Research on crude oil price forecasting based on computational intelligence

The crude oil market, as a complex evolutionary nonlinear driving system, is by nature a highly noisy, nonlinear and deterministic chaotic series of price series. In this paper, a computational intelligence-based portfolio model is constructed to forecast crude oil prices using weekly price data of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Data science in finance and economics Ročník 3; číslo 3; s. 251 - 266
Hlavní autoři: Li, Ming, Li, Ying
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.09.2023
Témata:
ISSN:2769-2140, 2769-2140
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The crude oil market, as a complex evolutionary nonlinear driving system, is by nature a highly noisy, nonlinear and deterministic chaotic series of price series. In this paper, a computational intelligence-based portfolio model is constructed to forecast crude oil prices using weekly price data of West Texas intermediate crude oil (WTI) crude oil futures from 2011 to 2021. First, the WTI crude oil price series are decomposed using the ensemble empirical modal decomposition method (EEMD) and the set of component series is reconstructed using the cluster analysis method. Second, the reconstructed series are modeled and predicted using neural network models such as time-delay neural network (TDNN), extreme learning machine (ELM), multilayer perceptron (MLP) and the GM (1, 1) gray prediction algorithm and the output of the model with the best prediction effect for each component is integrated. Finally, the EGARCH model is used to further optimize the predictive power of the combined model and output the final predicted values. The results show that the combined model based on computational intelligence has higher forecasting accuracy than single models such as GM (1, 1), ARIMA, MLP and the combined EEMD-ELM model for forecasting crude oil futures prices.
AbstractList The crude oil market, as a complex evolutionary nonlinear driving system, is by nature a highly noisy, nonlinear and deterministic chaotic series of price series. In this paper, a computational intelligence-based portfolio model is constructed to forecast crude oil prices using weekly price data of West Texas intermediate crude oil (WTI) crude oil futures from 2011 to 2021. First, the WTI crude oil price series are decomposed using the ensemble empirical modal decomposition method (EEMD) and the set of component series is reconstructed using the cluster analysis method. Second, the reconstructed series are modeled and predicted using neural network models such as time-delay neural network (TDNN), extreme learning machine (ELM), multilayer perceptron (MLP) and the GM (1, 1) gray prediction algorithm and the output of the model with the best prediction effect for each component is integrated. Finally, the EGARCH model is used to further optimize the predictive power of the combined model and output the final predicted values. The results show that the combined model based on computational intelligence has higher forecasting accuracy than single models such as GM (1, 1), ARIMA, MLP and the combined EEMD-ELM model for forecasting crude oil futures prices.
The crude oil market, as a complex evolutionary nonlinear driving system, is by nature a highly noisy, nonlinear and deterministic chaotic series of price series. In this paper, a computational intelligence-based portfolio model is constructed to forecast crude oil prices using weekly price data of West Texas intermediate crude oil (WTI) crude oil futures from 2011 to 2021. First, the WTI crude oil price series are decomposed using the ensemble empirical modal decomposition method (EEMD) and the set of component series is reconstructed using the cluster analysis method. Second, the reconstructed series are modeled and predicted using neural network models such as time-delay neural network (TDNN), extreme learning machine (ELM), multilayer perceptron (MLP) and the GM (1,1) gray prediction algorithm and the output of the model with the best prediction effect for each component is integrated. Finally, the EGARCH model is used to further optimize the predictive power of the combined model and output the final predicted values. The results show that the combined model based on computational intelligence has higher forecasting accuracy than single models such as GM (1,1), ARIMA, MLP and the combined EEMD-ELM model for forecasting crude oil futures prices. Keywords: crude oil price; neural network model; gray forecasting algorithm; ensemble empirical modal decomposition JEL Codes: C63, E37
Audience Trade
Author Li, Ming
Li, Ying
Author_xml – sequence: 1
  givenname: Ming
  surname: Li
  fullname: Li, Ming
– sequence: 2
  givenname: Ying
  surname: Li
  fullname: Li, Ying
BookMark eNptUclu3DAMFYoUaJLm1g_wB3SmtBYvxyDNhgQo0OUs0DTlKPBIgeQ59O-jyaRZgF5EgXgbySNxEGJgIb7UsFa90t--_7o4X0uQCmrzQRzKtulXstZw8Ob_SZzkfA8AsmsNdM2huPnJmTHRXRVDRWk7chX9XD0kT1y5mJgwLz5M1YCZxydQ3DxsF1x8DDhXPiw8z37iQPxZfHQ4Zz55rsfiz8X577Or1e2Py-uz09sVqrZfVrrttJEjyEE6JNTtgIPSjI3USNDLzslRG0ej0WPdqJ6hJhxaIOVqQ6Uci-u97hjx3paoG0x_bURvnxoxTRbT4mlma4xr3WAAikExMv0ATetU77TpJKEsWuu91oQF7oOLSyqhCEfeeCobdr70TztQu9CqK4SvbwjDNvvAuTzZT3dLnnCb83u43MMpxZwTO0t-v7zi42dbg91dz-6uZ5-v9-rxQvo35H_hjw5ZnCg
CitedBy_id crossref_primary_10_1016_j_eneco_2024_107851
crossref_primary_10_3390_systems13040279
crossref_primary_10_1016_j_esr_2025_101833
crossref_primary_10_1049_tje2_12409
Cites_doi 10.1257/aer.20191823
10.1080/07350015.2014.949342
10.1080/03610918.2013.786780
10.1016/S0928-7655(97)00027-4
10.1016/j.eneco.2019.104523
10.1016/j.irfa.2021.101669
10.22004/ag.econ.253255
10.1142/S1793536909000047
10.1016/j.eneco.2020.104801
10.1086/684160
10.1016/S0140-9883(00)00075-X
10.1016/j.eneco.2021.105189
10.1016/j.eneco.2016.03.017
10.1016/j.neucom.2016.03.054
ContentType Journal Article
Copyright COPYRIGHT 2023 AIMS Press
Copyright_xml – notice: COPYRIGHT 2023 AIMS Press
DBID AAYXX
CITATION
N95
DOA
DOI 10.3934/DSFE.2023015
DatabaseName CrossRef
Gale Business: Insights
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 2769-2140
EndPage 266
ExternalDocumentID oai_doaj_org_article_55f7fb50034e47b59b067f39f4582ca2
A803845238
10_3934_DSFE_2023015
GeographicLocations Texas
GeographicLocations_xml – name: Texas
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
BAAKF
CITATION
GROUPED_DOAJ
IAO
ITC
M~E
N95
OK1
RAN
ID FETCH-LOGICAL-a379t-478452d02b2faca47bab34ea624ac0928f2d45fcd54d1639e01cab70c3f15c0c3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062164400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2769-2140
IngestDate Fri Oct 03 12:50:47 EDT 2025
Sun Nov 23 08:56:35 EST 2025
Sat Nov 29 09:24:51 EST 2025
Tue Nov 18 22:28:01 EST 2025
Sat Nov 29 05:29:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a379t-478452d02b2faca47bab34ea624ac0928f2d45fcd54d1639e01cab70c3f15c0c3
OpenAccessLink https://doaj.org/article/55f7fb50034e47b59b067f39f4582ca2
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_55f7fb50034e47b59b067f39f4582ca2
gale_infotracacademiconefile_A803845238
gale_businessinsightsgauss_A803845238
crossref_citationtrail_10_3934_DSFE_2023015
crossref_primary_10_3934_DSFE_2023015
PublicationCentury 2000
PublicationDate 20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 20230901
  day: 01
PublicationDecade 2020
PublicationTitle Data science in finance and economics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/DSFE.2023015-1
key-10.3934/DSFE.2023015-2
key-10.3934/DSFE.2023015-3
key-10.3934/DSFE.2023015-4
key-10.3934/DSFE.2023015-5
key-10.3934/DSFE.2023015-6
key-10.3934/DSFE.2023015-7
key-10.3934/DSFE.2023015-8
key-10.3934/DSFE.2023015-9
key-10.3934/DSFE.2023015-15
key-10.3934/DSFE.2023015-14
key-10.3934/DSFE.2023015-16
key-10.3934/DSFE.2023015-11
key-10.3934/DSFE.2023015-10
key-10.3934/DSFE.2023015-13
key-10.3934/DSFE.2023015-12
References_xml – ident: key-10.3934/DSFE.2023015-6
  doi: 10.1257/aer.20191823
– ident: key-10.3934/DSFE.2023015-3
  doi: 10.1080/07350015.2014.949342
– ident: key-10.3934/DSFE.2023015-7
  doi: 10.1080/03610918.2013.786780
– ident: key-10.3934/DSFE.2023015-12
  doi: 10.1016/S0928-7655(97)00027-4
– ident: key-10.3934/DSFE.2023015-5
  doi: 10.1016/j.eneco.2019.104523
– ident: key-10.3934/DSFE.2023015-11
  doi: 10.1016/j.irfa.2021.101669
– ident: key-10.3934/DSFE.2023015-14
  doi: 10.22004/ag.econ.253255
– ident: key-10.3934/DSFE.2023015-13
– ident: key-10.3934/DSFE.2023015-15
  doi: 10.1142/S1793536909000047
– ident: key-10.3934/DSFE.2023015-2
  doi: 10.1016/j.eneco.2020.104801
– ident: key-10.3934/DSFE.2023015-4
  doi: 10.1086/684160
– ident: key-10.3934/DSFE.2023015-10
  doi: 10.1016/S0140-9883(00)00075-X
– ident: key-10.3934/DSFE.2023015-8
  doi: 10.1016/j.eneco.2021.105189
– ident: key-10.3934/DSFE.2023015-16
  doi: 10.1016/j.eneco.2016.03.017
– ident: key-10.3934/DSFE.2023015-9
– ident: key-10.3934/DSFE.2023015-1
  doi: 10.1016/j.neucom.2016.03.054
SSID ssj0002875086
Score 2.2584298
Snippet The crude oil market, as a complex evolutionary nonlinear driving system, is by nature a highly noisy, nonlinear and deterministic chaotic series of price...
SourceID doaj
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 251
SubjectTerms Algorithms
Analysis
Commodity futures
crude oil price
ensemble empirical modal decomposition
Forecasts and trends
gray forecasting algorithm
neural network model
Neural networks
Title Research on crude oil price forecasting based on computational intelligence
URI https://doaj.org/article/55f7fb50034e47b59b067f39f4582ca2
Volume 3
WOSCitedRecordID wos001062164400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2769-2140
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002875086
  issn: 2769-2140
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2769-2140
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002875086
  issn: 2769-2140
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5ERLyIT6wv9qB4kNgku5vHsWqLoBZBhd7CZh9SKW1pWo_-dmc225KLePGygTCQzTe7O49MviHkQgmhM1gsAdc8CXhiYc9hmVjOEg3mGCIE63hmn9J-PxsM8pdGqy-sCavpgWvg2kLY1JYCeVQMT0uRl3C-WpZb_OCjpDt9wetpBFOfLmUEljBL6kp3ljPevn_tdW-wV3iIHXAbNshR9fsDuWFaejtk2_uEtFPPZZesmfEe2VyWpO-Tx2V5HJ2MqZottKGT4YhOkQ-IgtNplKywepmiSdJOyPVq8Hk-OmzQbh6Q91737e4h8E0QAsnSfB7wNOMi1mFcxlYqCRDIEqCQScylCvM4s7HmwiotuAbfKjdhpGSZhorZSCi4HJL18WRsjgiNmdCJisBlMchZk0imLehCR9ooiOvCFrlewlIozxCOjSpGBUQKCGKBIBYexBa5XElPa2aMX-RuEeGVDPJZuxug5cJrufhLy_Aw1E_hO3PCUGHuovqQi6oqOrDaECWWtciVk8PdCVNX0v9kAAAgz1VD8vg_pnVCtvAt65qzU7I-ny3MGdlQX_NhNTt3SxLG5-_uD8le5Jg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+crude+oil+price+forecasting+based+on+computational+intelligence&rft.jtitle=Data+science+in+finance+and+economics&rft.au=Ming+Li&rft.au=Ying+Li&rft.date=2023-09-01&rft.pub=AIMS+Press&rft.eissn=2769-2140&rft.volume=3&rft.issue=3&rft.spage=251&rft.epage=266&rft_id=info:doi/10.3934%2FDSFE.2023015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_55f7fb50034e47b59b067f39f4582ca2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2769-2140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2769-2140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2769-2140&client=summon