Generating conformer ensembles using a multiobjective genetic algorithm
The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of...
Saved in:
| Published in: | Journal of chemical information and modeling Vol. 47; no. 6; p. 2462 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.11.2007
|
| Subjects: | |
| ISSN: | 1549-9596 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of the search space with increasing degrees of conformational freedom (number of rotatable bonds). Stochastic algorithms do not suffer as much from the exponential increase of search space and provide a good coverage of the energy minima. Here, the use of a multiobjective genetic algorithm in the generation of conformer ensembles is investigated. Distance geometry is used to generate an initial conformer, which is then subject to geometric modifications encoded by the individuals of the genetic algorithm. The geometric modifications apply to torsion angles about rotatable bonds, stereochemistry of double bonds and tetrahedral chiral centers, and ring conformations. The geometric diversity of the evolving conformer ensemble is preserved by a fitness-sharing mechanism based on the root-mean-square distance of the atomic coordinates. Molecular symmetry is taken into account in the distance calculation. The geometric modifications introduce strain into the structures. The strain is relaxed using an MMFF94-like force field in a postprocessing step that also removes conformational duplicates and structures whose strain energy remains above a predefined window from the minimum energy value found in the set. The implementation, called Balloon, is available free of charge on the Internet ( http://www.abo.fi/~mivainio/balloon/). |
|---|---|
| AbstractList | The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of the search space with increasing degrees of conformational freedom (number of rotatable bonds). Stochastic algorithms do not suffer as much from the exponential increase of search space and provide a good coverage of the energy minima. Here, the use of a multiobjective genetic algorithm in the generation of conformer ensembles is investigated. Distance geometry is used to generate an initial conformer, which is then subject to geometric modifications encoded by the individuals of the genetic algorithm. The geometric modifications apply to torsion angles about rotatable bonds, stereochemistry of double bonds and tetrahedral chiral centers, and ring conformations. The geometric diversity of the evolving conformer ensemble is preserved by a fitness-sharing mechanism based on the root-mean-square distance of the atomic coordinates. Molecular symmetry is taken into account in the distance calculation. The geometric modifications introduce strain into the structures. The strain is relaxed using an MMFF94-like force field in a postprocessing step that also removes conformational duplicates and structures whose strain energy remains above a predefined window from the minimum energy value found in the set. The implementation, called Balloon, is available free of charge on the Internet ( http://www.abo.fi/~mivainio/balloon/).The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of the search space with increasing degrees of conformational freedom (number of rotatable bonds). Stochastic algorithms do not suffer as much from the exponential increase of search space and provide a good coverage of the energy minima. Here, the use of a multiobjective genetic algorithm in the generation of conformer ensembles is investigated. Distance geometry is used to generate an initial conformer, which is then subject to geometric modifications encoded by the individuals of the genetic algorithm. The geometric modifications apply to torsion angles about rotatable bonds, stereochemistry of double bonds and tetrahedral chiral centers, and ring conformations. The geometric diversity of the evolving conformer ensemble is preserved by a fitness-sharing mechanism based on the root-mean-square distance of the atomic coordinates. Molecular symmetry is taken into account in the distance calculation. The geometric modifications introduce strain into the structures. The strain is relaxed using an MMFF94-like force field in a postprocessing step that also removes conformational duplicates and structures whose strain energy remains above a predefined window from the minimum energy value found in the set. The implementation, called Balloon, is available free of charge on the Internet ( http://www.abo.fi/~mivainio/balloon/). The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of the search space with increasing degrees of conformational freedom (number of rotatable bonds). Stochastic algorithms do not suffer as much from the exponential increase of search space and provide a good coverage of the energy minima. Here, the use of a multiobjective genetic algorithm in the generation of conformer ensembles is investigated. Distance geometry is used to generate an initial conformer, which is then subject to geometric modifications encoded by the individuals of the genetic algorithm. The geometric modifications apply to torsion angles about rotatable bonds, stereochemistry of double bonds and tetrahedral chiral centers, and ring conformations. The geometric diversity of the evolving conformer ensemble is preserved by a fitness-sharing mechanism based on the root-mean-square distance of the atomic coordinates. Molecular symmetry is taken into account in the distance calculation. The geometric modifications introduce strain into the structures. The strain is relaxed using an MMFF94-like force field in a postprocessing step that also removes conformational duplicates and structures whose strain energy remains above a predefined window from the minimum energy value found in the set. The implementation, called Balloon, is available free of charge on the Internet ( http://www.abo.fi/~mivainio/balloon/). |
| Author | Johnson, Mark S Vainio, Mikko J |
| Author_xml | – sequence: 1 givenname: Mikko J surname: Vainio fullname: Vainio, Mikko J email: vikko.vainio@abo.fi organization: Structural Bioinformatics Laboratory, Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6A (BioCity), Turku, Finland. vikko.vainio@abo.fi – sequence: 2 givenname: Mark S surname: Johnson fullname: Johnson, Mark S |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17892278$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1TztPwzAY9FBES2HgD6BMbAG_HyOqoCBVYukeOc6X4iqxi-0g8e8Jokgn3XAP3V2hRYgBELol-IFgSh6dlxgLyeUCrYjgpjbCyCW6yvmIMWNG0ku0JEobSpVeoe0WAiRbfDhULoY-phFSBSHD2A6Qqyn_KrYap6H42B7BFf8F1WFOFe8qOxxi8uVjvEYXvR0y3Jx5jfYvz_vNa717375tnna1ZUqXWmotlTDKMiedoJoRIglrYd6oiGQ957y3WPS0c61VSuu-ky1nztAZtqNrdP9Xe0rxc4JcmtFnB8NgA8QpN1ILTqXQs_HubJzaEbrmlPxo03fz_5z-AOr8WdY |
| CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_158173 crossref_primary_10_1186_s13321_015_0099_x crossref_primary_10_1088_2632_2153_acefa7 crossref_primary_10_1007_s00210_022_02256_w crossref_primary_10_1016_j_phytol_2023_01_011 crossref_primary_10_1016_j_semcancer_2021_07_012 crossref_primary_10_1016_j_jmgm_2017_09_007 crossref_primary_10_3390_jof9050521 crossref_primary_10_1002_2211_5463_12875 crossref_primary_10_1002_jcc_26376 crossref_primary_10_1007_s00216_022_04059_7 crossref_primary_10_3390_pharmaceutics15010049 crossref_primary_10_1002_open_202500116 crossref_primary_10_1016_j_ejmech_2017_09_026 crossref_primary_10_1016_j_fitote_2017_10_022 crossref_primary_10_1016_j_cbi_2015_01_016 crossref_primary_10_1134_S0036024425700049 crossref_primary_10_1002_ange_202205735 crossref_primary_10_1016_j_cplett_2025_142256 crossref_primary_10_3390_molecules22020300 crossref_primary_10_1186_1471_2105_11_545 crossref_primary_10_1016_S1875_5364_19_30116_5 crossref_primary_10_1097_CAD_0000000000000613 crossref_primary_10_1007_s10822_017_0089_3 crossref_primary_10_1016_j_bbamem_2016_11_005 crossref_primary_10_1016_j_bmc_2018_02_039 crossref_primary_10_1093_pcp_pcs186 crossref_primary_10_1039_D1RA08918H crossref_primary_10_1016_j_fitote_2019_01_007 crossref_primary_10_1021_jm100780c crossref_primary_10_3390_md16050150 crossref_primary_10_1021_ol100034p crossref_primary_10_1016_j_chroma_2019_460508 crossref_primary_10_1007_s42247_021_00213_6 crossref_primary_10_1186_s13321_015_0107_1 crossref_primary_10_1107_S2052520616006533 crossref_primary_10_1111_cbdd_13584 crossref_primary_10_1007_s11172_011_0131_x crossref_primary_10_3389_fphar_2018_00260 crossref_primary_10_1111_cbdd_12930 crossref_primary_10_1038_s41524_025_01696_1 crossref_primary_10_3390_ijms20112779 crossref_primary_10_3390_life11111140 crossref_primary_10_3390_molecules28072892 crossref_primary_10_1016_j_phytochem_2015_02_009 crossref_primary_10_1002_ecj_12178 crossref_primary_10_1186_s13321_015_0073_7 crossref_primary_10_1093_nar_gkq325 crossref_primary_10_1021_acs_jcim_5c00871 crossref_primary_10_1371_journal_pone_0235133 crossref_primary_10_1016_j_bioorg_2019_01_042 crossref_primary_10_1016_j_fluid_2010_07_014 crossref_primary_10_1002_jcc_27380 crossref_primary_10_1080_10286020_2024_2333359 crossref_primary_10_1016_j_phytochem_2018_10_017 crossref_primary_10_1002_jcc_24312 crossref_primary_10_3390_ijms231911194 crossref_primary_10_3390_molecules24224067 crossref_primary_10_1080_07391102_2024_2313161 crossref_primary_10_1016_j_phytol_2022_12_017 crossref_primary_10_3390_molecules26237201 crossref_primary_10_1016_j_carres_2012_08_016 crossref_primary_10_1016_j_jmgm_2018_11_005 crossref_primary_10_1016_j_chemosphere_2015_08_065 crossref_primary_10_1038_s41598_019_47298_y crossref_primary_10_1021_ci1002608 crossref_primary_10_1186_1471_2105_10_397 crossref_primary_10_7554_eLife_22889 crossref_primary_10_1007_s11244_021_01506_0 crossref_primary_10_1016_j_surfin_2025_106146 crossref_primary_10_1007_s12013_024_01421_7 crossref_primary_10_1016_j_bioorg_2021_104826 crossref_primary_10_1038_s41597_022_01288_4 crossref_primary_10_4049_jimmunol_1301931 crossref_primary_10_1002_qua_25512 crossref_primary_10_3109_15376516_2010_543190 crossref_primary_10_1016_j_bbagen_2022_130290 crossref_primary_10_1080_00268976_2016_1262076 crossref_primary_10_1186_s12929_022_00889_w crossref_primary_10_1002_cmdc_201300242 crossref_primary_10_1007_s12539_017_0280_1 crossref_primary_10_1134_S0023158424601839 crossref_primary_10_1016_j_ejmech_2016_10_057 crossref_primary_10_3390_ijms252413496 crossref_primary_10_1016_j_foodchem_2018_02_101 crossref_primary_10_1039_D2NR03941A crossref_primary_10_1016_j_bcp_2014_06_026 crossref_primary_10_1002_wcms_1129 crossref_primary_10_1039_C8EM00084K crossref_primary_10_1016_j_phytol_2018_05_033 crossref_primary_10_1007_s10822_021_00395_5 crossref_primary_10_1016_j_tet_2020_131865 crossref_primary_10_1186_s13321_019_0358_3 crossref_primary_10_1016_j_jpowsour_2019_02_011 crossref_primary_10_1016_j_drudis_2018_02_014 crossref_primary_10_1186_1471_2105_12_S14_S5 crossref_primary_10_1016_j_parint_2021_102366 crossref_primary_10_1186_s13321_017_0216_0 crossref_primary_10_1371_journal_pcbi_1008309 crossref_primary_10_3390_ijms25147951 crossref_primary_10_1002_cbdv_201800395 crossref_primary_10_1021_acs_jchemed_0c00117 crossref_primary_10_1096_fj_202100164R crossref_primary_10_1080_02678292_2024_2333323 crossref_primary_10_1007_s11244_021_01543_9 crossref_primary_10_1517_17460441_2011_554393 crossref_primary_10_1186_1758_2946_3_8 crossref_primary_10_1093_nar_gkaa367 crossref_primary_10_1016_j_molstruc_2014_10_054 crossref_primary_10_1016_j_compbiolchem_2022_107751 crossref_primary_10_1186_1471_2105_10_101 crossref_primary_10_1088_2632_2153_adf595 crossref_primary_10_1002_smll_202406963 crossref_primary_10_1186_1758_2946_4_S1_P61 crossref_primary_10_1016_j_tet_2018_05_028 crossref_primary_10_1039_C4CP01910E crossref_primary_10_1063_5_0197592 crossref_primary_10_1063_5_0095674 crossref_primary_10_3390_molecules19044021 crossref_primary_10_1016_j_bioorg_2022_105943 crossref_primary_10_1016_j_jbc_2022_102331 crossref_primary_10_1038_s41597_023_02366_x crossref_primary_10_1007_s10822_015_9859_y crossref_primary_10_1517_17460441_2010_513711 crossref_primary_10_1134_S0022476614010272 crossref_primary_10_1038_srep33990 crossref_primary_10_1016_j_abb_2023_109696 crossref_primary_10_1016_j_chemosphere_2018_12_120 crossref_primary_10_1016_j_chroma_2016_09_062 crossref_primary_10_1016_j_atmosenv_2024_120839 crossref_primary_10_3390_ijms23063130 crossref_primary_10_1038_s41598_018_22631_z crossref_primary_10_3762_bjnano_15_95 crossref_primary_10_1016_j_fitote_2020_104774 crossref_primary_10_1016_j_phytochem_2023_113615 crossref_primary_10_1146_annurev_physchem_082720_103845 crossref_primary_10_1016_j_phytochem_2019_05_018 crossref_primary_10_1016_j_rechem_2025_102592 crossref_primary_10_1007_s11224_022_01920_4 crossref_primary_10_1016_j_molstruc_2019_127346 crossref_primary_10_1002_cphc_202300529 crossref_primary_10_1016_j_chroma_2017_09_016 crossref_primary_10_1016_j_phytochem_2022_113564 crossref_primary_10_1039_C9RA04435C crossref_primary_10_1007_s10965_010_9532_z crossref_primary_10_1002_cbdv_201700550 crossref_primary_10_1016_j_foodchem_2024_142268 crossref_primary_10_3390_md20030191 crossref_primary_10_1038_s41570_023_00494_x crossref_primary_10_1039_D5DD00221D crossref_primary_10_1107_S2052520624010837 crossref_primary_10_1002_chem_202401838 crossref_primary_10_1016_j_colsurfa_2024_134184 crossref_primary_10_5194_acp_18_17589_2018 crossref_primary_10_1038_srep09294 crossref_primary_10_1016_j_bioorg_2021_105452 crossref_primary_10_1007_s10822_017_0023_8 crossref_primary_10_1016_j_phytochem_2021_112860 crossref_primary_10_1186_s12302_019_0258_1 crossref_primary_10_1016_j_mtcomm_2024_108124 crossref_primary_10_1016_j_proci_2018_05_056 crossref_primary_10_1021_acs_macromol_5c00048 crossref_primary_10_1016_j_saa_2023_123484 crossref_primary_10_1002_mrc_5380 crossref_primary_10_1016_j_chroma_2017_02_054 crossref_primary_10_1016_j_compchemeng_2012_11_009 crossref_primary_10_1016_j_molstruc_2019_01_052 crossref_primary_10_1186_s13321_017_0246_7 crossref_primary_10_1126_science_adk8013 crossref_primary_10_3390_molecules22050786 crossref_primary_10_1002_cphc_202400104 crossref_primary_10_1186_s13321_016_0122_x crossref_primary_10_1371_journal_pntd_0005994 crossref_primary_10_1371_journal_pone_0203148 crossref_primary_10_7717_peerj_2335 crossref_primary_10_1080_16583655_2025_2557037 crossref_primary_10_1186_1472_6769_9_6 crossref_primary_10_1080_14786419_2020_1789638 crossref_primary_10_1002_cmtd_202500004 crossref_primary_10_1016_j_ddtec_2010_12_002 crossref_primary_10_1016_j_ejmech_2018_01_045 crossref_primary_10_1016_j_jmgm_2025_109106 crossref_primary_10_1002_advs_202508702 crossref_primary_10_1002_jcc_70159 crossref_primary_10_1039_C8QO00010G crossref_primary_10_1186_s13321_016_0171_1 crossref_primary_10_1080_10286020_2021_1946042 crossref_primary_10_1021_acs_jctc_4c00565 crossref_primary_10_1021_acs_jnatprod_4c01105 crossref_primary_10_1016_j_scitotenv_2019_07_225 crossref_primary_10_4028_www_scientific_net_MSF_1016_1492 crossref_primary_10_1016_j_comptc_2014_04_006 crossref_primary_10_1016_S1875_5364_19_30118_9 crossref_primary_10_1038_s41598_019_51244_3 crossref_primary_10_1016_j_atmosenv_2021_118817 crossref_primary_10_1016_j_cplett_2024_141813 crossref_primary_10_1038_s41598_018_23817_1 crossref_primary_10_1002_anie_202205735 crossref_primary_10_1002_ange_201708266 crossref_primary_10_1002_minf_201800088 crossref_primary_10_1002_jcc_21460 crossref_primary_10_15446_rev_colomb_quim_v51n2_103567 crossref_primary_10_1016_j_ejps_2015_07_014 crossref_primary_10_1002_jcc_25706 crossref_primary_10_1186_s13321_019_0354_7 crossref_primary_10_3389_fphar_2017_00908 crossref_primary_10_1038_s41598_019_51239_0 crossref_primary_10_1186_s13321_021_00528_w crossref_primary_10_3390_ijms231911009 crossref_primary_10_3390_antiox10111751 crossref_primary_10_1016_j_bioorg_2021_105091 crossref_primary_10_3390_aichem1010001 crossref_primary_10_1007_s10822_018_0142_x crossref_primary_10_1038_srep13194 crossref_primary_10_3390_molecules24071444 crossref_primary_10_1016_j_bmc_2011_03_067 crossref_primary_10_3987_COM_18_S_F_78 crossref_primary_10_1016_j_electacta_2023_142428 crossref_primary_10_1002_anie_201708266 crossref_primary_10_1016_j_commatsci_2022_111465 crossref_primary_10_1002_jcc_24847 crossref_primary_10_1007_s11030_019_10020_1 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/ci6005646 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| ExternalDocumentID | 17892278 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 1WB 4.4 53G 55A 5GY 5VS 7~N AABXI ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACIWK ACNCT ACRPL ACS ADHLV ADNMO AEESW AENEX AEYZD AFEFF AGQPQ AHGAQ ALMA_UNASSIGNED_HOLDINGS ANPPW ANTXH AQSVZ CGR CUPRZ CUY CVF D0L DU5 EBS ECM ED~ EIF EJD F5P GGK GNL IH9 IHE JG~ LG6 NPM P2P PQQKQ RNS ROL UI2 VF5 VG9 W1F 7X8 |
| ID | FETCH-LOGICAL-a378t-68867597a3c6c528311613be5967163f444fa05f2dcba7788fd6b43c92c92ad2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 352 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000251216500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-9596 |
| IngestDate | Thu Jul 10 17:07:22 EDT 2025 Mon Jul 21 06:04:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a378t-68867597a3c6c528311613be5967163f444fa05f2dcba7788fd6b43c92c92ad2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 17892278 |
| PQID | 68542658 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_68542658 pubmed_primary_17892278 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-11-01 |
| PublicationDateYYYYMMDD | 2007-11-01 |
| PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of chemical information and modeling |
| PublicationTitleAlternate | J Chem Inf Model |
| PublicationYear | 2007 |
| SSID | ssj0033962 |
| Score | 2.4250388 |
| Snippet | The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2462 |
| SubjectTerms | Algorithms Computational Biology Crystallography, X-Ray Genome - genetics Models, Genetic Nucleic Acid Conformation |
| Title | Generating conformer ensembles using a multiobjective genetic algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17892278 https://www.proquest.com/docview/68542658 |
| Volume | 47 |
| WOSCitedRecordID | wos000251216500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKRYKF96M8PbBabeL4JSEhVFEYoOrQoVvkJE4papPSFn4_d07DhhiQoiiKFCU-O-fvs---I-QWOHKeSekYeMcOEpSEAWrNWCCVFdxJI52vWvKi-n09GplBg9zVuTAYVln7RO-oszLFNfK21AImE6Hv5x8Ma0bh3uq6gMYGaXIAMjim1ehnD4Fz48uJogYZM8LIWlcoDNrpRKIGZiR_x5V-funt_e_L9snuGlfSh2ogHJCGKw7Jdrcu53ZEniqBaYxypsCBEau6BQUS62bJ1C0pBsCPqaU-wrBM3itHSGF8YZojtdMxvHX1Njsmw97jsPvM1lUUmOVKr5jUGkiBUZanMkUplwBAHk8cWAS4Es-jKMptR-RhliZWASOGvksinpoQDpuFJ2SzKAt3RqgQQhq4pwAlRCJPjFMcLkyEKvWdXLfITW2gGBqHOw-2cOXnMq5N1CKnlY3jeaWlEQdKG8zGPf_z2Quy49dVfR7gJWnm8Hu6K7KVfq0my8W173s49wev3_UuuFA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+conformer+ensembles+using+a+multiobjective+genetic+algorithm&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Vainio%2C+Mikko+J&rft.au=Johnson%2C+Mark+S&rft.date=2007-11-01&rft.issn=1549-9596&rft.volume=47&rft.issue=6&rft.spage=2462&rft_id=info:doi/10.1021%2Fci6005646&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon |