Generating conformer ensembles using a multiobjective genetic algorithm

The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling Vol. 47; no. 6; p. 2462
Main Authors: Vainio, Mikko J, Johnson, Mark S
Format: Journal Article
Language:English
Published: United States 01.11.2007
Subjects:
ISSN:1549-9596
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of the search space with increasing degrees of conformational freedom (number of rotatable bonds). Stochastic algorithms do not suffer as much from the exponential increase of search space and provide a good coverage of the energy minima. Here, the use of a multiobjective genetic algorithm in the generation of conformer ensembles is investigated. Distance geometry is used to generate an initial conformer, which is then subject to geometric modifications encoded by the individuals of the genetic algorithm. The geometric modifications apply to torsion angles about rotatable bonds, stereochemistry of double bonds and tetrahedral chiral centers, and ring conformations. The geometric diversity of the evolving conformer ensemble is preserved by a fitness-sharing mechanism based on the root-mean-square distance of the atomic coordinates. Molecular symmetry is taken into account in the distance calculation. The geometric modifications introduce strain into the structures. The strain is relaxed using an MMFF94-like force field in a postprocessing step that also removes conformational duplicates and structures whose strain energy remains above a predefined window from the minimum energy value found in the set. The implementation, called Balloon, is available free of charge on the Internet ( http://www.abo.fi/~mivainio/balloon/).
AbstractList The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of the search space with increasing degrees of conformational freedom (number of rotatable bonds). Stochastic algorithms do not suffer as much from the exponential increase of search space and provide a good coverage of the energy minima. Here, the use of a multiobjective genetic algorithm in the generation of conformer ensembles is investigated. Distance geometry is used to generate an initial conformer, which is then subject to geometric modifications encoded by the individuals of the genetic algorithm. The geometric modifications apply to torsion angles about rotatable bonds, stereochemistry of double bonds and tetrahedral chiral centers, and ring conformations. The geometric diversity of the evolving conformer ensemble is preserved by a fitness-sharing mechanism based on the root-mean-square distance of the atomic coordinates. Molecular symmetry is taken into account in the distance calculation. The geometric modifications introduce strain into the structures. The strain is relaxed using an MMFF94-like force field in a postprocessing step that also removes conformational duplicates and structures whose strain energy remains above a predefined window from the minimum energy value found in the set. The implementation, called Balloon, is available free of charge on the Internet ( http://www.abo.fi/~mivainio/balloon/).The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of the search space with increasing degrees of conformational freedom (number of rotatable bonds). Stochastic algorithms do not suffer as much from the exponential increase of search space and provide a good coverage of the energy minima. Here, the use of a multiobjective genetic algorithm in the generation of conformer ensembles is investigated. Distance geometry is used to generate an initial conformer, which is then subject to geometric modifications encoded by the individuals of the genetic algorithm. The geometric modifications apply to torsion angles about rotatable bonds, stereochemistry of double bonds and tetrahedral chiral centers, and ring conformations. The geometric diversity of the evolving conformer ensemble is preserved by a fitness-sharing mechanism based on the root-mean-square distance of the atomic coordinates. Molecular symmetry is taken into account in the distance calculation. The geometric modifications introduce strain into the structures. The strain is relaxed using an MMFF94-like force field in a postprocessing step that also removes conformational duplicates and structures whose strain energy remains above a predefined window from the minimum energy value found in the set. The implementation, called Balloon, is available free of charge on the Internet ( http://www.abo.fi/~mivainio/balloon/).
The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and drug-design methodologies. Several approaches to conformer generation have been published. Exhaustive searches suffer from the exponential growth of the search space with increasing degrees of conformational freedom (number of rotatable bonds). Stochastic algorithms do not suffer as much from the exponential increase of search space and provide a good coverage of the energy minima. Here, the use of a multiobjective genetic algorithm in the generation of conformer ensembles is investigated. Distance geometry is used to generate an initial conformer, which is then subject to geometric modifications encoded by the individuals of the genetic algorithm. The geometric modifications apply to torsion angles about rotatable bonds, stereochemistry of double bonds and tetrahedral chiral centers, and ring conformations. The geometric diversity of the evolving conformer ensemble is preserved by a fitness-sharing mechanism based on the root-mean-square distance of the atomic coordinates. Molecular symmetry is taken into account in the distance calculation. The geometric modifications introduce strain into the structures. The strain is relaxed using an MMFF94-like force field in a postprocessing step that also removes conformational duplicates and structures whose strain energy remains above a predefined window from the minimum energy value found in the set. The implementation, called Balloon, is available free of charge on the Internet ( http://www.abo.fi/~mivainio/balloon/).
Author Johnson, Mark S
Vainio, Mikko J
Author_xml – sequence: 1
  givenname: Mikko J
  surname: Vainio
  fullname: Vainio, Mikko J
  email: vikko.vainio@abo.fi
  organization: Structural Bioinformatics Laboratory, Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6A (BioCity), Turku, Finland. vikko.vainio@abo.fi
– sequence: 2
  givenname: Mark S
  surname: Johnson
  fullname: Johnson, Mark S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17892278$$D View this record in MEDLINE/PubMed
BookMark eNo1TztPwzAY9FBES2HgD6BMbAG_HyOqoCBVYukeOc6X4iqxi-0g8e8Jokgn3XAP3V2hRYgBELol-IFgSh6dlxgLyeUCrYjgpjbCyCW6yvmIMWNG0ku0JEobSpVeoe0WAiRbfDhULoY-phFSBSHD2A6Qqyn_KrYap6H42B7BFf8F1WFOFe8qOxxi8uVjvEYXvR0y3Jx5jfYvz_vNa717375tnna1ZUqXWmotlTDKMiedoJoRIglrYd6oiGQ957y3WPS0c61VSuu-ky1nztAZtqNrdP9Xe0rxc4JcmtFnB8NgA8QpN1ILTqXQs_HubJzaEbrmlPxo03fz_5z-AOr8WdY
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_158173
crossref_primary_10_1186_s13321_015_0099_x
crossref_primary_10_1088_2632_2153_acefa7
crossref_primary_10_1007_s00210_022_02256_w
crossref_primary_10_1016_j_phytol_2023_01_011
crossref_primary_10_1016_j_semcancer_2021_07_012
crossref_primary_10_1016_j_jmgm_2017_09_007
crossref_primary_10_3390_jof9050521
crossref_primary_10_1002_2211_5463_12875
crossref_primary_10_1002_jcc_26376
crossref_primary_10_1007_s00216_022_04059_7
crossref_primary_10_3390_pharmaceutics15010049
crossref_primary_10_1002_open_202500116
crossref_primary_10_1016_j_ejmech_2017_09_026
crossref_primary_10_1016_j_fitote_2017_10_022
crossref_primary_10_1016_j_cbi_2015_01_016
crossref_primary_10_1134_S0036024425700049
crossref_primary_10_1002_ange_202205735
crossref_primary_10_1016_j_cplett_2025_142256
crossref_primary_10_3390_molecules22020300
crossref_primary_10_1186_1471_2105_11_545
crossref_primary_10_1016_S1875_5364_19_30116_5
crossref_primary_10_1097_CAD_0000000000000613
crossref_primary_10_1007_s10822_017_0089_3
crossref_primary_10_1016_j_bbamem_2016_11_005
crossref_primary_10_1016_j_bmc_2018_02_039
crossref_primary_10_1093_pcp_pcs186
crossref_primary_10_1039_D1RA08918H
crossref_primary_10_1016_j_fitote_2019_01_007
crossref_primary_10_1021_jm100780c
crossref_primary_10_3390_md16050150
crossref_primary_10_1021_ol100034p
crossref_primary_10_1016_j_chroma_2019_460508
crossref_primary_10_1007_s42247_021_00213_6
crossref_primary_10_1186_s13321_015_0107_1
crossref_primary_10_1107_S2052520616006533
crossref_primary_10_1111_cbdd_13584
crossref_primary_10_1007_s11172_011_0131_x
crossref_primary_10_3389_fphar_2018_00260
crossref_primary_10_1111_cbdd_12930
crossref_primary_10_1038_s41524_025_01696_1
crossref_primary_10_3390_ijms20112779
crossref_primary_10_3390_life11111140
crossref_primary_10_3390_molecules28072892
crossref_primary_10_1016_j_phytochem_2015_02_009
crossref_primary_10_1002_ecj_12178
crossref_primary_10_1186_s13321_015_0073_7
crossref_primary_10_1093_nar_gkq325
crossref_primary_10_1021_acs_jcim_5c00871
crossref_primary_10_1371_journal_pone_0235133
crossref_primary_10_1016_j_bioorg_2019_01_042
crossref_primary_10_1016_j_fluid_2010_07_014
crossref_primary_10_1002_jcc_27380
crossref_primary_10_1080_10286020_2024_2333359
crossref_primary_10_1016_j_phytochem_2018_10_017
crossref_primary_10_1002_jcc_24312
crossref_primary_10_3390_ijms231911194
crossref_primary_10_3390_molecules24224067
