Comparative Analysis of Geochemical Data Processing Methods for Allocation of Anomalies and Background
In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification. The separation of anomalous concentrations from the background is a crucial task in the mathematical analysis of geochemical data. The convent...
Saved in:
| Published in: | Geochemistry international Vol. 58; no. 4; pp. 472 - 485 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Moscow
Pleiades Publishing
01.04.2020
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0016-7029, 1556-1968 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification. The separation of anomalous concentrations from the background is a crucial task in the mathematical analysis of geochemical data. The conventional methods rely on the statistical thresholds routinely; however, determining such boundary values fundamentally entails a normally distributed data and the involvement of expert knowledge. The unsupervised machine learning provides state-of-the-art facilities based on the information theory that leveraged to classify the geochemical data into the anomaly and background concentrations with specific characteristics. To examine the integrity of performance of geochemical data processing tools, the prevalent unsupervised learning methods of
k
-means,
k
-medoids,
k
-medians, expectation-maximization (EM) clustering, density-based spatial clustering of applications with noise (DBSCAN), and self-organizing maps (SOM), as well as traditional threshold-based techniques of the mean plus two standard deviations (
) and the concentration-number (C-N) fractal model were subjected to the separation of Cu anomalies from the background within 300 rock samples collected from Shadan porphyry copper deposit, northeast Iran. The efficiency of methods was quantitatively measured using criteria comprising student’s
t
-test, signal to noise ratio, and the pooled coefficient of variation. The appraisal criteria have confirmed that most of the unsupervised techniques manage to isolate the geochemical anomalies from the background with a more significant contrast compared to the conventional methods of
and C-N fractal model. The EM clustering has revealed the best performance among them so that it allocates the anomalies with the maximum resolution and distinguishes the weak anomalies from the high background. The anomaly Cu map obtained by the EM method has represented a significant spatial pattern that is properly consistent with the geological and mineralization evidences within the study area. The utilization of unsupervised learning methods substantially enjoys some advantages such as anomaly intensification, automaticity, being fast and non-parametric, and the capability to expand to the multivariate analysis. |
|---|---|
| AbstractList | In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification. The separation of anomalous concentrations from the background is a crucial task in the mathematical analysis of geochemical data. The conventional methods rely on the statistical thresholds routinely; however, determining such boundary values fundamentally entails a normally distributed data and the involvement of expert knowledge. The unsupervised machine learning provides state-of-the-art facilities based on the information theory that leveraged to classify the geochemical data into the anomaly and background concentrations with specific characteristics. To examine the integrity of performance of geochemical data processing tools, the prevalent unsupervised learning methods of
k
-means,
k
-medoids,
k
-medians, expectation-maximization (EM) clustering, density-based spatial clustering of applications with noise (DBSCAN), and self-organizing maps (SOM), as well as traditional threshold-based techniques of the mean plus two standard deviations (
) and the concentration-number (C-N) fractal model were subjected to the separation of Cu anomalies from the background within 300 rock samples collected from Shadan porphyry copper deposit, northeast Iran. The efficiency of methods was quantitatively measured using criteria comprising student’s
t
-test, signal to noise ratio, and the pooled coefficient of variation. The appraisal criteria have confirmed that most of the unsupervised techniques manage to isolate the geochemical anomalies from the background with a more significant contrast compared to the conventional methods of
and C-N fractal model. The EM clustering has revealed the best performance among them so that it allocates the anomalies with the maximum resolution and distinguishes the weak anomalies from the high background. The anomaly Cu map obtained by the EM method has represented a significant spatial pattern that is properly consistent with the geological and mineralization evidences within the study area. The utilization of unsupervised learning methods substantially enjoys some advantages such as anomaly intensification, automaticity, being fast and non-parametric, and the capability to expand to the multivariate analysis. In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification. The separation of anomalous concentrations from the background is a crucial task in the mathematical analysis of geochemical data. The conventional methods rely on the statistical thresholds routinely; however, determining such boundary values fundamentally entails a normally distributed data and the involvement of expert knowledge. The unsupervised machine learning provides state-of-the-art facilities based on the information theory that leveraged to classify the geochemical data into the anomaly and background concentrations with specific characteristics. To examine the integrity of performance of geochemical data processing tools, the prevalent unsupervised learning methods of k-means, k-medoids, k-medians, expectation-maximization (EM) clustering, density-based spatial clustering of applications with noise (DBSCAN), and self-organizing maps (SOM), as well as traditional threshold-based techniques of the mean plus two standard deviations ( [Formula omitted]) and the concentration-number (C-N) fractal model were subjected to the separation of Cu anomalies from the background within 300 rock samples collected from Shadan porphyry copper deposit, northeast Iran. The efficiency of methods was quantitatively measured using criteria comprising student's t-test, signal to noise ratio, and the pooled coefficient of variation. The appraisal criteria have confirmed that most of the unsupervised techniques manage to isolate the geochemical anomalies from the background with a more significant contrast compared to the conventional methods of [Formula omitted] and C-N fractal model. The EM clustering has revealed the best performance among them so that it allocates the anomalies with the maximum resolution and distinguishes the weak anomalies from the high background. The anomaly Cu map obtained by the EM method has represented a significant spatial pattern that is properly consistent with the geological and mineralization evidences within the study area. The utilization of unsupervised learning methods substantially enjoys some advantages such as anomaly intensification, automaticity, being fast and non-parametric, and the capability to expand to the multivariate analysis. In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification. The separation of anomalous concentrations from the background is a crucial task in the mathematical analysis of geochemical data. The conventional methods rely on the statistical thresholds routinely; however, determining such boundary values fundamentally entails a normally distributed data and the involvement of expert knowledge. The unsupervised machine learning provides state-of-the-art facilities based on the information theory that leveraged to classify the geochemical data into the anomaly and background concentrations with specific characteristics. To examine the integrity of performance of geochemical data processing tools, the prevalent unsupervised learning methods of k-means, k-medoids, k-medians, expectation-maximization (EM) clustering, density-based spatial clustering of applications with noise (DBSCAN), and self-organizing maps (SOM), as well as traditional threshold-based techniques of the mean plus two standard deviations () and the concentration-number (C-N) fractal model were subjected to the separation of Cu anomalies from the background within 300 rock samples collected from Shadan porphyry copper deposit, northeast Iran. The efficiency of methods was quantitatively measured using criteria comprising student’s t-test, signal to noise ratio, and the pooled coefficient of variation. The appraisal criteria have confirmed that most of the unsupervised techniques manage to isolate the geochemical anomalies from the background with a more significant contrast compared to the conventional methods of and C-N fractal model. The EM clustering has revealed the best performance among them so that it allocates the anomalies with the maximum resolution and distinguishes the weak anomalies from the high background. The anomaly Cu map obtained by the EM method has represented a significant spatial pattern that is properly consistent with the geological and mineralization evidences within the study area. The utilization of unsupervised learning methods substantially enjoys some advantages such as anomaly intensification, automaticity, being fast and non-parametric, and the capability to expand to the multivariate analysis. |
| Audience | Academic |
| Author | Tabatabaei, S. H. Esmaeiloghli, S. |
| Author_xml | – sequence: 1 givenname: S. surname: Esmaeiloghli fullname: Esmaeiloghli, S. email: s.esmaeiloghli@mi.iut.ac.ir organization: Department of Mining Engineering, Isfahan University of Technology (IUT) – sequence: 2 givenname: S. H. surname: Tabatabaei fullname: Tabatabaei, S. H. email: tabatabaei@cc.iut.ac.ir organization: Department of Mining Engineering, Isfahan University of Technology (IUT) |
| BookMark | eNp90dFqHCEUBmApKXST5gFyJ_R6Eh11dC4n2yQNpLTQ9no44xw3prO60dlA3j5Ot1BoafBC8Pyf8OsxOQoxICFnnJ1zLuTFN8Z4o1nd1oxJxox8Q1ZcqabibWOOyGoZV8v8HTnO-aGEpGj1irh13O4gweyfkHYBpufsM42O3mC097j1Fib6EWagX1O0mLMPG_oZ5_s4Zupiot00RVt4DIvqQtzC5DFTCCO9BPtzk-I-jO_JWwdTxtPf-wn5cX31ff2puvtyc7vu7ioQ2syVAtMMrTOOs9rg0BiUWmlQI3c4jAMTI7hmkIqpgUkrBs0kKIeWtyAVOitOyIfDvbsUH_eY5_4h7lOplftaGMOEELouqfNDagMT9j64OCewZY1L4fKwzpfzTtdMaSNbVoA-AJtizgldb_38q3SBfuo565df6P_5hSL5X3KX_BbS86umPphcsmGD6U-J_6MXvGiaUg |
| CitedBy_id | crossref_primary_10_1016_j_cageo_2023_105341 crossref_primary_10_3390_agronomy13092238 crossref_primary_10_1016_j_oregeorev_2024_106175 crossref_primary_10_1016_j_chemer_2021_125850 crossref_primary_10_1016_j_chemer_2024_126111 crossref_primary_10_1016_j_gexplo_2024_107451 crossref_primary_10_1016_j_chemer_2024_126094 crossref_primary_10_1007_s11004_023_10101_w crossref_primary_10_1007_s11053_020_09798_x crossref_primary_10_1016_j_jafrearsci_2025_105854 crossref_primary_10_1016_j_ecolind_2025_113188 crossref_primary_10_1016_j_apgeochem_2022_105273 crossref_primary_10_1016_j_gexplo_2022_107061 |
| Cites_doi | 10.1134/S001670291302002X 10.1016/0375-6742(89)90076-9 10.1016/j.cageo.2004.11.013 10.1007/s12040-016-0657-2 10.1097/00010694-196304000-00016 10.1016/j.gexplo.2011.01.006 10.1144/1467-7873/03-051 10.1016/S0375-6742(99)00028-X 10.1007/s11053-017-9345-4 10.1016/0375-6742(74)90030-2 10.1016/j.scitotenv.2016.11.010 10.1016/j.gexplo.2016.05.003 10.1134/S0016702908040095 10.1007/BF02080498 10.1080/01621459.1974.10482962 10.1016/j.jafrearsci.2016.11.032 10.1016/j.gexplo.2014.07.005 10.1007/s11004-017-9707-9 10.1016/j.apgeochem.2009.04.022 10.1016/j.cageo.2013.10.008 10.1109/TIT.1982.1056489 10.2307/2332898 10.1007/s12303-015-0064-8 10.1007/s13146-015-0282-1 10.1016/j.gexplo.2015.06.001 10.1016/j.scitotenv.2004.11.023 10.1016/0375-6742(94)90013-2 10.1016/j.gexplo.2018.12.004 10.1144/geochem2016-024 10.1134/S0016702916010055 10.1134/S0016702909010030 10.1002/9780470512517 10.1016/0375-6742(91)90071-2 10.1144/1467-7873/07-156 10.1144/geochem2017-901 10.1016/j.cageo.2015.10.006 10.1134/S0016702907070038 10.1016/0375-6742(88)90066-0 10.1144/geochem2016-013 10.1016/S0375-6742(96)00035-0 10.1016/j.gexplo.2014.12.015 10.1007/s11053-017-9357-0 10.1016/j.gexplo.2009.10.002 10.1016/j.cageo.2014.10.004 10.1109/TGRS.2009.2016214 10.1134/S0016702912070063 10.1016/j.oregeorev.2014.08.012 10.1109/5.58325 10.2113/gsecongeo.64.5.538 10.1109/79.543975 10.1016/j.oregeorev.2013.05.005 10.1016/0375-6742(92)90001-O 10.1007/s11771-017-3682-7 10.1144/geochem2016-449 10.1080/12269328.2017.1355268 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2020 COPYRIGHT 2020 Springer Pleiades Publishing, Ltd. 2020. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2020 – notice: COPYRIGHT 2020 Springer – notice: Pleiades Publishing, Ltd. 2020. |
| DBID | AAYXX CITATION 7QH 7UA C1K F1W H96 L.G |
| DOI | 10.1134/S0016702920040084 |
| DatabaseName | CrossRef Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aqualine ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1556-1968 |
| EndPage | 485 |
| ExternalDocumentID | A720578490 10_1134_S0016702920040084 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 1N0 29H 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 408 40D 40E 5GY 5VS 67M 6NX 78A 7XC 88I 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABCQX ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEUYN AEVLU AEXYK AFBBN AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ I-F IAO IJ- IKXTQ ITC ITM IWAJR IZQ I~X I~Z J-C JBSCW JZLTJ KOV L7B L8X LK5 LLZTM M2P M4Y M7R MA- MM- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P2P PATMY PCBAR PF0 PKN PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I RNS ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TUC TUS TWZ UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 XOL XU3 Y6R YLTOR Z5O ZKB ZMTXR ~02 ~A9 AAPKM AAYXX ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR BGLVJ CITATION M7S PHGZM PHGZT PQGLB PTHSS 7QH 7UA C1K F1W H96 L.G |
| ID | FETCH-LOGICAL-a378t-5a86b9f8f1028eb68e4757a5d1febdb03daf6b4505b04c3b704a5fec19a45efc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525599100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-7029 |
| IngestDate | Wed Sep 17 23:58:11 EDT 2025 Mon Oct 20 16:47:18 EDT 2025 Sat Nov 29 05:44:07 EST 2025 Tue Nov 18 21:11:10 EST 2025 Fri Feb 21 02:38:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Shadan deposit Background Geochemical anomaly Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a378t-5a86b9f8f1028eb68e4757a5d1febdb03daf6b4505b04c3b704a5fec19a45efc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2388033372 |
| PQPubID | 105441 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2388033372 gale_infotracacademiconefile_A720578490 crossref_citationtrail_10_1134_S0016702920040084 crossref_primary_10_1134_S0016702920040084 springer_journals_10_1134_S0016702920040084 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: Silver Spring |
| PublicationTitle | Geochemistry international |
| PublicationTitleAbbrev | Geochem. Int |
| PublicationYear | 2020 |
| Publisher | Pleiades Publishing Springer Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer – name: Springer Nature B.V |
| References | Duda, Hart, Stork (CR21) 2012 Tarabalka, Benediktsson, Chanussot (CR66) 2009; 47 Chiprés, Castro-Larragoitia, Monroy (CR16) 2009; 24 Astakhov, Rujian, Crane, Ivanov, Aiguo (CR4) 2013; 51 Ghannadpour, Hezarkhani (CR26) 2016; 125 Reimann, de Caritat (CR56) 2017; 578 CR37 Cheng, Agterberg, Bonham-Carter (CR15) 1996; 56 CR35 Shabankareh, Hezarkhani (CR60) 2017; 128 CR33 Lepeltier (CR47) 1969; 64 Hampel (CR38) 1974; 69 Hawkes, Webb (CR39) 1963; 95 Bølviken, Stokke, Feder, Jössang (CR5) 1992; 43 Chen, Wu (CR12) 2017; 17 Filzmoser, Garrett, Reimann (CR25) 2005; 31 Cheng, Agterberg, Ballantyne (CR14) 1994; 51 Ghannadpour, Hezarkhani (CR27) 2016; 20 Govett, Goodfellow, Chapman, Chork (CR36) 1975; 7 Kohonen (CR45) 1990; 78 Ivanov (CR42) 2016; 54 CR2 Asadi, Kianpouryan, Lu, McCuaig (CR3) 2014; 145 Cracknell, Reading (CR17) 2014; 63 Gonbadi, Tabatabaei, Carranza (CR34) 2015; 157 Stanley, Noble (CR64) 2008; 8 Cheng (CR13) 1999; 65 Chen, Cheng (CR10) 2018; 50 Sinclair (CR62) 1991; 41 Xiong, Zuo (CR72) 2016; 86 Ghannadpour, Hezarkhani, Farahbakhsh (CR30) 2013; 4 McQueen (CR52) 2006 CR41 Kaufman, Rousseeuw (CR43) 1987 Bychkova, Bondarenko, Andreeva, Zakrevskaya (CR6) 2009; 47 Rusakov, Kuz’mina, Roshchina (CR59) 2012; 50 Temur, Orhan, Deli (CR67) 2008; 46 Stanley, Sinclair (CR65) 1989; 32 Dixon, Massey (CR20) 1957 Davis, Sampson (CR18) 1986 Sinclair (CR61) 1974; 3 Meshkani, Mehrabi, Yaghubpur, Alghalandis (CR53) 2011; 108 Xiang, Gu, Wang, Wang, Zhang, Wang (CR71) 2019; 198 Kirkwood, Cave, Beamish, Grebby, Ferreira (CR44) 2016; 167 MacKay (CR50) 2003 CR58 Solovov, Kuznetov (CR63) 1987 Afzal, Ahari, Omran, Aliyari (CR1) 2013; 55 Ghannadpour, Hezarkhani, Sharifzadeh (CR31) 2017; 24 Reimann, Filzmoser, Garrett (CR57) 2005; 346 CR51 Chen (CR11) 2015; 71 Lloyd (CR49) 1982; 28 Zuo, Xiong (CR76) 2018; 27 Daya (CR19) 2015; 150 Ghavami-Riabi, Seyedrahimi-Niaraq, Khalokakaie, Hazareh (CR32) 2010; 104 Carranza (CR7) 2008 Levinson (CR48) 1974 Howarth (CR40) 1983 Wang, Cheng, Tang, Song, Li, Liu (CR70) 2017; 17 Carranza, Zuo (CR9) 2017; 17 Everitt, Skrondal (CR24) 2002 CR29 Carranza, Laborte (CR8) 2015; 74 Moon (CR54) 1996; 13 Reimann (CR55) 2005; 5 Theodoridis, Koutroumbas (CR68) 2009 CR69 CR23 Zuo (CR75) 2017; 26 Ghannadpour, Hezarkhani (CR28) 2017; 32 Yaroshevskii, Tevelev, Kosheleva (CR73) 2007; 45 Kürzl (CR46) 1988; 30 Zhao, Chen, Zuo (CR74) 2017; 17 Engelbrecht (CR22) 2007 L. Kaufman (11196_CR43) 1987 Y. Chen (11196_CR12) 2017; 17 11196_CR58 M. J. Cracknell (11196_CR17) 2014; 63 A. P. Solovov (11196_CR63) 1987 R. Zuo (11196_CR76) 2018; 27 H. E. Hawkes (11196_CR39) 1963; 95 J. A. Chiprés (11196_CR16) 2009; 24 V. Y. Rusakov (11196_CR59) 2012; 50 A. A. Levinson (11196_CR48) 1974 W. Wang (11196_CR70) 2017; 17 E. J. M. Carranza (11196_CR9) 2017; 17 C. Reimann (11196_CR57) 2005; 346 R. J. Howarth (11196_CR40) 1983 S. A. Meshkani (11196_CR53) 2011; 108 K. G. McQueen (11196_CR52) 2006 T. Kohonen (11196_CR45) 1990; 78 11196_CR29 11196_CR23 A. S. Astakhov (11196_CR4) 2013; 51 B. Bølviken (11196_CR5) 1992; 43 11196_CR69 A. J. Sinclair (11196_CR62) 1991; 41 E. J. M. Carranza (11196_CR8) 2015; 74 A. P. Engelbrecht (11196_CR22) 2007 Q. Cheng (11196_CR15) 1996; 56 Z. Xiang (11196_CR71) 2019; 198 C. Reimann (11196_CR56) 2017; 578 J. C. Davis (11196_CR18) 1986 Q. Cheng (11196_CR13) 1999; 65 S. Theodoridis (11196_CR68) 2009 Y. Chen (11196_CR11) 2015; 71 F. R. Hampel (11196_CR38) 1974; 69 R. O. Duda (11196_CR21) 2012 C. Lepeltier (11196_CR47) 1969; 64 S. Temur (11196_CR67) 2008; 46 H. H. Asadi (11196_CR3) 2014; 145 R. Zuo (11196_CR75) 2017; 26 11196_CR37 A. A. Yaroshevskii (11196_CR73) 2007; 45 11196_CR33 S. S. Ghannadpour (11196_CR27) 2016; 20 J. Zhao (11196_CR74) 2017; 17 11196_CR35 S. S. Ghannadpour (11196_CR31) 2017; 24 Q. Cheng (11196_CR14) 1994; 51 W. J. Dixon (11196_CR20) 1957 A. M. Gonbadi (11196_CR34) 2015; 157 C. R. Stanley (11196_CR65) 1989; 32 S. S. Ghannadpour (11196_CR30) 2013; 4 P. Filzmoser (11196_CR25) 2005; 31 S. S. Ghannadpour (11196_CR28) 2017; 32 R. Ghavami-Riabi (11196_CR32) 2010; 104 Y. V Bychkova (11196_CR6) 2009; 47 H. Kürzl (11196_CR46) 1988; 30 Y. Tarabalka (11196_CR66) 2009; 47 11196_CR41 G. J. S. Govett (11196_CR36) 1975; 7 G. Chen (11196_CR10) 2018; 50 M. A. Ivanov (11196_CR42) 2016; 54 P. Afzal (11196_CR1) 2013; 55 E. J. M. Carranza (11196_CR7) 2008 B. Everitt (11196_CR24) 2002 S. S. Ghannadpour (11196_CR26) 2016; 125 S. Lloyd (11196_CR49) 1982; 28 D. MacKay (11196_CR50) 2003 T. K. Moon (11196_CR54) 1996; 13 Y. Xiong (11196_CR72) 2016; 86 C. Kirkwood (11196_CR44) 2016; 167 C. Reimann (11196_CR55) 2005; 5 11196_CR51 A. J. Sinclair (11196_CR61) 1974; 3 A. A. Daya (11196_CR19) 2015; 150 M. Shabankareh (11196_CR60) 2017; 128 C. R. Stanley (11196_CR64) 2008; 8 11196_CR2 |
| References_xml | – year: 2009 ident: CR68 – volume: 51 start-page: 269 year: 2013 end-page: 289 ident: CR4 article-title: Lithochemical classification of the Arctic depositional environments (Chukchi Sea) by methods of multivariate statistic publication-title: Geochem. Int. doi: 10.1134/S001670291302002X – volume: 32 start-page: 355 year: 1989 end-page: 357 ident: CR65 article-title: Comparison of probability plots and the gap statistic in the selection of thresholds for exploration geochemistry data publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(89)90076-9 – volume: 31 start-page: 579 year: 2005 end-page: 587 ident: CR25 article-title: Multivariate outlier detection in exploration geochemistry publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.11.013 – ident: CR51 – volume: 125 start-page: 387 year: 2016 end-page: 401 ident: CR26 article-title: Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-016-0657-2 – volume: 95 start-page: 283 year: 1963 ident: CR39 article-title: Geochemistry in mineral exploration publication-title: Soil Sci. doi: 10.1097/00010694-196304000-00016 – volume: 108 start-page: 183 year: 2011 end-page: 195 ident: CR53 article-title: The application of geochemical pattern recognition to regional prospecting: A case study of the Sanandaj–Sirjan metallogenic zone, Iran publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2011.01.006 – volume: 4 start-page: 29 year: 2013 end-page: 36 ident: CR30 article-title: Anomaly-background separation and geochemical map generation for Pb and Zn in Parkam district based on U-statistical method, Kerman, Iran publication-title: Int. J. Econ. Environ. Geol. – volume: 5 start-page: 359 year: 2005 end-page: 370 ident: CR55 article-title: Geochemical mapping: technique or art? publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/1467-7873/03-051 – volume: 65 start-page: 175 year: 1999 end-page: 194 ident: CR13 article-title: Spatial and scaling modelling for geochemical anomaly separation publication-title: J. Geochem. Explor. doi: 10.1016/S0375-6742(99)00028-X – volume: 