04675K crossref_primary_10_1016_j_cocom_2018_e00314 crossref_primary_10_1016_j_jpowsour_2017_03_070 crossref_primary_10_3103_S0005105514040049 crossref_primary_10_1016_j_jpowsour_2016_11_110 crossref_primary_10_1002_anie_201412200 crossref_primary_10_1080_1536383X_2021_2000401 crossref_primary_10_1016_j_jallcom_2023_171306 crossref_primary_10_1016_j_surfin_2022_102603 crossref_primary_10_1103_rqrv_7hqt crossref_primary_10_1063_1_4934865 crossref_primary_10_1016_j_commatsci_2017_08_023 crossref_primary_10_1016_j_mtcomm_2021_102100 crossref_primary_10_1016_j_desal_2022_115990 crossref_primary_10_1016_j_carbon_2022_05_018 crossref_primary_10_1016_j_jpowsour_2016_09_091 crossref_primary_10_1002_adma_201603421 crossref_primary_10_1016_j_ijhydene_2019_04_234 crossref_primary_10_1103_PhysRevApplied_12_014001 crossref_primary_10_1016_j_est_2024_111129 crossref_primary_10_1134_S1990793119010184 crossref_primary_10_1016_j_jtice_2024_105830 crossref_primary_10_1016_j_apsusc_2021_150468 crossref_primary_10_1063_1674_0068_cjcp2304035 crossref_primary_10_1002_adts_202300253 crossref_primary_10_1016_j_jpowsour_2020_229174 crossref_primary_10_1088_2053_1591_ac92c8 crossref_primary_10_3390_nano12081280 crossref_primary_10_1039_D5RA03426D crossref_primary_10_1016_j_mssp_2025_109411 crossref_primary_10_1039_C5CS00147A crossref_primary_10_1016_j_jenvman_2021_113312 crossref_primary_10_1016_j_physb_2023_414977 crossref_primary_10_1016_j_carbon_2017_12_109 crossref_primary_10_1016_j_molliq_2016_11_025 crossref_primary_10_1016_j_mtener_2020_100486 crossref_primary_10_1002_smll_202403656 crossref_primary_10_1016_j_apsusc_2020_145611 crossref_primary_10_3390_en18020337 crossref_primary_10_1002_cssc_201903095 crossref_primary_10_1016_j_electacta_2018_05_200 crossref_primary_10_1016_j_jpowsour_2021_229709 crossref_primary_10_1016_j_carbon_2020_11_048 crossref_primary_10_1039_C5CC07621H crossref_primary_10_1016_j_carbon_2020_02_001 crossref_primary_10_1016_j_apsusc_2018_08_016 crossref_primary_10_1016_j_rser_2021_110849 crossref_primary_10_1016_j_matchemphys_2025_131057 crossref_primary_10_1039_D4NR05451B crossref_primary_10_1016_j_mtcomm_2024_108254 crossref_primary_10_1016_j_electacta_2016_12_002 crossref_primary_10_1016_j_jmgm_2017_03_001 crossref_primary_10_1016_j_apsusc_2023_157171 crossref_primary_10_1134_S0036024418110262 crossref_primary_10_1007_s00894_020_04418_0 crossref_primary_10_1016_j_carbon_2015_02_078 crossref_primary_10_1088_1361_6463_ac4d4c crossref_primary_10_1002_adem_201800891 crossref_primary_10_1016_j_solidstatesciences_2020_106170 crossref_primary_10_1016_j_cplett_2020_138085 crossref_primary_10_1038_srep16190 crossref_primary_10_1016_j_apsusc_2015_01_236 crossref_primary_10_1088_2053_1591_2_10_105016 crossref_primary_10_1016_j_cclet_2021_11_037 crossref_primary_10_1016_j_jpcs_2025_112779 crossref_primary_10_1016_j_surfin_2025_106253 crossref_primary_10_1016_j_inoche_2018_03_011 crossref_primary_10_1039_C5CP00543D crossref_primary_10_1016_j_jpowsour_2013_11_103 crossref_primary_10_1007_s10008_023_05518_6 crossref_primary_10_1016_j_ssc_2021_114276 crossref_primary_10_1080_10667857_2015_1104824 crossref_primary_10_1039_C9NR09166A crossref_primary_10_1016_j_apsusc_2013_08_140 crossref_primary_10_1039_C7CP04451H crossref_primary_10_1002_adma_202210734 crossref_primary_10_1007_s11581_020_03497_6 crossref_primary_10_1088_1361_6528_aa56d0 crossref_primary_10_1016_j_jpcs_2024_112344 crossref_primary_10_1007_s10008_025_06268_3 crossref_primary_10_1016_j_molstruc_2024_139152 crossref_primary_10_1016_j_mtcomm_2024_108285 crossref_primary_10_1039_c3cp52891j crossref_primary_10_1016_j_electacta_2017_03_111 crossref_primary_10_1021_jacs_6b09889 crossref_primary_10_1007_s00214_016_1910_0 crossref_primary_10_1016_j_pecs_2021_100929 crossref_primary_10_1039_D3RA08382A crossref_primary_10_1039_C4CS00141A crossref_primary_10_1002_adts_201800176 crossref_primary_10_1016_j_physleta_2017_04_022 crossref_primary_10_1016_j_commatsci_2014_04_010 crossref_primary_10_1039_C7CP00637C crossref_primary_10_1155_2016_6375962 crossref_primary_10_1039_C8CP00805A crossref_primary_10_1016_j_commatsci_2020_110000 crossref_primary_10_1021_ja403915m crossref_primary_10_1039_D2CP02560D crossref_primary_10_1016_j_carbon_2023_01_009 crossref_primary_10_1002_celc_201700301 crossref_primary_10_1016_j_apsusc_2020_145886 crossref_primary_10_1016_j_jssc_2016_05_014 crossref_primary_10_1016_j_jmgm_2021_107998 crossref_primary_10_1073_pnas_1602473113 crossref_primary_10_1016_j_carbon_2022_07_010 crossref_primary_10_1016_j_inoche_2018_06_021 crossref_primary_10_1002_adts_201800165 crossref_primary_10_1016_j_ssc_2018_01_002 crossref_primary_10_1016_j_joule_2018_04_027 crossref_primary_10_1016_j_carbon_2016_06_035 crossref_primary_10_1002_adma_201603613 crossref_primary_10_1016_j_cocom_2017_03_002 crossref_primary_10_1007_s40820_014_0004_6 crossref_primary_10_1016_j_apsusc_2023_158553 crossref_primary_10_1016_j_physleta_2024_129988 crossref_primary_10_1073_pnas_1618051114 crossref_primary_10_1007_s10008_024_06148_2 crossref_primary_10_1039_C5CP01502B crossref_primary_10_1016_j_apsusc_2020_148039 crossref_primary_10_1016_j_carbon_2014_12_097 crossref_primary_10_1016_j_electacta_2017_11_017 crossref_primary_10_1063_1_5013617 crossref_primary_10_1038_s41467_018_04248_y crossref_primary_10_1016_j_diamond_2024_111528 crossref_primary_10_1016_j_inoche_2023_111827 crossref_primary_10_1016_j_matlet_2017_04_001 crossref_primary_10_1016_j_surfin_2022_102091 crossref_primary_10_1016_j_apsusc_2021_150988 crossref_primary_10_1016_j_jallcom_2025_179324 crossref_primary_10_1016_j_est_2025_117481 crossref_primary_10_1021_ed500237r crossref_primary_10_3389_fchem_2021_670833 crossref_primary_10_1002_adfm_202106315 crossref_primary_10_1039_C4CP01412J crossref_primary_10_1007_s12034_018_1691_2 crossref_primary_10_3390_c9040092 crossref_primary_10_1002_ange_201412200 crossref_primary_10_3390_nano14110932 crossref_primary_10_1016_j_apsusc_2016_05_021 crossref_primary_10_1016_j_matchemphys_2015_02_045 crossref_primary_10_1016_j_diamond_2023_110645 crossref_primary_10_1177_0263617415623429 crossref_primary_10_1016_j_inoche_2025_114604 crossref_primary_10_1016_j_jallcom_2024_177773 crossref_primary_10_1016_j_apsusc_2018_10_107 crossref_primary_10_1016_j_physe_2024_116003 crossref_primary_10_1039_C4CP03890H crossref_primary_10_1039_C4CP01045K crossref_primary_10_1007_s10008_013_2338_2 crossref_primary_10_1039_C5CP05768J crossref_primary_10_1016_j_jallcom_2019_07_040 crossref_primary_10_1016_j_carbon_2017_01_024 crossref_primary_10_1016_j_jallcom_2020_157432 crossref_primary_10_1016_j_apsusc_2022_154323 crossref_primary_10_1039_c3cp54320j crossref_primary_10_1007_s00894_018_3604_0 crossref_primary_10_1016_j_est_2021_103924 crossref_primary_10_1016_j_apsusc_2015_11_264 crossref_primary_10_1016_j_jpowsour_2016_04_122 crossref_primary_10_1063_1_4862983 crossref_primary_10_1139_cjc_2017_0070 crossref_primary_10_1038_srep37911 crossref_primary_10_1016_j_apsusc_2020_145324 crossref_primary_10_1002_qua_26550 crossref_primary_10_1080_00268976_2018_1512725 crossref_primary_10_1016_j_jpcs_2023_111814 crossref_primary_10_1016_j_est_2023_108484 crossref_primary_10_1039_C9RA08707A crossref_primary_10_3390_electronics9071161 