crossref_primary_10_1080_07391102_2024_2313161
crossref_primary_10_1016_j_phytol_2022_12_017
crossref_primary_10_3390_molecules26237201
crossref_primary_10_1016_j_carres_2012_08_016
crossref_primary_10_1016_j_jmgm_2018_11_005
crossref_primary_10_1016_j_chemosphere_2015_08_065
crossref_primary_10_1038_s41598_019_47298_y
crossref_primary_10_1021_ci1002608
crossref_primary_10_1186_1471_2105_10_397
crossref_primary_10_7554_eLife_22889
crossref_primary_10_1007_s11244_021_01506_0
crossref_primary_10_1016_j_surfin_2025_106146
crossref_primary_10_1007_s12013_024_01421_7
crossref_primary_10_1016_j_bioorg_2021_104826
crossref_primary_10_1038_s41597_022_01288_4
crossref_primary_10_4049_jimmunol_1301931
crossref_primary_10_1002_qua_25512
crossref_primary_10_3109_15376516_2010_543190
crossref_primary_10_1016_j_bbagen_2022_130290
crossref_primary_10_1080_00268976_2016_1262076
crossref_primary_10_1186_s12929_022_00889_w
crossref_primary_10_1002_cmdc_201300242
crossref_primary_10_1007_s12539_017_0280_1
crossref_primary_10_1134_S0023158424601839
crossref_primary_10_1016_j_ejmech_2016_10_057
crossref_primary_10_3390_ijms252413496
crossref_primary_10_1016_j_foodchem_2018_02_101
crossref_primary_10_1039_D2NR03941A
crossref_primary_10_1016_j_bcp_2014_06_026
crossref_primary_10_1002_wcms_1129
crossref_primary_10_1039_C8EM00084K
crossref_primary_10_1016_j_phytol_2018_05_033
crossref_primary_10_1007_s10822_021_00395_5
crossref_primary_10_1016_j_tet_2020_131865
crossref_primary_10_1186_s13321_019_0358_3
crossref_primary_10_1016_j_jpowsour_2019_02_011
crossref_primary_10_1016_j_drudis_2018_02_014
crossref_primary_10_1186_1471_2105_12_S14_S5
crossref_primary_10_1016_j_parint_2021_102366
crossref_primary_10_1186_s13321_017_0216_0
crossref_primary_10_1371_journal_pcbi_1008309
crossref_primary_10_3390_ijms25147951
crossref_primary_10_1002_cbdv_201800395
crossref_primary_10_1021_acs_jchemed_0c00117
crossref_primary_10_1096_fj_202100164R
crossref_primary_10_1080_02678292_2024_2333323
crossref_primary_10_1007_s11244_021_01543_9
crossref_primary_10_1517_17460441_2011_554393
crossref_primary_10_1186_1758_2946_3_8
crossref_primary_10_1093_nar_gkaa367
crossref_primary_10_1016_j_molstruc_2014_10_054
crossref_primary_10_1016_j_compbiolchem_2022_107751
crossref_primary_10_1186_1471_2105_10_101
crossref_primary_10_1088_2632_2153_adf595
crossref_primary_10_1002_smll_202406963
crossref_primary_10_1186_1758_2946_4_S1_P61
crossref_primary_10_1016_j_tet_2018_05_028
crossref_primary_10_1039_C4CP01910E
crossref_primary_10_1063_5_0197592
crossref_primary_10_1063_5_0095674
crossref_primary_10_3390_molecules19044021
crossref_primary_10_1016_j_bioorg_2022_105943
crossref_primary_10_1016_j_jbc_2022_102331
crossref_primary_10_1038_s41597_023_02366_x
crossref_primary_10_1007_s10822_015_9859_y
crossref_primary_10_1517_17460441_2010_513711
crossref_primary_10_1134_S0022476614010272
crossref_primary_10_1038_srep33990
crossref_primary_10_1016_j_abb_2023_109696
crossref_primary_10_1016_j_chemosphere_2018_12_120
crossref_primary_10_1016_j_chroma_2016_09_062
crossref_primary_10_1016_j_atmosenv_2024_120839
crossref_primary_10_3390_ijms23063130
crossref_primary_10_1038_s41598_018_22631_z
crossref_primary_10_3762_bjnano_15_95
crossref_primary_10_1016_j_fitote_2020_104774
crossref_primary_10_1016_j_phytochem_2023_113615
crossref_primary_10_1146_annurev_physchem_082720_103845
crossref_primary_10_1016_j_phytochem_2019_05_018
crossref_primary_10_1016_j_rechem_2025_102592
crossref_primary_10_1007_s11224_022_01920_4
crossref_primary_10_1016_j_molstruc_2019_127346
crossref_primary_10_1002_cphc_202300529
crossref_primary_10_1016_j_chroma_2017_09_016
crossref_primary_10_1016_j_phytochem_2022_113564
crossref_primary_10_1039_C9RA04435C
crossref_primary_10_1007_s10965_010_9532_z
crossref_primary_10_1002_cbdv_201700550
crossref_primary_10_1016_j_foodchem_2024_142268
crossref_primary_10_3390_md20030191
crossref_primary_10_1038_s41570_023_00494_x
crossref_primary_10_1039_D5DD00221D
crossref_primary_10_1107_S2052520624010837
crossref_primary_10_1002_chem_202401838
crossref_primary_10_1016_j_colsurfa_2024_134184
crossref_primary_10_5194_acp_18_17589_2018
crossref_primary_10_1038_srep09294
crossref_primary_10_1016_j_bioorg_2021_105452
crossref_primary_10_1007_s10822_017_0023_8
crossref_primary_10_1016_j_phytochem_2021_112860
crossref_primary_10_1186_s12302_019_0258_1
crossref_primary_10_1016_j_mtcomm_2024_108124
crossref_primary_10_1016_j_proci_2018_05_056
crossref_primary_10_1021_acs_macromol_5c00048
crossref_primary_10_1016_j_saa_2023_123484
crossref_primary_10_1002_mrc_5380
crossref_primary_10_1016_j_chroma_2017_02_054
crossref_primary_10_1016_j_compchemeng_2012_11_009
crossref_primary_10_1016_j_molstruc_2019_01_052
crossref_primary_10_1186_s13321_017_0246_7
crossref_primary_10_1126_science_adk8013
crossref_primary_10_3390_molecules22050786
crossref_primary_10_1002_cphc_202400104
crossref_primary_10_1186_s13321_016_0122_x
crossref_primary_10_1371_journal_pntd_0005994
crossref_primary_10_1371_journal_pone_0203148
crossref_primary_10_7717_peerj_2335
crossref_primary_10_1080_16583655_2025_2557037
crossref_primary_10_1186_1472_6769_9_6
crossref_primary_10_1080_14786419_2020_1789638
crossref_primary_10_1002_cmtd_202500004
crossref_primary_10_1016_j_ddtec_2010_12_002
crossref_primary_10_1016_j_ejmech_2018_01_045
crossref_primary_10_1016_j_jmgm_2025_109106
crossref_primary_10_1002_advs_202508702
crossref_primary_10_1002_jcc_70159
crossref_primary_10_1039_C8QO00010G
crossref_primary_10_1186_s13321_016_0171_1
crossref_primary_10_1080_10286020_2021_1946042
crossref_primary_10_1021_acs_jctc_4c00565
crossref_primary_10_1021_acs_jnatprod_4c01105
crossref_primary_10_1016_j_scitotenv_2019_07_225
crossref_primary_10_4028_www_scientific_net_MSF_1016_1492
crossref_primary_10_1016_j_comptc_2014_04_006
crossref_primary_10_1016_S1875_5364_19_30118_9
crossref_primary_10_1038_s41598_019_51244_3
crossref_primary_10_1016_j_atmosenv_2021_118817
crossref_primary_10_1016_j_cplett_2024_141813
crossref_primary_10_1038_s41598_018_23817_1
crossref_primary_10_1002_anie_202205735
crossref_primary_10_1002_ange_201708266
crossref_primary_10_1002_minf_201800088
crossref_primary_10_1002_jcc_21460
crossref_primary_10_15446_rev_colomb_quim_v51n2_103567
crossref_primary_10_1016_j_ejps_2015_07_014
crossref_primary_10_1002_jcc_25706
crossref_primary_10_1186_s13321_019_0354_7
crossref_primary_10_3389_fphar_2017_00908
crossref_primary_10_1038_s41598_019_51239_0
crossref_primary_10_1186_s13321_021_00528_w
crossref_primary_10_3390_ijms231911009
crossref_primary_10_3390_antiox10111751
crossref_primary_10_1016_j_bioorg_2021_105091
crossref_primary_10_3390_aichem1010001
crossref_primary_10_1007_s10822_018_0142_x
crossref_primary_10_1038_srep13194
crossref_primary_10_3390_molecules24071444
crossref_primary_10_1016_j_bmc_2011_03_067
crossref_primary_10_3987_COM_18_S_F_78
crossref_primary_10_1016_j_electacta_2023_142428
crossref_primary_10_1002_anie_201708266
crossref_primary_10_1016_j_commatsci_2022_111465
crossref_primary_10_1002_jcc_24847
crossref_primary_10_1007_s11030_019_10020_1
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/ci6005646
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 17892278
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
1WB
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACNCT
ACRPL
ACS
ADHLV
ADNMO
AEESW
AENEX
AEYZD
AFEFF
AGQPQ
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
ANPPW
ANTXH
AQSVZ
CGR
CUPRZ
CUY
CVF
D0L
DU5
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH9
IHE
JG~
LG6
NPM
P2P
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
7X8
ID FETCH-LOGICAL-a378t-68867597a3c6c528311613be5967163f444fa05f2dcba7788fd6b43c92c92ad2
IEDL.DBID 7X8
ISICitedReferencesCount 352
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000251216500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-9596
IngestDate Thu Jul 10 17:07:22 EDT 2025
Mon Jul 21 06:04:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-68867597a3c6c528311613be5967163f444fa05f2dcba7788fd6b43c92c92ad2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17892278
PQID 68542658
PQPubID 23479
ParticipantIDs proquest_miscellaneous_68542658
pubmed_primary_17892278
PublicationCentury 2000
PublicationDate 2007-11-01
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J Chem Inf Model
PublicationYear 2007
SSID ssj0033962
Score 2.4250388
Snippet The task of generating a nonredundant set of low-energy conformations for small molecules is of fundamental importance for many molecular modeling and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2462
SubjectTerms Algorithms
Computational Biology
Crystallography, X-Ray
Genome - genetics
Models, Genetic
Nucleic Acid Conformation
Title Generating conformer ensembles using a multiobjective genetic algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/17892278
https://www.proquest.com/docview/68542658
Volume 47
WOSCitedRecordID wos000251216500045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKRYKF96M8PbBabeL4JSEhVFEYoOrQoVvkJE4papPSFn4_d07DhhiQoiiKFCU-O-fvs---I-QWOHKeSekYeMcOEpSEAWrNWCCVFdxJI52vWvKi-n09GplBg9zVuTAYVln7RO-oszLFNfK21AImE6Hv5x8Ma0bh3uq6gMYGaXIAMjim1ehnD4Fz48uJogYZM8LIWlcoDNrpRKIGZiR_x5V-funt_e_L9snuGlfSh2ogHJCGKw7Jdrcu53ZEniqBaYxypsCBEau6BQUS62bJ1C0pBsCPqaU-wrBM3itHSGF8YZojtdMxvHX1Njsmw97jsPvM1lUUmOVKr5jUGkiBUZanMkUplwBAHk8cWAS4Es-jKMptR-RhliZWASOGvksinpoQDpuFJ2SzKAt3RqgQQhq4pwAlRCJPjFMcLkyEKvWdXLfITW2gGBqHOw-2cOXnMq5N1CKnlY3jeaWlEQdKG8zGPf_z2Quy49dVfR7gJWnm8Hu6K7KVfq0my8W173s49wev3_UuuFA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+conformer+ensembles+using+a+multiobjective+genetic+algorithm&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Vainio%2C+Mikko+J&rft.au=Johnson%2C+Mark+S&rft.date=2007-11-01&rft.issn=1549-9596&rft.volume=47&rft.issue=6&rft.spage=2462&rft_id=info:doi/10.1021%2Fci6005646&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon