A Nonlinear Solute Transport Model and Data Reconstruction with Parameter Determination in an Undisturbed Soil-Column Experiment

A real undisturbed soil-column infiltrating experiment in Zibo, Shandong, China, is investigated, and a nonlinear transport model for a solute ion penetrating through the column is put forward by using nonlinear Freundlich's adsorption isotherm. Since Freundlich's exponent and adsorption c...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical Problems in Engineering Vol. 2011; no. 1; pp. 1427 - 1440-186
Main Authors: Li, Gongsheng, Yao, De, Wang, Yongzai, Jia, Xianzheng
Format: Journal Article
Language:English
Published: Hindawi Limiteds 01.01.2011
Hindawi Publishing Corporation
ISSN:1024-123X, 1563-5147
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A real undisturbed soil-column infiltrating experiment in Zibo, Shandong, China, is investigated, and a nonlinear transport model for a solute ion penetrating through the column is put forward by using nonlinear Freundlich's adsorption isotherm. Since Freundlich's exponent and adsorption coefficient and source/sink terms in the model cannot be measured directly, an inverse problem of determining these parameters is encountered based on additional breakthrough data. Furthermore, an optimal perturbation regularization algorithm is introduced to determine the unknown parameters simultaneously. Numerical simulations are carried out and then the inversion algorithm is applied to solve the real inverse problem and reconstruct the measured data successfully. The computational results show that the nonlinear advection-dispersion equation discussed in this paper can be utilized by hydrogeologists to research solute transport behaviors with nonlinear adsorption in porous medium.
ISSN:1024-123X
1563-5147
DOI:10.1155/2011/679531