crossref_primary_10_1016_j_jssc_2018_09_006 crossref_primary_10_1016_j_susc_2017_01_004 crossref_primary_10_1002_smll_202411311 crossref_primary_10_1016_j_mtcomm_2021_102938 crossref_primary_10_1021_acs_jpcc_5c00906 crossref_primary_10_1002_cphc_201700181 crossref_primary_10_1002_aenm_202100451 crossref_primary_10_1002_admi_201701261 crossref_primary_10_1007_s10008_018_04176_3 crossref_primary_10_1073_pnas_1505993112 crossref_primary_10_1088_1361_6528_aa52ac crossref_primary_10_1039_C7CS00849J crossref_primary_10_1016_j_cplett_2019_136896 crossref_primary_10_1002_celc_201801187 crossref_primary_10_1063_1_5085187 crossref_primary_10_1002_cnma_202200134 crossref_primary_10_1007_s11664_020_08371_9 crossref_primary_10_1007_s10876_018_1356_8 crossref_primary_10_3390_ma8095297 crossref_primary_10_1016_j_comptc_2025_115344 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/jz400491b |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1948-7185 |
| ExternalDocumentID | 26282987 |
| Genre | Journal Article |
| GroupedDBID | 4.4 53G 55A 5VS 7~N AABXI ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ DU5 EBS ED~ EJD GGK GNL IH9 JG~ NPM P2P RNS ROL UI2 VF5 VG9 W1F XKZ 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a381t-3a793a0a858522fbbad39dbb5d811cd5b4357e33a3e023022908b41ccb2500fb2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 325 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321793800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1948-7185 |
| IngestDate | Fri Jul 11 16:40:16 EDT 2025 Thu Jan 02 22:21:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | lithium storage first-principle calculations lithium ion battery graphene |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a381t-3a793a0a858522fbbad39dbb5d811cd5b4357e33a3e023022908b41ccb2500fb2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 26282987 |
| PQID | 1705476988 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1705476988 pubmed_primary_26282987 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-05-16 |
| PublicationDateYYYYMMDD | 2013-05-16 |
| PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The journal of physical chemistry letters |
| PublicationTitleAlternate | J Phys Chem Lett |
| PublicationYear | 2013 |
| SSID | ssj0069087 |
| Score | 2.5475807 |
| Snippet | Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1737 |
| Title | Feasibility of Lithium Storage on Graphene and Its Derivatives |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26282987 https://www.proquest.com/docview/1705476988 |
| Volume | 4 |
| WOSCitedRecordID | wos000321793800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrx_agvVvC6mE2yyeaiSLUq1FLwQW9hn1jBpJq0oL_e2TTRkyB4yS0hmczOfjPf8n0InUgZcy0jSnikPRIaaYlIFCWMxsoqz4iwGl089eJ-nw-HyaAeuBX1scqmJlaFWufKzchPnexLGEcJ5-fjN-Jcoxy7WltozKNWAFDGZXU8_GYRoPGrDPKgT-cEajBrlIV8evry6ZI3ofJ3ZFntMN3V_77bGlqpsSW-mCXDOpoz2QZa6jSWbpvoDABffRz2A-cW90bl82jyiu-h8Ya6gvMMXzsBa6h_WGQa35YFvoQUnVbq4MUWeuxePXRuSG2gQARsxCUJBKw-4QnH_fm-lVLoINFSMs0pVZpJwEqxCQIRGNeKOOl3LkOqlARg5Fnpb6OFLM_MLsIBNwKgnVVJ5IeWMXgUpbE2TJqQySBqo-MmNCl8lGMdRGbySZH-BKeNdmbxTcczJY3UjxyRy-O9P9y9j5b9yoqCERodoJaF5WkO0aKalqPi_aj683DtD-6-AM2quQU |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+Lithium+Storage+on+Graphene+and+Its+Derivatives&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Liu%2C+Yuanyue&rft.au=Artyukhov%2C+Vasilii+I&rft.au=Liu%2C+Mingjie&rft.au=Harutyunyan%2C+Avetik+R&rft.date=2013-05-16&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=4&rft.issue=10&rft.spage=1737&rft_id=info:doi/10.1021%2Fjz400491b&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon |