Graphene-Enabled Silver Nanoantenna Sensors
Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver’s tendency to tarnish and roughen, forming Ag2S on its surface, dramatically diminishing optical properties and rendering it unrelia...
Gespeichert in:
| Veröffentlicht in: | Nano letters Jg. 12; H. 8; S. 4090 - 4094 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Washington, DC
American Chemical Society
08.08.2012
|
| Schlagworte: | |
| ISSN: | 1530-6984, 1530-6992, 1530-6992 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver’s tendency to tarnish and roughen, forming Ag2S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag2S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag–Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications. |
|---|---|
| AbstractList | Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver's tendency to tarnish and roughen, forming Ag(2)S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag(2)S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag-Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications. Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver’s tendency to tarnish and roughen, forming Ag2S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag2S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag–Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications. Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver's tendency to tarnish and roughen, forming Ag sub(2)S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag sub(2)S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag-Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications. Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver's tendency to tarnish and roughen, forming Ag(2)S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag(2)S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag-Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications.Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver's tendency to tarnish and roughen, forming Ag(2)S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag(2)S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag-Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications. |
| Author | Li, Chen Zhu, Hai Zhu, Alexander Y Cubukcu, Ertugrul Reed, Jason C |
| AuthorAffiliation | University of Pennsylvania |
| AuthorAffiliation_xml | – name: University of Pennsylvania |
| Author_xml | – sequence: 1 givenname: Jason C surname: Reed fullname: Reed, Jason C – sequence: 2 givenname: Hai surname: Zhu fullname: Zhu, Hai – sequence: 3 givenname: Alexander Y surname: Zhu fullname: Zhu, Alexander Y – sequence: 4 givenname: Chen surname: Li fullname: Li, Chen – sequence: 5 givenname: Ertugrul surname: Cubukcu fullname: Cubukcu, Ertugrul email: cubukcu@seas.upenn.edu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26224789$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22793868$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0UtLw0AQAOBFKvahB_-A9CIoEju7m2R3j1JqFYoequcwSSaYkm7qbir4703pQ5CCl9k5fDOzzPRZx9aWGLvkcM9B8JGtJPAoipoT1uORhCA2RnQOuQ67rO_9AgCMjOCMdYVQRupY99jd1OHqgywFE4tpRflwXlZf5IYvaGu0DVmLwzlZXzt_zk4LrDxd7N4Be3-cvI2fgtnr9Hn8MAtQKt0EJhQFj2OtQ4mkQCKkUREZIBUZoQpQpHISKDLSEsIcOMmMF9oQh9TIUMgBu9n2Xbn6c02-SZalz6iq0FK99glXsYCwHaP-pyCFNpvY0qsdXadLypOVK5fovpP9LlpwvQPoM6wKhzYr_a-LhQiVNq0bbV3mau8dFUlWNtiUtW0cllU7M9lcJTlcpa24_VOxb3rM7n6BmU8W9drZdtVH3A-h3ZTD |
| CitedBy_id | crossref_primary_10_1080_00107514_2013_850788 crossref_primary_10_1063_1_4921796 crossref_primary_10_1002_ange_201809258 crossref_primary_10_1007_s11356_017_0481_5 crossref_primary_10_1007_s10853_018_2998_5 crossref_primary_10_1039_c3cp43896a crossref_primary_10_1039_c3cp51952j crossref_primary_10_1002_adom_201200053 crossref_primary_10_1007_s12668_014_0130_0 crossref_primary_10_1002_jrs_5932 crossref_primary_10_1155_2015_975043 crossref_primary_10_1039_C5CP06121K crossref_primary_10_1002_pssr_201308159 crossref_primary_10_1016_j_actamat_2015_12_029 crossref_primary_10_1080_09500340_2015_1100340 crossref_primary_10_1016_j_carbon_2013_11_052 crossref_primary_10_3390_molecules26082165 crossref_primary_10_1002_adom_201800548 crossref_primary_10_3390_molecules26154651 crossref_primary_10_1016_j_optcom_2020_126482 crossref_primary_10_1007_s11051_013_1727_x crossref_primary_10_1016_j_mser_2013_09_001 crossref_primary_10_1002_adfm_201501156 crossref_primary_10_1021_ja507368z crossref_primary_10_1039_D3RA07018B crossref_primary_10_1007_s00339_023_07038_6 crossref_primary_10_1063_1_4956437 crossref_primary_10_1002_smll_201700044 crossref_primary_10_1007_s11468_017_0623_0 crossref_primary_10_1186_1556_276X_8_32 crossref_primary_10_1002_adma_201904532 crossref_primary_10_1016_j_photonics_2023_101153 crossref_primary_10_3390_nano12142473 crossref_primary_10_1080_02670836_2017_1410368 crossref_primary_10_1007_s11468_013_9649_0 crossref_primary_10_1080_09500340_2014_928378 crossref_primary_10_1088_0957_4484_26_49_495701 crossref_primary_10_1515_nanoph_2019_0392 crossref_primary_10_1038_lsa_2015_115 crossref_primary_10_1088_1757_899X_783_1_012023 crossref_primary_10_1016_j_matpr_2020_03_244 crossref_primary_10_1007_s42452_024_06161_0 crossref_primary_10_1002_admi_201900427 crossref_primary_10_1186_1556_276X_8_295 crossref_primary_10_1380_ejssnt_2025_026 crossref_primary_10_1002_anie_201809258 crossref_primary_10_1557_adv_2017_621 crossref_primary_10_1016_j_bios_2019_111324 crossref_primary_10_1016_j_inoche_2016_03_011 crossref_primary_10_1557_mrc_2019_162 crossref_primary_10_3390_ma13204660 crossref_primary_10_1002_smll_201800871 crossref_primary_10_3390_s21165262 crossref_primary_10_1002_adfm_202302265 crossref_primary_10_1088_0022_3727_47_38_385102 crossref_primary_10_1364_JOSAB_32_000721 crossref_primary_10_1002_admi_202001227 crossref_primary_10_1109_JLT_2017_2751674 crossref_primary_10_3390_mi15040502 crossref_primary_10_1007_s11082_021_03228_9 crossref_primary_10_1016_j_carbon_2018_02_068 crossref_primary_10_1016_j_trac_2016_10_004 crossref_primary_10_1002_adfm_201303135 crossref_primary_10_1007_s11468_025_02910_y crossref_primary_10_1016_j_photonics_2022_101016 crossref_primary_10_1002_smll_201401549 crossref_primary_10_1515_joc_2022_0162 crossref_primary_10_1364_JOSAB_36_000435 crossref_primary_10_1002_adfm_201303384 crossref_primary_10_1039_C4CC07937J crossref_primary_10_1107_S2052252522002901 crossref_primary_10_1016_j_optlastec_2013_12_019 crossref_primary_10_1002_adom_201600201 crossref_primary_10_1103_PhysRevApplied_4_024007 crossref_primary_10_1002_adom_201900905 crossref_primary_10_1088_2053_1591_ab6c90 crossref_primary_10_1039_D2NR03005E crossref_primary_10_1002_adom_201801433 crossref_primary_10_1557_mre_2014_6 crossref_primary_10_1063_1_4929880 crossref_primary_10_1088_1361_6528_ab5cde crossref_primary_10_1007_s11051_021_05291_5 crossref_primary_10_1016_j_spmi_2016_08_029 crossref_primary_10_3390_s19040862 crossref_primary_10_3390_nano11071736 crossref_primary_10_1063_1_4867167 crossref_primary_10_1038_ncomms6259 crossref_primary_10_1002_admt_201800014 crossref_primary_10_1007_s11051_023_05910_3 crossref_primary_10_1038_srep17167 crossref_primary_10_1016_j_carbon_2016_05_053 crossref_primary_10_3390_s20051401 crossref_primary_10_1007_s12633_018_9854_8 crossref_primary_10_1016_j_carbon_2013_09_076 crossref_primary_10_1186_s11671_017_2009_9 crossref_primary_10_3390_s24155058 crossref_primary_10_1364_AO_472979 crossref_primary_10_1109_JLT_2020_3038070 crossref_primary_10_1088_2053_1583_2_3_032005 crossref_primary_10_1016_j_snb_2020_129373 crossref_primary_10_1007_s11468_019_01071_z crossref_primary_10_1016_j_vacuum_2020_109497 crossref_primary_10_1063_1_4914524 crossref_primary_10_1016_j_spmi_2018_09_034 crossref_primary_10_1088_2053_1591_ad194a crossref_primary_10_1002_adom_201701043 crossref_primary_10_1063_1_4772542 crossref_primary_10_1039_C6CP05107C crossref_primary_10_1063_1_4773474 crossref_primary_10_1007_s11468_015_0132_y crossref_primary_10_3390_bios12010042 crossref_primary_10_1016_j_carbon_2013_10_030 crossref_primary_10_1002_adom_202300401 crossref_primary_10_1002_adma_201805043 crossref_primary_10_1002_adom_201300133 crossref_primary_10_1016_j_snb_2015_02_113 crossref_primary_10_1088_0957_4484_26_12_125603 |
| Cites_doi | 10.1021/jp8098126 10.1016/j.matlet.2009.07.052 10.1021/cm051532n 10.1021/nl071254m 10.1021/jp002435e 10.1073/pnas.0907459106 10.1364/OE.19.000458 10.1364/JOSA.60.000224 10.1021/nl801457b 10.1021/nl061420a 10.1126/science.275.5303.1102 10.1364/JOSAB.3.001647 10.1021/ja020393x 10.1038/nmat1849 10.1039/C1NR11368B 10.1021/nl902623y 10.1021/nl802558y 10.1002/cphc.200900743 10.1103/PhysRevE.62.4318 10.1038/nmat3207 10.1039/C1CC15694B 10.1364/OE.19.010640 10.1021/jp026731y 10.1016/j.tsf.2004.09.059 10.1063/1.3021413 10.1126/science.1136836 10.1364/OE.18.008353 10.1021/ja205693t 10.1063/1.2974096 10.1007/s00340-005-1793-6 10.1103/PhysRevLett.100.206803 10.1126/science.1174655 10.1038/nature07719 10.1021/nl103994w 10.1002/lpor.200900055 10.1021/nn202815k |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 American Chemical Society 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1021/nl301555t |
| DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences Physics |
| EISSN | 1530-6992 |
| EndPage | 4094 |
| ExternalDocumentID | 22793868 26224789 10_1021_nl301555t b324603000 |
| Genre | Journal Article |
| GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AFFNX IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-a378t-942f1668843ae703a0b5f590e75927f07e7de2a2ce8304d01e3c1f89e10b93423 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 169 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307211000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-6984 1530-6992 |
| IngestDate | Thu Oct 02 10:54:00 EDT 2025 Fri Jul 11 12:22:02 EDT 2025 Mon Jul 21 06:05:18 EDT 2025 Mon Jul 21 09:13:21 EDT 2025 Sat Nov 29 01:49:11 EST 2025 Tue Nov 18 21:12:19 EST 2025 Thu Aug 27 13:42:22 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | nanoantennas silver Plasmonics sulfidation graphene LSPR sensor Damping Gold Nanostructures Silver sulfide Surface plasmons Nanoelectronics Silver Nanometer scale Graphene Experimental design Optical properties Monolayers Sensors Sulfur Nanoantenna |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a378t-942f1668843ae703a0b5f590e75927f07e7de2a2ce8304d01e3c1f89e10b93423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22793868 |
| PQID | 1032891032 |
| PQPubID | 23479 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1762049427 proquest_miscellaneous_1032891032 pubmed_primary_22793868 pascalfrancis_primary_26224789 crossref_citationtrail_10_1021_nl301555t crossref_primary_10_1021_nl301555t acs_journals_10_1021_nl301555t |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-08-08 |
| PublicationDateYYYYMMDD | 2012-08-08 |
| PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington, DC |
| PublicationPlace_xml | – name: Washington, DC – name: United States |
| PublicationTitle | Nano letters |
| PublicationTitleAlternate | Nano Lett |
| PublicationYear | 2012 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | Huang T. (ref11/cit11) 2012; 4 Chen S. (ref25/cit25) 2012; 11 Gray A. (ref29/cit29) 2008; 104 Choi S. H. (ref31/cit31) 2011; 19 Jensen T. R. (ref1/cit1) 2000; 104 Wang L. (ref14/cit14) 2011; 19 Barrios C. A. (ref16/cit16) 2009; 113 Li X. (ref26/cit26) 2009; 9 Nagpal P. (ref13/cit13) 2009; 325 McMahon M. (ref9/cit9) 2005; 80 Xu H. (ref2/cit2) 2000; 62 Haes A. J. (ref3/cit3) 2002; 124 Stoller M. D. (ref21/cit21) 2008; 8 Kim K. S. (ref22/cit22) 2009; 457 Han T. H. (ref34/cit34) 2011; 133 Pryce I. M. (ref6/cit6) 2011; 5 Elechiguerra J. L. (ref12/cit12) 2005; 17 Geim A. K. (ref18/cit18) 2007; 6 Papasimakis N. (ref33/cit33) 2010; 18 Gupta A. (ref28/cit28) 2006; 6 Nie S. (ref5/cit5) 1997; 275 Wang X. (ref19/cit19) 2008; 100 Bunch J. S. (ref20/cit20) 2007; 315 Li F. (ref35/cit35) 2012; 48 Palik E. D. (ref30/cit30) 1985 Cao W. (ref10/cit10) 2009; 63 Hall W. P. (ref17/cit17) 2011; 11 Bennett J. M. (ref37/cit37) 1970; 60 Bunch J. S. (ref24/cit24) 2008; 8 West P. R. (ref8/cit8) 2010; 4 Song B. (ref32/cit32) 2010; 11 Kelly K. L. (ref36/cit36) 2002; 107 Leenaerts O. (ref23/cit23) 2008; 93 Ni Z. H. (ref27/cit27) 2007; 7 Hache F. (ref4/cit4) 1986; 3 Park Y.-i. (ref15/cit15) 2005; 476 Adato R. (ref7/cit7) 2009; 106 |
| References_xml | – volume: 113 start-page: 8158 issue: 19 year: 2009 ident: ref16/cit16 publication-title: J. Phys. Chem. C doi: 10.1021/jp8098126 – volume: 63 start-page: 2263 issue: 26 year: 2009 ident: ref10/cit10 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2009.07.052 – volume: 17 start-page: 6042 issue: 24 year: 2005 ident: ref12/cit12 publication-title: Chem. Mater. doi: 10.1021/cm051532n – volume: 7 start-page: 2758 issue: 9 year: 2007 ident: ref27/cit27 publication-title: Nano Lett. doi: 10.1021/nl071254m – volume: 104 start-page: 10549 issue: 45 year: 2000 ident: ref1/cit1 publication-title: J. Phys. Chem. B doi: 10.1021/jp002435e – volume: 106 start-page: 19227 issue: 46 year: 2009 ident: ref7/cit7 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0907459106 – volume: 19 start-page: 458 issue: 2 year: 2011 ident: ref31/cit31 publication-title: Opt. Express doi: 10.1364/OE.19.000458 – volume: 60 start-page: 224 issue: 2 year: 1970 ident: ref37/cit37 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.60.000224 – volume: 8 start-page: 2458 issue: 8 year: 2008 ident: ref24/cit24 publication-title: Nano Lett. doi: 10.1021/nl801457b – volume: 6 start-page: 2667 issue: 12 year: 2006 ident: ref28/cit28 publication-title: . Nano Lett. doi: 10.1021/nl061420a – volume: 275 start-page: 1102 issue: 5303 year: 1997 ident: ref5/cit5 publication-title: Science doi: 10.1126/science.275.5303.1102 – volume: 3 start-page: 1647 issue: 12 year: 1986 ident: ref4/cit4 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.3.001647 – volume: 124 start-page: 10596 issue: 35 year: 2002 ident: ref3/cit3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja020393x – volume: 6 start-page: 183 issue: 3 year: 2007 ident: ref18/cit18 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 4 start-page: 380 issue: 2 year: 2012 ident: ref11/cit11 publication-title: Nanoscale doi: 10.1039/C1NR11368B – volume: 9 start-page: 4359 issue: 12 year: 2009 ident: ref26/cit26 publication-title: Nano Lett. doi: 10.1021/nl902623y – volume: 8 start-page: 3498 issue: 10 year: 2008 ident: ref21/cit21 publication-title: Nano Lett. doi: 10.1021/nl802558y – volume: 11 start-page: 585 issue: 3 year: 2010 ident: ref32/cit32 publication-title: ChemPhysChem doi: 10.1002/cphc.200900743 – volume: 62 start-page: 4318 issue: 3 year: 2000 ident: ref2/cit2 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.4318 – volume: 11 start-page: 203 issue: 3 year: 2012 ident: ref25/cit25 publication-title: Nat. Mater. doi: 10.1038/nmat3207 – volume: 48 start-page: 127 issue: 1 year: 2012 ident: ref35/cit35 publication-title: Chem. Commun. doi: 10.1039/C1CC15694B – volume: 19 start-page: 10640 issue: 11 year: 2011 ident: ref14/cit14 publication-title: Opt. Express doi: 10.1364/OE.19.010640 – volume: 107 start-page: 668 issue: 3 year: 2002 ident: ref36/cit36 publication-title: J. Phys. Chem. B doi: 10.1021/jp026731y – volume: 476 start-page: 168 issue: 1 year: 2005 ident: ref15/cit15 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.09.059 – volume: 93 start-page: 193107 issue: 19 year: 2008 ident: ref23/cit23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3021413 – volume-title: Handbook of Optical Constants of Solids year: 1985 ident: ref30/cit30 – volume: 315 start-page: 490 issue: 5811 year: 2007 ident: ref20/cit20 publication-title: Science doi: 10.1126/science.1136836 – volume: 18 start-page: 8353 issue: 8 year: 2010 ident: ref33/cit33 publication-title: Opt. Express doi: 10.1364/OE.18.008353 – volume: 133 start-page: 15264 issue: 39 year: 2011 ident: ref34/cit34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205693t – volume: 104 start-page: 053109 issue: 5 year: 2008 ident: ref29/cit29 publication-title: J. Appl. Phys. doi: 10.1063/1.2974096 – volume: 80 start-page: 915 issue: 7 year: 2005 ident: ref9/cit9 publication-title: Appl. Phys. B: Lasers Opt. doi: 10.1007/s00340-005-1793-6 – volume: 100 start-page: 206803 issue: 20 year: 2008 ident: ref19/cit19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.206803 – volume: 325 start-page: 594 issue: 5940 year: 2009 ident: ref13/cit13 publication-title: Science doi: 10.1126/science.1174655 – volume: 457 start-page: 706 issue: 7230 year: 2009 ident: ref22/cit22 publication-title: Nature doi: 10.1038/nature07719 – volume: 11 start-page: 1098 issue: 3 year: 2011 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl103994w – volume: 4 start-page: 795 issue: 6 year: 2010 ident: ref8/cit8 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.200900055 – volume: 5 start-page: 8167 issue: 10 year: 2011 ident: ref6/cit6 publication-title: ACS Nano doi: 10.1021/nn202815k |
| SSID | ssj0009350 |
| Score | 2.4950206 |
| Snippet | Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because... |
| SourceID | proquest pubmed pascalfrancis crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4090 |
| SubjectTerms | Applied sciences Atmospherics Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science; rheology Devices Durability Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronics Exact sciences and technology Fullerenes and related materials; diamonds, graphite General equipment and techniques Graphene Instruments, apparatus, components and techniques common to several branches of physics and astronomy Materials science Molecular electronics, nanoelectronics Nanostructure Optical properties Physics Plasmonics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing Silver Specific materials Sulfur Surface and interface electron states |
| Title | Graphene-Enabled Silver Nanoantenna Sensors |
| URI | http://dx.doi.org/10.1021/nl301555t https://www.ncbi.nlm.nih.gov/pubmed/22793868 https://www.proquest.com/docview/1032891032 https://www.proquest.com/docview/1762049427 |
| Volume | 12 |
| WOSCitedRecordID | wos000307211000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1530-6992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009350 issn: 1530-6984 databaseCode: ACS dateStart: 20010101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB7c1QdFvI96lHo8CFJsk7ZJHkU8nhZhFfatpDlgQbqy3fX3O-ne4KoveZrQZCZzMdNvAK4jy1UilAwLoVmYyMiGRcaTkBSCFEwxnRFdD5tgrRbvdMTrClwtqeCT-K78oM6vp4MGrBIMb13f3v1De4asS-sxrKi5mAcJnkzgg-a3OtejqgXXs_kpK-SCHY2vWB5f1n7maftfJ9yBrXEYGdyP5L4LK6bcg405cMF9uH12WNRoysLH-v8oHbS7rg06QIPac_wsSxm0MYvt9asDeH96fHt4CcejEUJJGR-EIiE2zjLOEyoNKq2MitSmIjIsFYTZiBmmDZFEGU6jREexoSq2XJg4KoQD_TuEZtkrzTEEShWp0JpqKjFVS2OZ2NhlJejMmRHGeuAj7_Lx067yumpN4nx6aw9uJmzN1RhY3M23-PiJ9HJK-jlC0_iJyF-QzZSSZBhvMC48uJgIK0dlcBUOWZre0J2NYgLp1l9omIPgRwYyD45Gkp59gaC54hk_-evOp7COkROpOwH5GTQH_aE5hzX1NehWfR8arMP9-pl-A4Mw3Ic |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB68QEW8j3rUKD4IEkx2k-zuo4gXahFawbew2QMKJS1N9fc7m6aH4IEveZokM7PHzDC73wdwFliuIqGknwnN_EgG1s8SHvkkEyRjiumE6JJsgjUa_O1NvFQwOe4uDCpR4JeKsok_QRcIL_MOdeE9HszCfIxh1bEVXF03JwC7tGRjxQWM5ZDg0QhFaPpVF4FU8SUCrfRkgc6wQxaLn9PMMtzcrv1H0XVYrZJK72o4CzZgxuSbsDwFNbgFF3cOmRo3Nv-mvC2lvWbbHYr2cHvtOu_mufSaWNN2-8U2vN7etK7v_YoowZeU8YEvImLDJOE8otLgEpZBFttYBIbFgjAbMMO0IZIow2kQ6SA0VIWWCxMGmXAQgDswl3dzsweeUlkstKaaSizc4lBGNnQ1CoZ2ZoSxNaij0Wk10Yu07GGTMB1bXYPzkXdTVcGMO7aLzneip2PR3hBb4zuh-pchGkuSBLMPxkUNTkZjluLScP0OmZvuu9ONYjnpnr_IMAfIjw5kNdgdDvjkDwQ3L57w_b9sPobF-9bzU_r00Hg8gCXMqUh5RpAfwtyg_26OYEF9DNpFv17O2U-qROQF |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB68EEW8j3rUKD4IEkx2k-zuo9RWRSlCFfoWNnuAIGlpqr_f2TStFTzwJU-TZHdmZ2eG2f0-gLPAchUJJf1MaOZHMrB-lvDIJ5kgGVNMJ0SXZBOs3ebdrnisCkV3FwYHUeCXirKJ77y6r22FMBBe5q_Uhfh4OAvzMQZyx1hw1eh8guzSkpEVnRhLIsGjMZLQ9KsuCqniSxRa6csCFWJHTBY_p5plyGmt_Xew67BaJZfe1Wg1bMCMyTdheQpycAsubhxCNW5wfrO8NaW9zos7HO3hNttzWs5z6XWwtu0Nim14bjWfGrd-RZjgS8r40BcRsWGScB5RadCVZZDFNhaBYbEgzAbMMG2IJMpwGkQ6CA1VoeXChEEmHBTgDszlvdzsgadUFgutqaYSC7g4lJENXa2CIZ4ZYWwN6jjxtFrwRVr2skmYTmZdg_OxhlNVwY071ovX70RPJ6L9EcbGd0L1L2aaSJIEsxDGRQ1OxnZL0UVc30PmpvfmxkaxrHTPX2SYA-ZHBbIa7I6M_vkHgpsYT_j-X3M-hsXH61b6cNe-P4AlTK1IeVSQH8LccPBmjmBBvQ9fikG9XLYfM8Hmfw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-Enabled+Silver+Nanoantenna+Sensors&rft.jtitle=Nano+letters&rft.au=Reed%2C+Jason+C&rft.au=Zhu%2C+Hai&rft.au=Zhu%2C+Alexander+Y&rft.au=Li%2C+Chen&rft.date=2012-08-08&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=12&rft.issue=8&rft.spage=4090&rft.epage=4094&rft_id=info:doi/10.1021%2Fnl301555t&rft.externalDocID=b324603000 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |