Research on crude oil price forecasting based on computational intelligence
The crude oil market, as a complex evolutionary nonlinear driving system, is by nature a highly noisy, nonlinear and deterministic chaotic series of price series. In this paper, a computational intelligence-based portfolio model is constructed to forecast crude oil prices using weekly price data of...
Uloženo v:
| Vydáno v: | Data science in finance and economics Ročník 3; číslo 3; s. 251 - 266 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
AIMS Press
01.09.2023
|
| Témata: | |
| ISSN: | 2769-2140, 2769-2140 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The crude oil market, as a complex evolutionary nonlinear driving system, is by nature a highly noisy, nonlinear and deterministic chaotic series of price series. In this paper, a computational intelligence-based portfolio model is constructed to forecast crude oil prices using weekly price data of West Texas intermediate crude oil (WTI) crude oil futures from 2011 to 2021. First, the WTI crude oil price series are decomposed using the ensemble empirical modal decomposition method (EEMD) and the set of component series is reconstructed using the cluster analysis method. Second, the reconstructed series are modeled and predicted using neural network models such as time-delay neural network (TDNN), extreme learning machine (ELM), multilayer perceptron (MLP) and the GM (1, 1) gray prediction algorithm and the output of the model with the best prediction effect for each component is integrated. Finally, the EGARCH model is used to further optimize the predictive power of the combined model and output the final predicted values. The results show that the combined model based on computational intelligence has higher forecasting accuracy than single models such as GM (1, 1), ARIMA, MLP and the combined EEMD-ELM model for forecasting crude oil futures prices. |
|---|---|
| AbstractList | The crude oil market, as a complex evolutionary nonlinear driving system, is by nature a highly noisy, nonlinear and deterministic chaotic series of price series. In this paper, a computational intelligence-based portfolio model is constructed to forecast crude oil prices using weekly price data of West Texas intermediate crude oil (WTI) crude oil futures from 2011 to 2021. First, the WTI crude oil price series are decomposed using the ensemble empirical modal decomposition method (EEMD) and the set of component series is reconstructed using the cluster analysis method. Second, the reconstructed series are modeled and predicted using neural network models such as time-delay neural network (TDNN), extreme learning machine (ELM), multilayer perceptron (MLP) and the GM (1, 1) gray prediction algorithm and the output of the model with the best prediction effect for each component is integrated. Finally, the EGARCH model is used to further optimize the predictive power of the combined model and output the final predicted values. The results show that the combined model based on computational intelligence has higher forecasting accuracy than single models such as GM (1, 1), ARIMA, MLP and the combined EEMD-ELM model for forecasting crude oil futures prices. The crude oil market, as a complex evolutionary nonlinear driving system, is by nature a highly noisy, nonlinear and deterministic chaotic series of price series. In this paper, a computational intelligence-based portfolio model is constructed to forecast crude oil prices using weekly price data of West Texas intermediate crude oil (WTI) crude oil futures from 2011 to 2021. First, the WTI crude oil price series are decomposed using the ensemble empirical modal decomposition method (EEMD) and the set of component series is reconstructed using the cluster analysis method. Second, the reconstructed series are modeled and predicted using neural network models such as time-delay neural network (TDNN), extreme learning machine (ELM), multilayer perceptron (MLP) and the GM (1,1) gray prediction algorithm and the output of the model with the best prediction effect for each component is integrated. Finally, the EGARCH model is used to further optimize the predictive power of the combined model and output the final predicted values. The results show that the combined model based on computational intelligence has higher forecasting accuracy than single models such as GM (1,1), ARIMA, MLP and the combined EEMD-ELM model for forecasting crude oil futures prices. Keywords: crude oil price; neural network model; gray forecasting algorithm; ensemble empirical modal decomposition JEL Codes: C63, E37 |
| Audience | Trade |
| Author | Li, Ming Li, Ying |
| Author_xml | – sequence: 1 givenname: Ming surname: Li fullname: Li, Ming – sequence: 2 givenname: Ying surname: Li fullname: Li, Ying |
| BookMark | eNptUclu3DAMFYoUaJLm1g_wB3SmtBYvxyDNhgQo0OUs0DTlKPBIgeQ59O-jyaRZgF5EgXgbySNxEGJgIb7UsFa90t--_7o4X0uQCmrzQRzKtulXstZw8Ob_SZzkfA8AsmsNdM2huPnJmTHRXRVDRWk7chX9XD0kT1y5mJgwLz5M1YCZxydQ3DxsF1x8DDhXPiw8z37iQPxZfHQ4Zz55rsfiz8X577Or1e2Py-uz09sVqrZfVrrttJEjyEE6JNTtgIPSjI3USNDLzslRG0ej0WPdqJ6hJhxaIOVqQ6Uci-u97hjx3paoG0x_bURvnxoxTRbT4mlma4xr3WAAikExMv0ATetU77TpJKEsWuu91oQF7oOLSyqhCEfeeCobdr70TztQu9CqK4SvbwjDNvvAuTzZT3dLnnCb83u43MMpxZwTO0t-v7zi42dbg91dz-6uZ5-v9-rxQvo35H_hjw5ZnCg |
| CitedBy_id | crossref_primary_10_1016_j_eneco_2024_107851 crossref_primary_10_3390_systems13040279 crossref_primary_10_1016_j_esr_2025_101833 crossref_primary_10_1049_tje2_12409 |
| Cites_doi | 10.1257/aer.20191823 10.1080/07350015.2014.949342 10.1080/03610918.2013.786780 10.1016/S0928-7655(97)00027-4 10.1016/j.eneco.2019.104523 10.1016/j.irfa.2021.101669 10.22004/ag.econ.253255 10.1142/S1793536909000047 10.1016/j.eneco.2020.104801 10.1086/684160 10.1016/S0140-9883(00)00075-X 10.1016/j.eneco.2021.105189 10.1016/j.eneco.2016.03.017 10.1016/j.neucom.2016.03.054 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 AIMS Press |
| Copyright_xml | – notice: COPYRIGHT 2023 AIMS Press |
| DBID | AAYXX CITATION N95 DOA |
| DOI | 10.3934/DSFE.2023015 |
| DatabaseName | CrossRef Gale Business: Insights DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 2769-2140 |
| EndPage | 266 |
| ExternalDocumentID | oai_doaj_org_article_55f7fb50034e47b59b067f39f4582ca2 A803845238 10_3934_DSFE_2023015 |
| GeographicLocations | Texas |
| GeographicLocations_xml | – name: Texas |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS BAAKF CITATION GROUPED_DOAJ IAO ITC M~E N95 OK1 RAN |
| ID | FETCH-LOGICAL-a379t-478452d02b2faca47bab34ea624ac0928f2d45fcd54d1639e01cab70c3f15c0c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062164400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2769-2140 |
| IngestDate | Fri Oct 03 12:50:47 EDT 2025 Sun Nov 23 08:56:35 EST 2025 Sat Nov 29 09:24:51 EST 2025 Tue Nov 18 22:28:01 EST 2025 Sat Nov 29 05:29:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a379t-478452d02b2faca47bab34ea624ac0928f2d45fcd54d1639e01cab70c3f15c0c3 |
| OpenAccessLink | https://doaj.org/article/55f7fb50034e47b59b067f39f4582ca2 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_55f7fb50034e47b59b067f39f4582ca2 gale_infotracacademiconefile_A803845238 gale_businessinsightsgauss_A803845238 crossref_citationtrail_10_3934_DSFE_2023015 crossref_primary_10_3934_DSFE_2023015 |
| PublicationCentury | 2000 |
| PublicationDate | 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 20230901 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Data science in finance and economics |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/DSFE.2023015-1 key-10.3934/DSFE.2023015-2 key-10.3934/DSFE.2023015-3 key-10.3934/DSFE.2023015-4 key-10.3934/DSFE.2023015-5 key-10.3934/DSFE.2023015-6 key-10.3934/DSFE.2023015-7 key-10.3934/DSFE.2023015-8 key-10.3934/DSFE.2023015-9 key-10.3934/DSFE.2023015-15 key-10.3934/DSFE.2023015-14 key-10.3934/DSFE.2023015-16 key-10.3934/DSFE.2023015-11 key-10.3934/DSFE.2023015-10 key-10.3934/DSFE.2023015-13 key-10.3934/DSFE.2023015-12 |
| References_xml | – ident: key-10.3934/DSFE.2023015-6 doi: 10.1257/aer.20191823 – ident: key-10.3934/DSFE.2023015-3 doi: 10.1080/07350015.2014.949342 – ident: key-10.3934/DSFE.2023015-7 doi: 10.1080/03610918.2013.786780 – ident: key-10.3934/DSFE.2023015-12 doi: 10.1016/S0928-7655(97)00027-4 – ident: key-10.3934/DSFE.2023015-5 doi: 10.1016/j.eneco.2019.104523 – ident: key-10.3934/DSFE.2023015-11 doi: 10.1016/j.irfa.2021.101669 – ident: key-10.3934/DSFE.2023015-14 doi: 10.22004/ag.econ.253255 – ident: key-10.3934/DSFE.2023015-13 – ident: key-10.3934/DSFE.2023015-15 doi: 10.1142/S1793536909000047 – ident: key-10.3934/DSFE.2023015-2 doi: 10.1016/j.eneco.2020.104801 – ident: key-10.3934/DSFE.2023015-4 doi: 10.1086/684160 – ident: key-10.3934/DSFE.2023015-10 doi: 10.1016/S0140-9883(00)00075-X – ident: key-10.3934/DSFE.2023015-8 doi: 10.1016/j.eneco.2021.105189 – ident: key-10.3934/DSFE.2023015-16 doi: 10.1016/j.eneco.2016.03.017 – ident: key-10.3934/DSFE.2023015-9 – ident: key-10.3934/DSFE.2023015-1 doi: 10.1016/j.neucom.2016.03.054 |
| SSID | ssj0002875086 |
| Score | 2.2584298 |
| Snippet | The crude oil market, as a complex evolutionary nonlinear driving system, is by nature a highly noisy, nonlinear and deterministic chaotic series of price... |
| SourceID | doaj gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 251 |
| SubjectTerms | Algorithms Analysis Commodity futures crude oil price ensemble empirical modal decomposition Forecasts and trends gray forecasting algorithm neural network model Neural networks |
| Title | Research on crude oil price forecasting based on computational intelligence |
| URI | https://doaj.org/article/55f7fb50034e47b59b067f39f4582ca2 |
| Volume | 3 |
| WOSCitedRecordID | wos001062164400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2769-2140 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002875086 issn: 2769-2140 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2769-2140 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002875086 issn: 2769-2140 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5ERLyIT6wv9qB4kNgku5vHsWqLoBZBhd7CZh9SKW1pWo_-dmc225KLePGygTCQzTe7O49MviHkQgmhM1gsAdc8CXhiYc9hmVjOEg3mGCIE63hmn9J-PxsM8pdGqy-sCavpgWvg2kLY1JYCeVQMT0uRl3C-WpZb_OCjpDt9wetpBFOfLmUEljBL6kp3ljPevn_tdW-wV3iIHXAbNshR9fsDuWFaejtk2_uEtFPPZZesmfEe2VyWpO-Tx2V5HJ2MqZottKGT4YhOkQ-IgtNplKywepmiSdJOyPVq8Hk-OmzQbh6Q91737e4h8E0QAsnSfB7wNOMi1mFcxlYqCRDIEqCQScylCvM4s7HmwiotuAbfKjdhpGSZhorZSCi4HJL18WRsjgiNmdCJisBlMchZk0imLehCR9ooiOvCFrlewlIozxCOjSpGBUQKCGKBIBYexBa5XElPa2aMX-RuEeGVDPJZuxug5cJrufhLy_Aw1E_hO3PCUGHuovqQi6oqOrDaECWWtciVk8PdCVNX0v9kAAAgz1VD8vg_pnVCtvAt65qzU7I-ny3MGdlQX_NhNTt3SxLG5-_uD8le5Jg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+crude+oil+price+forecasting+based+on+computational+intelligence&rft.jtitle=Data+science+in+finance+and+economics&rft.au=Ming+Li&rft.au=Ying+Li&rft.date=2023-09-01&rft.pub=AIMS+Press&rft.eissn=2769-2140&rft.volume=3&rft.issue=3&rft.spage=251&rft.epage=266&rft_id=info:doi/10.3934%2FDSFE.2023015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_55f7fb50034e47b59b067f39f4582ca2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2769-2140&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2769-2140&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2769-2140&client=summon |