26 start-page: 457 year: 2017 end-page: 464 ident: CR75 article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9345-4 – ident: CR35 – volume: 3 start-page: 129 year: 1974 end-page: 149 ident: CR61 article-title: Selection of threshold values in geochemical data using probability graphs publication-title: J. Geochemical Explor. doi: 10.1016/0375-6742(74)90030-2 – ident: CR29 – volume: 578 start-page: 633 year: 2017 end-page: 648 ident: CR56 article-title: Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.010 – volume: 167 start-page: 49 year: 2016 end-page: 61 ident: CR44 article-title: A machine learning approach to geochemical mapping publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2016.05.003 – ident: CR58 – volume: 46 start-page: 409 year: 2008 end-page: 422 ident: CR67 article-title: Statistical interpretation of some physical and chemical data of the tertiary coal deposits in Turkey publication-title: Geochem. Int. doi: 10.1134/S0016702908040095 – volume: 7 start-page: 415 year: 1975 end-page: 446 ident: CR36 article-title: Exploration geochemistry-distribution of elements and recognition of anomalies publication-title: J. Int. Assoc. Math. Geol. doi: 10.1007/BF02080498 – volume: 69 start-page: 383 year: 1974 end-page: 393 ident: CR38 article-title: The influence curve and its role in robust estimation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1974.10482962 – volume: 128 start-page: 116 year: 2017 end-page: 126 ident: CR60 article-title: Application of support vector machines for copper potential mapping in Kerman region, Iran publication-title: J. African Earth Sci. doi: 10.1016/j.jafrearsci.2016.11.032 – volume: 145 start-page: 233 year: 2014 end-page: 241 ident: CR3 article-title: Exploratory data analysis and C–A fractal model applied in mapping multi-element soil anomalies for drilling: A case study from the Sari Gunay epithermal gold deposit, NW Iran publication-title: J. Geochemical Explor. doi: 10.1016/j.gexplo.2014.07.005 – year: 2003 ident: CR50 – volume: 50 start-page: 249 year: 2018 end-page: 272 ident: CR10 article-title: Fractal-based wavelet filter for separating geophysical or geochemical anomalies from background publication-title: Math. Geosci. doi: 10.1007/s11004-017-9707-9 – volume: 24 start-page: 1579 year: 2009 end-page: 1589 ident: CR16 article-title: Exploratory and spatial data analysis (EDA–SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce–Matehuala, Mexico publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2009.04.022 – volume: 63 start-page: 22 year: 2014 end-page: 33 ident: CR17 article-title: Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.10.008 – volume: 28 start-page: 129 year: 1982 end-page: 137 ident: CR49 article-title: Least squares quantization in PCM publication-title: IEEE Trans. Inf. theory. doi: 10.1109/TIT.1982.1056489 – year: 1957 ident: CR20 doi: 10.2307/2332898 – volume: 20 start-page: 837 year: 2016 end-page: 850 ident: CR27 article-title: Exploration geochemistry data-application for anomaly separation based on discriminant function analysis in the Parkam porphyry system (Iran) publication-title: Geosci. J. doi: 10.1007/s12303-015-0064-8 – volume: 32 start-page: 155 year: 2017 end-page: 166 ident: CR28 article-title: Comparing U‑statistic and nonstructural methods for separating anomaly and generating geochemical anomaly maps of Cu and Mo in Parkam district, Kerman, Iran publication-title: Carbonates and Evaporites doi: 10.1007/s13146-015-0282-1 – volume: 157 start-page: 81 year: 2015 end-page: 91 ident: CR34 article-title: Supervised geochemical anomaly detection by pattern recognition publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2015.06.001 – year: 1987 ident: CR63 – volume: 346 start-page: 1 year: 2005 end-page: 16 ident: CR57 article-title: Background and threshold: critical comparison of methods of determination publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2004.11.023 – volume: 51 start-page: 109 year: 1994 end-page: 130 ident: CR14 article-title: The separation of geochemical anomalies from background by fractal methods publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(94)90013-2 – volume: 198 start-page: 71 year: 2019 end-page: 81 ident: CR71 article-title: Delineation of deep prospecting targets by combining factor and fractal analysis in the Kekeshala skarn Cu deposit, NW China publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2018.12.004 – year: 2006 ident: CR52 – volume: 17 start-page: 231 year: 2017 end-page: 238 ident: CR12 article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2016-024 – volume: 54 start-page: 48 year: 2016 end-page: 67 ident: CR42 article-title: Discriminant and factor analyses as tools for comparison of terrestrial and Venusian volcanic rocks publication-title: Geochem. Int. doi: 10.1134/S0016702916010055 – volume: 47 start-page: 41 year: 2009 end-page: 57 ident: CR6 article-title: Spatial distribution of low-sulfide platinum group element mineralization in the Kivakka intrusion, northern Karelia publication-title: Geochem. Int. doi: 10.1134/S0016702909010030 – year: 2007 ident: CR22 doi: 10.1002/9780470512517 – volume: 41 start-page: 1 year: 1991 end-page: 22 ident: CR62 article-title: A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(91)90071-2 – volume: 8 start-page: 115 year: 2008 end-page: 127 ident: CR64 article-title: Quantitative assessment of the success of geochemical exploration techniques using minimum probability methods publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/1467-7873/07-156 – ident: CR2 – ident: CR37 – volume: 17 start-page: 183 year: 2017 end-page: 185 ident: CR9 article-title: Introduction to the thematic issue: analysis of exploration geochemical data for mapping of anomalies publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2017-901 – volume: 86 start-page: 75 year: 2016 end-page: 82 ident: CR72 article-title: Recognition of geochemical anomalies using a deep autoencoder network publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.10.006 – volume: 45 start-page: 652 year: 2007 end-page: 665 ident: CR73 article-title: Geochemical structure of the Early Carboniferous volcanic complexes of the Southern Urals publication-title: Geochem. Int. doi: 10.1134/S0016702907070038 – volume: 30 start-page: 309 year: 1988 end-page: 322 ident: CR46 article-title: Exploratory data analysis: recent advances for the interpretation of geochemical data publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(88)90066-0 – ident: CR33 – year: 1986 ident: CR18 – year: 2002 ident: CR24 – volume: 17 start-page: 239 year: 2017 end-page: 251 ident: CR74 article-title: Identification and mapping of lithogeochemical signatures using staged factor analysis and fractal/multifractal models publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2016-013 – volume: 56 start-page: 183 year: 1996 end-page: 195 ident: CR15 article-title: A spatial analysis method for geochemical anomaly separation publication-title: J. Geochem. Explor. doi: 10.1016/S0375-6742(96)00035-0 – volume: 150 start-page: 52 year: 2015 end-page: 63 ident: CR19 article-title: Comparative study of C–A, C–P, and N–S fractal methods for separating geochemical anomalies from background: A case study of Kamoshgaran region, northwest of Iran publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2014.12.015 – year: 1987 ident: CR43 – volume: 27 start-page: 5 year: 2018 end-page: 13 ident: CR76 article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9357-0 – ident: CR23 – volume: 104 start-page: 27 year: 2010 end-page: 33 ident: CR32 article-title: U-spatial statistic data modeled on a probability diagram for investigation of mineralization phases and exploration of shear zone gold deposits publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2009.10.002 – ident: CR69 – volume: 74 start-page: 60 year: 2015 end-page: 70 ident: CR8 article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines) publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.10.004 – year: 2012 ident: CR21 – volume: 47 start-page: 2973 year: 2009 end-page: 2987 ident: CR66 article-title: Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2016214 – volume: 50 start-page: 760 year: 2012 end-page: 770 ident: CR59 article-title: The use of statistical methods for studying the chemical composition of oceanic sediments: evidence from deep-water Upper Pleistocene–Holocene sediments in the Gakkel ridge, part II publication-title: Geochem. Int. doi: 10.1134/S0016702912070063 – year: 2008 ident: CR7 – volume: 71 start-page: 749 year: 2015 end-page: 760 ident: CR11 article-title: Mineral potential mapping with a restricted Boltzmann machine publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2014.08.012 – volume: 78 start-page: 1464 year: 1990 end-page: 1480 ident: CR45 article-title: The self-organizing map publication-title: Proc. IEEE. doi: 10.1109/5.58325 – volume: 64 start-page: 538 year: 1969 end-page: 550 ident: CR47 article-title: A simplified statistical treatment of geochemical data by graphical representation publication-title: Econ. Geol. doi: 10.2113/gsecongeo.64.5.538 – year: 1974 ident: CR48 – volume: 13 start-page: 47 year: 1996 end-page: 60 ident: CR54 article-title: The expectation-maximization algorithm publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.543975 – volume: 55 start-page: 125 year: 2013 end-page: 133 ident: CR1 article-title: Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2013.05.005 – year: 1983 ident: CR40 – volume: 43 start-page: 91 year: 1992 end-page: 109 ident: CR5 article-title: The fractal nature of geochemical landscapes publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(92)90001-O – volume: 24 start-page: 2693 year: 2017 end-page: 2704 ident: CR31 article-title: A method for extracting anomaly map of Au and As using combination of U-statistic and Euclidean distance methods in Susanvar district, Iran publication-title: J. Cent. South Univ. doi: 10.1007/s11771-017-3682-7 – ident: CR41 – volume: 17 start-page: 261 year: 2017 end-page: 276 ident: CR70 article-title: Fractal/multifractal analysis in support of mineral exploration in the Duolong mineral district, Tibet, China publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2016-449 – ident: 11196_CR37 – volume-title: Geochemical Anomaly and Mineral Prospectivity Mapping in GIS year: 2008 ident: 11196_CR7 – volume: 47 start-page: 2973 year: 2009 ident: 11196_CR66 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2016214 – volume-title: Clustering by Means of Medoids year: 1987 ident: 11196_CR43 – volume: 71 start-page: 749 year: 2015 ident: 11196_CR11 publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2014.08.012 – ident: 11196_CR33 – volume: 108 start-page: 183 year: 2011 ident: 11196_CR53 publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2011.01.006 – volume: 157 start-page: 81 year: 2015 ident: 11196_CR34 publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2015.06.001 – volume-title: Introduction to Exploration Geochemistry year: 1974 ident: 11196_CR48 – volume: 17 start-page: 183 year: 2017 ident: 11196_CR9 publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2017-901 – ident: 11196_CR2 – volume: 346 start-page: 1 year: 2005 ident: 11196_CR57 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2004.11.023 – volume: 43 start-page: 91 year: 1992 ident: 11196_CR5 publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(92)90001-O – volume: 24 start-page: 2693 year: 2017 ident: 11196_CR31 publication-title: J. Cent. South Univ. doi: 10.1007/s11771-017-3682-7 – volume: 69 start-page: 383 year: 1974 ident: 11196_CR38 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1974.10482962 – volume: 17 start-page: 261 year: 2017 ident: 11196_CR70 publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2016-449 – volume-title: The Cambridge Dictionary of Statistics year: 2002 ident: 11196_CR24 – volume: 65 start-page: 175 year: 1999 ident: 11196_CR13 publication-title: J. Geochem. Explor. doi: 10.1016/S0375-6742(99)00028-X – volume-title: Computational Intelligence: an Introduction year: 2007 ident: 11196_CR22 doi: 10.1002/9780470512517 – volume-title: Inf. Theory, Inference Learn. Algorithms year: 2003 ident: 11196_CR50 – volume: 63 start-page: 22 year: 2014 ident: 11196_CR17 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.10.008 – volume: 95 start-page: 283 year: 1963 ident: 11196_CR39 publication-title: Soil Sci. doi: 10.1097/00010694-196304000-00016 – volume: 51 start-page: 269 year: 2013 ident: 11196_CR4 publication-title: Geochem. Int. doi: 10.1134/S001670291302002X – volume: 20 start-page: 837 year: 2016 ident: 11196_CR27 publication-title: Geosci. J. doi: 10.1007/s12303-015-0064-8 – volume: 7 start-page: 415 year: 1975 ident: 11196_CR36 publication-title: J. Int. Assoc. Math. Geol. doi: 10.1007/BF02080498 – volume: 578 start-page: 633 year: 2017 ident: 11196_CR56 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.010 – volume: 150 start-page: 52 year: 2015 ident: 11196_CR19 publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2014.12.015 – ident: 11196_CR51 – volume-title: Identifying Geochemical Anomalies year: 2006 ident: 11196_CR52 – ident: 11196_CR23 – volume: 54 start-page: 48 year: 2016 ident: 11196_CR42 publication-title: Geochem. Int. doi: 10.1134/S0016702916010055 – volume: 31 start-page: 579 year: 2005 ident: 11196_CR25 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.11.013 – volume: 41 start-page: 1 year: 1991 ident: 11196_CR62 publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(91)90071-2 – volume: 24 start-page: 1579 year: 2009 ident: 11196_CR16 publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2009.04.022 – volume: 8 start-page: 115 year: 2008 ident: 11196_CR64 publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/1467-7873/07-156 – ident: 11196_CR69 – volume: 55 start-page: 125 year: 2013 ident: 11196_CR1 publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2013.05.005 – volume: 27 start-page: 5 year: 2018 ident: 11196_CR76 publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9357-0 – volume-title: Geochemical Prospecting for Mineral Deposits year: 1987 ident: 11196_CR63 – ident: 11196_CR35 – volume: 32 start-page: 155 year: 2017 ident: 11196_CR28 publication-title: Carbonates and Evaporites doi: 10.1007/s13146-015-0282-1 – ident: 11196_CR41 – volume: 125 start-page: 387 year: 2016 ident: 11196_CR26 publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-016-0657-2 – ident: 11196_CR29 doi: 10.1080/12269328.2017.1355268 – volume: 17 start-page: 231 year: 2017 ident: 11196_CR12 publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2016-024 – volume: 51 start-page: 109 year: 1994 ident: 11196_CR14 publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(94)90013-2 – volume: 64 start-page: 538 year: 1969 ident: 11196_CR47 publication-title: Econ. Geol. doi: 10.2113/gsecongeo.64.5.538 – volume: 13 start-page: 47 year: 1996 ident: 11196_CR54 publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.543975 – ident: 11196_CR58 – volume: 198 start-page: 71 year: 2019 ident: 11196_CR71 publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2018.12.004 – volume: 4 start-page: 29 year: 2013 ident: 11196_CR30 publication-title: Int. J. Econ. Environ. Geol. – volume: 50 start-page: 760 year: 2012 ident: 11196_CR59 publication-title: Geochem. Int. doi: 10.1134/S0016702912070063 – volume: 56 start-page: 183 year: 1996 ident: 11196_CR15 publication-title: J. Geochem. Explor. doi: 10.1016/S0375-6742(96)00035-0 – volume-title: Introduction to Statistical Analysis year: 1957 ident: 11196_CR20 doi: 10.2307/2332898 – volume: 32 start-page: 355 year: 1989 ident: 11196_CR65 publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(89)90076-9 – volume: 5 start-page: 359 year: 2005 ident: 11196_CR55 publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/1467-7873/03-051 – volume-title: Statistics and Data Analysis in Geology year: 1986 ident: 11196_CR18 – volume: 46 start-page: 409 year: 2008 ident: 11196_CR67 publication-title: Geochem. Int. doi: 10.1134/S0016702908040095 – volume: 26 start-page: 457 year: 2017 ident: 11196_CR75 publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9345-4 – volume-title: Clustering: Basic Concepts BT - Pattern Recognition year: 2009 ident: 11196_CR68 – volume: 145 start-page: 233 year: 2014 ident: 11196_CR3 publication-title: J. Geochemical Explor. doi: 10.1016/j.gexplo.2014.07.005 – volume: 74 start-page: 60 year: 2015 ident: 11196_CR8 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.10.004 – volume: 30 start-page: 309 year: 1988 ident: 11196_CR46 publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(88)90066-0 – volume: 28 start-page: 129 year: 1982 ident: 11196_CR49 publication-title: IEEE Trans. Inf. theory. doi: 10.1109/TIT.1982.1056489 – volume: 17 start-page: 239 year: 2017 ident: 11196_CR74 publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2016-013 – volume: 167 start-page: 49 year: 2016 ident: 11196_CR44 publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2016.05.003 – volume-title: Statistics and Data Analysis in Geochemical Prospecting: Handbook of Exploration Geochemistry year: 1983 ident: 11196_CR40 – volume: 78 start-page: 1464 year: 1990 ident: 11196_CR45 publication-title: Proc. IEEE. doi: 10.1109/5.58325 – volume: 45 start-page: 652 year: 2007 ident: 11196_CR73 publication-title: Geochem. Int. doi: 10.1134/S0016702907070038 – volume: 86 start-page: 75 year: 2016 ident: 11196_CR72 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.10.006 – volume: 50 start-page: 249 year: 2018 ident: 11196_CR10 publication-title: Math. Geosci. doi: 10.1007/s11004-017-9707-9 – volume: 104 start-page: 27 year: 2010 ident: 11196_CR32 publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2009.10.002 – volume: 47 start-page: 41 year: 2009 ident: 11196_CR6 publication-title: Geochem. Int. doi: 10.1134/S0016702909010030 – volume: 128 start-page: 116 year: 2017 ident: 11196_CR60 publication-title: J. African Earth Sci. doi: 10.1016/j.jafrearsci.2016.11.032 – volume-title: Pattern Classification year: 2012 ident: 11196_CR21 – volume: 3 start-page: 129 year: 1974 ident: 11196_CR61 publication-title: J. Geochemical Explor. doi: 10.1016/0375-6742(74)90030-2 |
| SSID | ssj0044397 |
| Score | 2.2447085 |
| Snippet | In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification.... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 472 |
| SubjectTerms | Anomalies Automation Clustering Coefficient of variation Comparative analysis Copper Copper industry Data Data analysis Data processing Earth and Environmental Science Earth Sciences Electronic data processing Fractal models Fractals Geochemistry Information theory Learning algorithms Machine learning Mathematical analysis Measurement methods Methods Mineralization Multivariate analysis Numerical analysis Porphyry Porphyry copper Sediment samples Self organizing maps Separation Signal to noise ratio Statistical methods |
| Title | Comparative Analysis of Geochemical Data Processing Methods for Allocation of Anomalies and Background |
| URI | https://link.springer.com/article/10.1134/S0016702920040084 https://www.proquest.com/docview/2388033372 |
| Volume | 58 |
| WOSCitedRecordID | wos000525599100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1556-1968 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044397 issn: 0016-7029 databaseCode: RSV dateStart: 20060101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_8BF9q_SievZY8CIKykN0km93H69WPh1YE9fBtySeI1z1xz0L_ezN72Yo9LehzJh9kkplfyMxvAPZyY70KQDTh0qmEM4920LCk9N6q1GZWtEE0ox_y7Ky4vi7PYx5300W7d1-SraWe1R3hmNOb5pJidSU8eAVfhGWBZDP4RL8YdeaXo4edmd88QfH4lfniEM-c0b8mee5vtHU5x-vvWuxH-BARJhnMjsQGLLh6E1ZP2gq-f7bAD5_4vklHSUImngQJE9kDyHc1VSTmEIRpyc-2znRDAsIlgzH6P9Qn9hrUk18ByruGqNqSb8rcYp5Ibbfh6vjocniaxGILiWKymCZCFbkufeERcTidF45LIZWwqXfaasqs8rnmATBpyg3TknIlvDNpqbhw3rBPsFRParcDRFMtDLUZVZnleWGDwzOpElkuA3hkuuwB7Xa9MpGJHAtijKv2RcJ4Nbd9PTj42-VuRsPxP-F9VGWFVzSMa1TMNAirQ7KraiCzgFILXtIe9DttV_HuNlWG_DiMMZn14LDT7lPzq9Puvkn6M6xl-HRvg4D6sDS9f3BfYMX8nt4091_bI_0I9nfsyA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD54adGXqq3i1lseBMEykJlkJjOP61ZdcV2Eqvg25ArS7aw4q-C_b85spmK1Qn2eM0nISc75QnK-D2A308ZJD0QjLqyMOHMYBzWLCueMjE1i0uYRzdVADIf59XVxHuq46_a1e3sl2UTqqe4Ix5reOBMU1ZVw4eV8FuY5quzgEf3HVRt-OWbYafjNIjQPV5mvNvEsGf0dkl_cjTYp52jpXYNdhk8BYZLudEmswIytPsPH40bB9_ELuN4T3zdpKUnI2BFvoQN7APkuJ5KEGgLfLTlrdKZr4hEu6Y4w_6E_8a9uNf7lobytiawMOZD6J9aJVGYVLo8OL3r9KIgtRJKJfBKlMs9U4XKHiMOqLLdcpEKmJnZWGUWZkS5T3AMmRblmSlAuU2d1XEieWqfZGsxV48quA1FUpZqahMrE8Cw3PuHpWKZJJjx4ZKroAG1nvdSBiRwFMUZlcyJhvHwxfR3Y__PL7ZSG4y3jPXRliVvUt6tlqDTwo0Oyq7IrEo9Sc17QDmy23i7D3q3LBPlxGGMi6cC31rtPn__Z7df_st6Bhf7F2aAcnAxPN2AxwWN88yBoE-Ymd_d2Cz7oh8lNfbfdLO_fF6LvrA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SpA29JH2Fbh6tDoVCi6lsyZZ93Gyyael2WfpYcjN6QsjWG2I3kH8fjVfO0mwbKD17LAuPNPMJzXwfwJtMGyc9EI24sDLizGEc1CwqnDMyNolJ2yKa6UiMx_npaTEJOqd1V-3eXUkuehqQpalqPlwYFzRIOPb3xpmgqLSEizDnD2CD-4MM1nR9_TbtQjHHbLsIxVmE5uFa849D_JaY7obnlXvSNv0Mt_974k9gKyBP0l8slaewZqtn8OikVfa9fg5usOQBJx1VCZk74i10YBUgR7KRJPQW-CmQL63-dE088iX9GeZF9DO-1a_mPz3EtzWRlSGHUp9j_0hlXsCP4fH3wccoiDBEkom8iVKZZ6pwuUMkYlWWWy5SIVMTO6uMosxIlynugZSiXDMlKJepszouJE-t02wH1qt5ZV8CUVSlmpqEysTwLDc-EepYpkkmPKhkqugB7TxQ6sBQjkIZs7I9qTBervy-Hry7feViQc9xn_FbdGuJW9ePq2XoQPCzQxKssi8Sj15zXtAe7HeeL8OerssEeXMYYyLpwfvO08vHf_3s7j9Zv4bNydGwHH0af96Dxwme7ts6oX1Yby5_2QN4qK-as_ryVbvSbwBvR_iQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Geochemical+Data+Processing+Methods+for+Allocation+of+Anomalies+and+Background&rft.jtitle=Geochemistry+international&rft.au=Esmaeiloghli%2C+S.&rft.au=Tabatabaei%2C+S.+H.&rft.date=2020-04-01&rft.pub=Pleiades+Publishing&rft.issn=0016-7029&rft.eissn=1556-1968&rft.volume=58&rft.issue=4&rft.spage=472&rft.epage=485&rft_id=info:doi/10.1134%2FS0016702920040084&rft.externalDocID=10_1134_S0016702920040084 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7029&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7029&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7029&client=summon |