Comparative Analysis of Geochemical Data Processing Methods for Allocation of Anomalies and Background

In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification. The separation of anomalous concentrations from the background is a crucial task in the mathematical analysis of geochemical data. The convent...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Geochemistry international Ročník 58; číslo 4; s. 472 - 485
Hlavní autori: Esmaeiloghli, S., Tabatabaei, S. H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.04.2020
Springer
Springer Nature B.V
Predmet:
ISSN:0016-7029, 1556-1968
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification. The separation of anomalous concentrations from the background is a crucial task in the mathematical analysis of geochemical data. The conventional methods rely on the statistical thresholds routinely; however, determining such boundary values fundamentally entails a normally distributed data and the involvement of expert knowledge. The unsupervised machine learning provides state-of-the-art facilities based on the information theory that leveraged to classify the geochemical data into the anomaly and background concentrations with specific characteristics. To examine the integrity of performance of geochemical data processing tools, the prevalent unsupervised learning methods of k -means, k -medoids, k -medians, expectation-maximization (EM) clustering, density-based spatial clustering of applications with noise (DBSCAN), and self-organizing maps (SOM), as well as traditional threshold-based techniques of the mean plus two standard deviations ( ) and the concentration-number (C-N) fractal model were subjected to the separation of Cu anomalies from the background within 300 rock samples collected from Shadan porphyry copper deposit, northeast Iran. The efficiency of methods was quantitatively measured using criteria comprising student’s t -test, signal to noise ratio, and the pooled coefficient of variation. The appraisal criteria have confirmed that most of the unsupervised techniques manage to isolate the geochemical anomalies from the background with a more significant contrast compared to the conventional methods of and C-N fractal model. The EM clustering has revealed the best performance among them so that it allocates the anomalies with the maximum resolution and distinguishes the weak anomalies from the high background. The anomaly Cu map obtained by the EM method has represented a significant spatial pattern that is properly consistent with the geological and mineralization evidences within the study area. The utilization of unsupervised learning methods substantially enjoys some advantages such as anomaly intensification, automaticity, being fast and non-parametric, and the capability to expand to the multivariate analysis.
AbstractList In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification. The separation of anomalous concentrations from the background is a crucial task in the mathematical analysis of geochemical data. The conventional methods rely on the statistical thresholds routinely; however, determining such boundary values fundamentally entails a normally distributed data and the involvement of expert knowledge. The unsupervised machine learning provides state-of-the-art facilities based on the information theory that leveraged to classify the geochemical data into the anomaly and background concentrations with specific characteristics. To examine the integrity of performance of geochemical data processing tools, the prevalent unsupervised learning methods of k -means, k -medoids, k -medians, expectation-maximization (EM) clustering, density-based spatial clustering of applications with noise (DBSCAN), and self-organizing maps (SOM), as well as traditional threshold-based techniques of the mean plus two standard deviations ( ) and the concentration-number (C-N) fractal model were subjected to the separation of Cu anomalies from the background within 300 rock samples collected from Shadan porphyry copper deposit, northeast Iran. The efficiency of methods was quantitatively measured using criteria comprising student’s t -test, signal to noise ratio, and the pooled coefficient of variation. The appraisal criteria have confirmed that most of the unsupervised techniques manage to isolate the geochemical anomalies from the background with a more significant contrast compared to the conventional methods of and C-N fractal model. The EM clustering has revealed the best performance among them so that it allocates the anomalies with the maximum resolution and distinguishes the weak anomalies from the high background. The anomaly Cu map obtained by the EM method has represented a significant spatial pattern that is properly consistent with the geological and mineralization evidences within the study area. The utilization of unsupervised learning methods substantially enjoys some advantages such as anomaly intensification, automaticity, being fast and non-parametric, and the capability to expand to the multivariate analysis.
In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification. The separation of anomalous concentrations from the background is a crucial task in the mathematical analysis of geochemical data. The conventional methods rely on the statistical thresholds routinely; however, determining such boundary values fundamentally entails a normally distributed data and the involvement of expert knowledge. The unsupervised machine learning provides state-of-the-art facilities based on the information theory that leveraged to classify the geochemical data into the anomaly and background concentrations with specific characteristics. To examine the integrity of performance of geochemical data processing tools, the prevalent unsupervised learning methods of k-means, k-medoids, k-medians, expectation-maximization (EM) clustering, density-based spatial clustering of applications with noise (DBSCAN), and self-organizing maps (SOM), as well as traditional threshold-based techniques of the mean plus two standard deviations ( [Formula omitted]) and the concentration-number (C-N) fractal model were subjected to the separation of Cu anomalies from the background within 300 rock samples collected from Shadan porphyry copper deposit, northeast Iran. The efficiency of methods was quantitatively measured using criteria comprising student's t-test, signal to noise ratio, and the pooled coefficient of variation. The appraisal criteria have confirmed that most of the unsupervised techniques manage to isolate the geochemical anomalies from the background with a more significant contrast compared to the conventional methods of [Formula omitted] and C-N fractal model. The EM clustering has revealed the best performance among them so that it allocates the anomalies with the maximum resolution and distinguishes the weak anomalies from the high background. The anomaly Cu map obtained by the EM method has represented a significant spatial pattern that is properly consistent with the geological and mineralization evidences within the study area. The utilization of unsupervised learning methods substantially enjoys some advantages such as anomaly intensification, automaticity, being fast and non-parametric, and the capability to expand to the multivariate analysis.
In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification. The separation of anomalous concentrations from the background is a crucial task in the mathematical analysis of geochemical data. The conventional methods rely on the statistical thresholds routinely; however, determining such boundary values fundamentally entails a normally distributed data and the involvement of expert knowledge. The unsupervised machine learning provides state-of-the-art facilities based on the information theory that leveraged to classify the geochemical data into the anomaly and background concentrations with specific characteristics. To examine the integrity of performance of geochemical data processing tools, the prevalent unsupervised learning methods of k-means, k-medoids, k-medians, expectation-maximization (EM) clustering, density-based spatial clustering of applications with noise (DBSCAN), and self-organizing maps (SOM), as well as traditional threshold-based techniques of the mean plus two standard deviations () and the concentration-number (C-N) fractal model were subjected to the separation of Cu anomalies from the background within 300 rock samples collected from Shadan porphyry copper deposit, northeast Iran. The efficiency of methods was quantitatively measured using criteria comprising student’s t-test, signal to noise ratio, and the pooled coefficient of variation. The appraisal criteria have confirmed that most of the unsupervised techniques manage to isolate the geochemical anomalies from the background with a more significant contrast compared to the conventional methods of and C-N fractal model. The EM clustering has revealed the best performance among them so that it allocates the anomalies with the maximum resolution and distinguishes the weak anomalies from the high background. The anomaly Cu map obtained by the EM method has represented a significant spatial pattern that is properly consistent with the geological and mineralization evidences within the study area. The utilization of unsupervised learning methods substantially enjoys some advantages such as anomaly intensification, automaticity, being fast and non-parametric, and the capability to expand to the multivariate analysis.
Audience Academic
Author Tabatabaei, S. H.
Esmaeiloghli, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Esmaeiloghli
  fullname: Esmaeiloghli, S.
  email: s.esmaeiloghli@mi.iut.ac.ir
  organization: Department of Mining Engineering, Isfahan University of Technology (IUT)
– sequence: 2
  givenname: S. H.
  surname: Tabatabaei
  fullname: Tabatabaei, S. H.
  email: tabatabaei@cc.iut.ac.ir
  organization: Department of Mining Engineering, Isfahan University of Technology (IUT)
BookMark eNp90dFqHCEUBmApKXST5gFyJ_R6Eh11dC4n2yQNpLTQ9no44xw3prO60dlA3j5Ot1BoafBC8Pyf8OsxOQoxICFnnJ1zLuTFN8Z4o1nd1oxJxox8Q1ZcqabibWOOyGoZV8v8HTnO-aGEpGj1irh13O4gweyfkHYBpufsM42O3mC097j1Fib6EWagX1O0mLMPG_oZ5_s4Zupiot00RVt4DIvqQtzC5DFTCCO9BPtzk-I-jO_JWwdTxtPf-wn5cX31ff2puvtyc7vu7ioQ2syVAtMMrTOOs9rg0BiUWmlQI3c4jAMTI7hmkIqpgUkrBs0kKIeWtyAVOitOyIfDvbsUH_eY5_4h7lOplftaGMOEELouqfNDagMT9j64OCewZY1L4fKwzpfzTtdMaSNbVoA-AJtizgldb_38q3SBfuo565df6P_5hSL5X3KX_BbS86umPphcsmGD6U-J_6MXvGiaUg
CitedBy_id crossref_primary_10_1016_j_cageo_2023_105341
crossref_primary_10_3390_agronomy13092238
crossref_primary_10_1016_j_oregeorev_2024_106175
crossref_primary_10_1016_j_chemer_2021_125850
crossref_primary_10_1016_j_chemer_2024_126111
crossref_primary_10_1016_j_gexplo_2024_107451
crossref_primary_10_1016_j_chemer_2024_126094
crossref_primary_10_1007_s11004_023_10101_w
crossref_primary_10_1007_s11053_020_09798_x
crossref_primary_10_1016_j_jafrearsci_2025_105854
crossref_primary_10_1016_j_ecolind_2025_113188
crossref_primary_10_1016_j_apgeochem_2022_105273
crossref_primary_10_1016_j_gexplo_2022_107061
Cites_doi 10.1134/S001670291302002X
10.1016/0375-6742(89)90076-9
10.1016/j.cageo.2004.11.013
10.1007/s12040-016-0657-2
10.1097/00010694-196304000-00016
10.1016/j.gexplo.2011.01.006
10.1144/1467-7873/03-051
10.1016/S0375-6742(99)00028-X
10.1007/s11053-017-9345-4
10.1016/0375-6742(74)90030-2
10.1016/j.scitotenv.2016.11.010
10.1016/j.gexplo.2016.05.003
10.1134/S0016702908040095
10.1007/BF02080498
10.1080/01621459.1974.10482962
10.1016/j.jafrearsci.2016.11.032
10.1016/j.gexplo.2014.07.005
10.1007/s11004-017-9707-9
10.1016/j.apgeochem.2009.04.022
10.1016/j.cageo.2013.10.008
10.1109/TIT.1982.1056489
10.2307/2332898
10.1007/s12303-015-0064-8
10.1007/s13146-015-0282-1
10.1016/j.gexplo.2015.06.001
10.1016/j.scitotenv.2004.11.023
10.1016/0375-6742(94)90013-2
10.1016/j.gexplo.2018.12.004
10.1144/geochem2016-024
10.1134/S0016702916010055
10.1134/S0016702909010030
10.1002/9780470512517
10.1016/0375-6742(91)90071-2
10.1144/1467-7873/07-156
10.1144/geochem2017-901
10.1016/j.cageo.2015.10.006
10.1134/S0016702907070038
10.1016/0375-6742(88)90066-0
10.1144/geochem2016-013
10.1016/S0375-6742(96)00035-0
10.1016/j.gexplo.2014.12.015
10.1007/s11053-017-9357-0
10.1016/j.gexplo.2009.10.002
10.1016/j.cageo.2014.10.004
10.1109/TGRS.2009.2016214
10.1134/S0016702912070063
10.1016/j.oregeorev.2014.08.012
10.1109/5.58325
10.2113/gsecongeo.64.5.538
10.1109/79.543975
10.1016/j.oregeorev.2013.05.005
10.1016/0375-6742(92)90001-O
10.1007/s11771-017-3682-7
10.1144/geochem2016-449
10.1080/12269328.2017.1355268
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2020
COPYRIGHT 2020 Springer
Pleiades Publishing, Ltd. 2020.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2020
– notice: COPYRIGHT 2020 Springer
– notice: Pleiades Publishing, Ltd. 2020.
DBID AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
L.G
DOI 10.1134/S0016702920040084
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aqualine
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1556-1968
EndPage 485
ExternalDocumentID A720578490
10_1134_S0016702920040084
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
1N0
29H
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
40E
5GY
5VS
67M
6NX
78A
7XC
88I
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABCQX
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I-F
IAO
IJ-
IKXTQ
ITC
ITM
IWAJR
IZQ
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
L7B
L8X
LK5
LLZTM
M2P
M4Y
M7R
MA-
MM-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
PATMY
PCBAR
PF0
PKN
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TUC
TUS
TWZ
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
XOL
XU3
Y6R
YLTOR
Z5O
ZKB
ZMTXR
~02
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
BGLVJ
CITATION
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7QH
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-a378t-5a86b9f8f1028eb68e4757a5d1febdb03daf6b4505b04c3b704a5fec19a45efc3
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525599100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-7029
IngestDate Wed Sep 17 23:58:11 EDT 2025
Mon Oct 20 16:47:18 EDT 2025
Sat Nov 29 05:44:07 EST 2025
Tue Nov 18 21:11:10 EST 2025
Fri Feb 21 02:38:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Shadan deposit
Background
Geochemical anomaly
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-5a86b9f8f1028eb68e4757a5d1febdb03daf6b4505b04c3b704a5fec19a45efc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2388033372
PQPubID 105441
PageCount 14
ParticipantIDs proquest_journals_2388033372
gale_infotracacademiconefile_A720578490
crossref_citationtrail_10_1134_S0016702920040084
crossref_primary_10_1134_S0016702920040084
springer_journals_10_1134_S0016702920040084
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Silver Spring
PublicationTitle Geochemistry international
PublicationTitleAbbrev Geochem. Int
PublicationYear 2020
Publisher Pleiades Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer
– name: Springer Nature B.V
References Duda, Hart, Stork (CR21) 2012
Tarabalka, Benediktsson, Chanussot (CR66) 2009; 47
Chiprés, Castro-Larragoitia, Monroy (CR16) 2009; 24
Astakhov, Rujian, Crane, Ivanov, Aiguo (CR4) 2013; 51
Ghannadpour, Hezarkhani (CR26) 2016; 125
Reimann, de Caritat (CR56) 2017; 578
CR37
Cheng, Agterberg, Bonham-Carter (CR15) 1996; 56
CR35
Shabankareh, Hezarkhani (CR60) 2017; 128
CR33
Lepeltier (CR47) 1969; 64
Hampel (CR38) 1974; 69
Hawkes, Webb (CR39) 1963; 95
Bølviken, Stokke, Feder, Jössang (CR5) 1992; 43
Chen, Wu (CR12) 2017; 17
Filzmoser, Garrett, Reimann (CR25) 2005; 31
Cheng, Agterberg, Ballantyne (CR14) 1994; 51
Ghannadpour, Hezarkhani (CR27) 2016; 20
Govett, Goodfellow, Chapman, Chork (CR36) 1975; 7
Kohonen (CR45) 1990; 78
Ivanov (CR42) 2016; 54
CR2
Asadi, Kianpouryan, Lu, McCuaig (CR3) 2014; 145
Cracknell, Reading (CR17) 2014; 63
Gonbadi, Tabatabaei, Carranza (CR34) 2015; 157
Stanley, Noble (CR64) 2008; 8
Cheng (CR13) 1999; 65
Chen, Cheng (CR10) 2018; 50
Sinclair (CR62) 1991; 41
Xiong, Zuo (CR72) 2016; 86
Ghannadpour, Hezarkhani, Farahbakhsh (CR30) 2013; 4
McQueen (CR52) 2006
CR41
Kaufman, Rousseeuw (CR43) 1987
Bychkova, Bondarenko, Andreeva, Zakrevskaya (CR6) 2009; 47
Rusakov, Kuz’mina, Roshchina (CR59) 2012; 50
Temur, Orhan, Deli (CR67) 2008; 46
Stanley, Sinclair (CR65) 1989; 32
Dixon, Massey (CR20) 1957
Davis, Sampson (CR18) 1986
Sinclair (CR61) 1974; 3
Meshkani, Mehrabi, Yaghubpur, Alghalandis (CR53) 2011; 108
Xiang, Gu, Wang, Wang, Zhang, Wang (CR71) 2019; 198
Kirkwood, Cave, Beamish, Grebby, Ferreira (CR44) 2016; 167
MacKay (CR50) 2003
CR58
Solovov, Kuznetov (CR63) 1987
Afzal, Ahari, Omran, Aliyari (CR1) 2013; 55
Ghannadpour, Hezarkhani, Sharifzadeh (CR31) 2017; 24
Reimann, Filzmoser, Garrett (CR57) 2005; 346
CR51
Chen (CR11) 2015; 71
Lloyd (CR49) 1982; 28
Zuo, Xiong (CR76) 2018; 27
Daya (CR19) 2015; 150
Ghavami-Riabi, Seyedrahimi-Niaraq, Khalokakaie, Hazareh (CR32) 2010; 104
Carranza (CR7) 2008
Levinson (CR48) 1974
Howarth (CR40) 1983
Wang, Cheng, Tang, Song, Li, Liu (CR70) 2017; 17
Carranza, Zuo (CR9) 2017; 17
Everitt, Skrondal (CR24) 2002
CR29
Carranza, Laborte (CR8) 2015; 74
Moon (CR54) 1996; 13
Reimann (CR55) 2005; 5
Theodoridis, Koutroumbas (CR68) 2009
CR69
CR23
Zuo (CR75) 2017; 26
Ghannadpour, Hezarkhani (CR28) 2017; 32
Yaroshevskii, Tevelev, Kosheleva (CR73) 2007; 45
Kürzl (CR46) 1988; 30
Zhao, Chen, Zuo (CR74) 2017; 17
Engelbrecht (CR22) 2007
L. Kaufman (11196_CR43) 1987
Y. Chen (11196_CR12) 2017; 17
11196_CR58
M. J. Cracknell (11196_CR17) 2014; 63
A. P. Solovov (11196_CR63) 1987
R. Zuo (11196_CR76) 2018; 27
H. E. Hawkes (11196_CR39) 1963; 95
J. A. Chiprés (11196_CR16) 2009; 24
V. Y. Rusakov (11196_CR59) 2012; 50
A. A. Levinson (11196_CR48) 1974
W. Wang (11196_CR70) 2017; 17
E. J. M. Carranza (11196_CR9) 2017; 17
C. Reimann (11196_CR57) 2005; 346
R. J. Howarth (11196_CR40) 1983
S. A. Meshkani (11196_CR53) 2011; 108
K. G. McQueen (11196_CR52) 2006
T. Kohonen (11196_CR45) 1990; 78
11196_CR29
11196_CR23
A. S. Astakhov (11196_CR4) 2013; 51
B. Bølviken (11196_CR5) 1992; 43
11196_CR69
A. J. Sinclair (11196_CR62) 1991; 41
E. J. M. Carranza (11196_CR8) 2015; 74
A. P. Engelbrecht (11196_CR22) 2007
Q. Cheng (11196_CR15) 1996; 56
Z. Xiang (11196_CR71) 2019; 198
C. Reimann (11196_CR56) 2017; 578
J. C. Davis (11196_CR18) 1986
Q. Cheng (11196_CR13) 1999; 65
S. Theodoridis (11196_CR68) 2009
Y. Chen (11196_CR11) 2015; 71
F. R. Hampel (11196_CR38) 1974; 69
R. O. Duda (11196_CR21) 2012
C. Lepeltier (11196_CR47) 1969; 64
S. Temur (11196_CR67) 2008; 46
H. H. Asadi (11196_CR3) 2014; 145
R. Zuo (11196_CR75) 2017; 26
11196_CR37
A. A. Yaroshevskii (11196_CR73) 2007; 45
11196_CR33
S. S. Ghannadpour (11196_CR27) 2016; 20
J. Zhao (11196_CR74) 2017; 17
11196_CR35
S. S. Ghannadpour (11196_CR31) 2017; 24
Q. Cheng (11196_CR14) 1994; 51
W. J. Dixon (11196_CR20) 1957
A. M. Gonbadi (11196_CR34) 2015; 157
C. R. Stanley (11196_CR65) 1989; 32
S. S. Ghannadpour (11196_CR30) 2013; 4
P. Filzmoser (11196_CR25) 2005; 31
S. S. Ghannadpour (11196_CR28) 2017; 32
R. Ghavami-Riabi (11196_CR32) 2010; 104
Y. V Bychkova (11196_CR6) 2009; 47
H. Kürzl (11196_CR46) 1988; 30
Y. Tarabalka (11196_CR66) 2009; 47
11196_CR41
G. J. S. Govett (11196_CR36) 1975; 7
G. Chen (11196_CR10) 2018; 50
M. A. Ivanov (11196_CR42) 2016; 54
P. Afzal (11196_CR1) 2013; 55
E. J. M. Carranza (11196_CR7) 2008
B. Everitt (11196_CR24) 2002
S. S. Ghannadpour (11196_CR26) 2016; 125
S. Lloyd (11196_CR49) 1982; 28
D. MacKay (11196_CR50) 2003
T. K. Moon (11196_CR54) 1996; 13
Y. Xiong (11196_CR72) 2016; 86
C. Kirkwood (11196_CR44) 2016; 167
C. Reimann (11196_CR55) 2005; 5
11196_CR51
A. J. Sinclair (11196_CR61) 1974; 3
A. A. Daya (11196_CR19) 2015; 150
M. Shabankareh (11196_CR60) 2017; 128
C. R. Stanley (11196_CR64) 2008; 8
11196_CR2
References_xml – year: 2009
  ident: CR68
– volume: 51
  start-page: 269
  year: 2013
  end-page: 289
  ident: CR4
  article-title: Lithochemical classification of the Arctic depositional environments (Chukchi Sea) by methods of multivariate statistic
  publication-title: Geochem. Int.
  doi: 10.1134/S001670291302002X
– volume: 32
  start-page: 355
  year: 1989
  end-page: 357
  ident: CR65
  article-title: Comparison of probability plots and the gap statistic in the selection of thresholds for exploration geochemistry data
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(89)90076-9
– volume: 31
  start-page: 579
  year: 2005
  end-page: 587
  ident: CR25
  article-title: Multivariate outlier detection in exploration geochemistry
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.11.013
– ident: CR51
– volume: 125
  start-page: 387
  year: 2016
  end-page: 401
  ident: CR26
  article-title: Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-016-0657-2
– volume: 95
  start-page: 283
  year: 1963
  ident: CR39
  article-title: Geochemistry in mineral exploration
  publication-title: Soil Sci.
  doi: 10.1097/00010694-196304000-00016
– volume: 108
  start-page: 183
  year: 2011
  end-page: 195
  ident: CR53
  article-title: The application of geochemical pattern recognition to regional prospecting: A case study of the Sanandaj–Sirjan metallogenic zone, Iran
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2011.01.006
– volume: 4
  start-page: 29
  year: 2013
  end-page: 36
  ident: CR30
  article-title: Anomaly-background separation and geochemical map generation for Pb and Zn in Parkam district based on U-statistical method, Kerman, Iran
  publication-title: Int. J. Econ. Environ. Geol.
– volume: 5
  start-page: 359
  year: 2005
  end-page: 370
  ident: CR55
  article-title: Geochemical mapping: technique or art?
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/03-051
– volume: 65
  start-page: 175
  year: 1999
  end-page: 194
  ident: CR13
  article-title: Spatial and scaling modelling for geochemical anomaly separation
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(99)00028-X
– volume: 26
  start-page: 457
  year: 2017
  end-page: 464
  ident: CR75
  article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9345-4
– ident: CR35
– volume: 3
  start-page: 129
  year: 1974
  end-page: 149
  ident: CR61
  article-title: Selection of threshold values in geochemical data using probability graphs
  publication-title: J. Geochemical Explor.
  doi: 10.1016/0375-6742(74)90030-2
– ident: CR29
– volume: 578
  start-page: 633
  year: 2017
  end-page: 648
  ident: CR56
  article-title: Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.010
– volume: 167
  start-page: 49
  year: 2016
  end-page: 61
  ident: CR44
  article-title: A machine learning approach to geochemical mapping
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2016.05.003
– ident: CR58
– volume: 46
  start-page: 409
  year: 2008
  end-page: 422
  ident: CR67
  article-title: Statistical interpretation of some physical and chemical data of the tertiary coal deposits in Turkey
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702908040095
– volume: 7
  start-page: 415
  year: 1975
  end-page: 446
  ident: CR36
  article-title: Exploration geochemistry-distribution of elements and recognition of anomalies
  publication-title: J. Int. Assoc. Math. Geol.
  doi: 10.1007/BF02080498
– volume: 69
  start-page: 383
  year: 1974
  end-page: 393
  ident: CR38
  article-title: The influence curve and its role in robust estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1974.10482962
– volume: 128
  start-page: 116
  year: 2017
  end-page: 126
  ident: CR60
  article-title: Application of support vector machines for copper potential mapping in Kerman region, Iran
  publication-title: J. African Earth Sci.
  doi: 10.1016/j.jafrearsci.2016.11.032
– volume: 145
  start-page: 233
  year: 2014
  end-page: 241
  ident: CR3
  article-title: Exploratory data analysis and C–A fractal model applied in mapping multi-element soil anomalies for drilling: A case study from the Sari Gunay epithermal gold deposit, NW Iran
  publication-title: J. Geochemical Explor.
  doi: 10.1016/j.gexplo.2014.07.005
– year: 2003
  ident: CR50
– volume: 50
  start-page: 249
  year: 2018
  end-page: 272
  ident: CR10
  article-title: Fractal-based wavelet filter for separating geophysical or geochemical anomalies from background
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-017-9707-9
– volume: 24
  start-page: 1579
  year: 2009
  end-page: 1589
  ident: CR16
  article-title: Exploratory and spatial data analysis (EDA–SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce–Matehuala, Mexico
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2009.04.022
– volume: 63
  start-page: 22
  year: 2014
  end-page: 33
  ident: CR17
  article-title: Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2013.10.008
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  ident: CR49
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inf. theory.
  doi: 10.1109/TIT.1982.1056489
– year: 1957
  ident: CR20
  doi: 10.2307/2332898
– volume: 20
  start-page: 837
  year: 2016
  end-page: 850
  ident: CR27
  article-title: Exploration geochemistry data-application for anomaly separation based on discriminant function analysis in the Parkam porphyry system (Iran)
  publication-title: Geosci. J.
  doi: 10.1007/s12303-015-0064-8
– volume: 32
  start-page: 155
  year: 2017
  end-page: 166
  ident: CR28
  article-title: Comparing U‑statistic and nonstructural methods for separating anomaly and generating geochemical anomaly maps of Cu and Mo in Parkam district, Kerman, Iran
  publication-title: Carbonates and Evaporites
  doi: 10.1007/s13146-015-0282-1
– volume: 157
  start-page: 81
  year: 2015
  end-page: 91
  ident: CR34
  article-title: Supervised geochemical anomaly detection by pattern recognition
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.06.001
– year: 1987
  ident: CR63
– volume: 346
  start-page: 1
  year: 2005
  end-page: 16
  ident: CR57
  article-title: Background and threshold: critical comparison of methods of determination
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2004.11.023
– volume: 51
  start-page: 109
  year: 1994
  end-page: 130
  ident: CR14
  article-title: The separation of geochemical anomalies from background by fractal methods
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(94)90013-2
– volume: 198
  start-page: 71
  year: 2019
  end-page: 81
  ident: CR71
  article-title: Delineation of deep prospecting targets by combining factor and fractal analysis in the Kekeshala skarn Cu deposit, NW China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2018.12.004
– year: 2006
  ident: CR52
– volume: 17
  start-page: 231
  year: 2017
  end-page: 238
  ident: CR12
  article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/geochem2016-024
– volume: 54
  start-page: 48
  year: 2016
  end-page: 67
  ident: CR42
  article-title: Discriminant and factor analyses as tools for comparison of terrestrial and Venusian volcanic rocks
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702916010055
– volume: 47
  start-page: 41
  year: 2009
  end-page: 57
  ident: CR6
  article-title: Spatial distribution of low-sulfide platinum group element mineralization in the Kivakka intrusion, northern Karelia
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702909010030
– year: 2007
  ident: CR22
  doi: 10.1002/9780470512517
– volume: 41
  start-page: 1
  year: 1991
  end-page: 22
  ident: CR62
  article-title: A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(91)90071-2
– volume: 8
  start-page: 115
  year: 2008
  end-page: 127
  ident: CR64
  article-title: Quantitative assessment of the success of geochemical exploration techniques using minimum probability methods
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/07-156
– ident: CR2
– ident: CR37
– volume: 17
  start-page: 183
  year: 2017
  end-page: 185
  ident: CR9
  article-title: Introduction to the thematic issue: analysis of exploration geochemical data for mapping of anomalies
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/geochem2017-901
– volume: 86
  start-page: 75
  year: 2016
  end-page: 82
  ident: CR72
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.10.006
– volume: 45
  start-page: 652
  year: 2007
  end-page: 665
  ident: CR73
  article-title: Geochemical structure of the Early Carboniferous volcanic complexes of the Southern Urals
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702907070038
– volume: 30
  start-page: 309
  year: 1988
  end-page: 322
  ident: CR46
  article-title: Exploratory data analysis: recent advances for the interpretation of geochemical data
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(88)90066-0
– ident: CR33
– year: 1986
  ident: CR18
– year: 2002
  ident: CR24
– volume: 17
  start-page: 239
  year: 2017
  end-page: 251
  ident: CR74
  article-title: Identification and mapping of lithogeochemical signatures using staged factor analysis and fractal/multifractal models
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/geochem2016-013
– volume: 56
  start-page: 183
  year: 1996
  end-page: 195
  ident: CR15
  article-title: A spatial analysis method for geochemical anomaly separation
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(96)00035-0
– volume: 150
  start-page: 52
  year: 2015
  end-page: 63
  ident: CR19
  article-title: Comparative study of C–A, C–P, and N–S fractal methods for separating geochemical anomalies from background: A case study of Kamoshgaran region, northwest of Iran
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.12.015
– year: 1987
  ident: CR43
– volume: 27
  start-page: 5
  year: 2018
  end-page: 13
  ident: CR76
  article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9357-0
– ident: CR23
– volume: 104
  start-page: 27
  year: 2010
  end-page: 33
  ident: CR32
  article-title: U-spatial statistic data modeled on a probability diagram for investigation of mineralization phases and exploration of shear zone gold deposits
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2009.10.002
– ident: CR69
– volume: 74
  start-page: 60
  year: 2015
  end-page: 70
  ident: CR8
  article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.10.004
– year: 2012
  ident: CR21
– volume: 47
  start-page: 2973
  year: 2009
  end-page: 2987
  ident: CR66
  article-title: Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2016214
– volume: 50
  start-page: 760
  year: 2012
  end-page: 770
  ident: CR59
  article-title: The use of statistical methods for studying the chemical composition of oceanic sediments: evidence from deep-water Upper Pleistocene–Holocene sediments in the Gakkel ridge, part II
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702912070063
– year: 2008
  ident: CR7
– volume: 71
  start-page: 749
  year: 2015
  end-page: 760
  ident: CR11
  article-title: Mineral potential mapping with a restricted Boltzmann machine
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.08.012
– volume: 78
  start-page: 1464
  year: 1990
  end-page: 1480
  ident: CR45
  article-title: The self-organizing map
  publication-title: Proc. IEEE.
  doi: 10.1109/5.58325
– volume: 64
  start-page: 538
  year: 1969
  end-page: 550
  ident: CR47
  article-title: A simplified statistical treatment of geochemical data by graphical representation
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.64.5.538
– year: 1974
  ident: CR48
– volume: 13
  start-page: 47
  year: 1996
  end-page: 60
  ident: CR54
  article-title: The expectation-maximization algorithm
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543975
– volume: 55
  start-page: 125
  year: 2013
  end-page: 133
  ident: CR1
  article-title: Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2013.05.005
– year: 1983
  ident: CR40
– volume: 43
  start-page: 91
  year: 1992
  end-page: 109
  ident: CR5
  article-title: The fractal nature of geochemical landscapes
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(92)90001-O
– volume: 24
  start-page: 2693
  year: 2017
  end-page: 2704
  ident: CR31
  article-title: A method for extracting anomaly map of Au and As using combination of U-statistic and Euclidean distance methods in Susanvar district, Iran
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-017-3682-7
– ident: CR41
– volume: 17
  start-page: 261
  year: 2017
  end-page: 276
  ident: CR70
  article-title: Fractal/multifractal analysis in support of mineral exploration in the Duolong mineral district, Tibet, China
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/geochem2016-449
– ident: 11196_CR37
– volume-title: Geochemical Anomaly and Mineral Prospectivity Mapping in GIS
  year: 2008
  ident: 11196_CR7
– volume: 47
  start-page: 2973
  year: 2009
  ident: 11196_CR66
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2016214
– volume-title: Clustering by Means of Medoids
  year: 1987
  ident: 11196_CR43
– volume: 71
  start-page: 749
  year: 2015
  ident: 11196_CR11
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.08.012
– ident: 11196_CR33
– volume: 108
  start-page: 183
  year: 2011
  ident: 11196_CR53
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2011.01.006
– volume: 157
  start-page: 81
  year: 2015
  ident: 11196_CR34
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.06.001
– volume-title: Introduction to Exploration Geochemistry
  year: 1974
  ident: 11196_CR48
– volume: 17
  start-page: 183
  year: 2017
  ident: 11196_CR9
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/geochem2017-901
– ident: 11196_CR2
– volume: 346
  start-page: 1
  year: 2005
  ident: 11196_CR57
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2004.11.023
– volume: 43
  start-page: 91
  year: 1992
  ident: 11196_CR5
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(92)90001-O
– volume: 24
  start-page: 2693
  year: 2017
  ident: 11196_CR31
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-017-3682-7
– volume: 69
  start-page: 383
  year: 1974
  ident: 11196_CR38
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1974.10482962
– volume: 17
  start-page: 261
  year: 2017
  ident: 11196_CR70
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/geochem2016-449
– volume-title: The Cambridge Dictionary of Statistics
  year: 2002
  ident: 11196_CR24
– volume: 65
  start-page: 175
  year: 1999
  ident: 11196_CR13
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(99)00028-X
– volume-title: Computational Intelligence: an Introduction
  year: 2007
  ident: 11196_CR22
  doi: 10.1002/9780470512517
– volume-title: Inf. Theory, Inference Learn. Algorithms
  year: 2003
  ident: 11196_CR50
– volume: 63
  start-page: 22
  year: 2014
  ident: 11196_CR17
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2013.10.008
– volume: 95
  start-page: 283
  year: 1963
  ident: 11196_CR39
  publication-title: Soil Sci.
  doi: 10.1097/00010694-196304000-00016
– volume: 51
  start-page: 269
  year: 2013
  ident: 11196_CR4
  publication-title: Geochem. Int.
  doi: 10.1134/S001670291302002X
– volume: 20
  start-page: 837
  year: 2016
  ident: 11196_CR27
  publication-title: Geosci. J.
  doi: 10.1007/s12303-015-0064-8
– volume: 7
  start-page: 415
  year: 1975
  ident: 11196_CR36
  publication-title: J. Int. Assoc. Math. Geol.
  doi: 10.1007/BF02080498
– volume: 578
  start-page: 633
  year: 2017
  ident: 11196_CR56
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.010
– volume: 150
  start-page: 52
  year: 2015
  ident: 11196_CR19
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.12.015
– ident: 11196_CR51
– volume-title: Identifying Geochemical Anomalies
  year: 2006
  ident: 11196_CR52
– ident: 11196_CR23
– volume: 54
  start-page: 48
  year: 2016
  ident: 11196_CR42
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702916010055
– volume: 31
  start-page: 579
  year: 2005
  ident: 11196_CR25
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.11.013
– volume: 41
  start-page: 1
  year: 1991
  ident: 11196_CR62
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(91)90071-2
– volume: 24
  start-page: 1579
  year: 2009
  ident: 11196_CR16
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2009.04.022
– volume: 8
  start-page: 115
  year: 2008
  ident: 11196_CR64
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/07-156
– ident: 11196_CR69
– volume: 55
  start-page: 125
  year: 2013
  ident: 11196_CR1
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2013.05.005
– volume: 27
  start-page: 5
  year: 2018
  ident: 11196_CR76
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9357-0
– volume-title: Geochemical Prospecting for Mineral Deposits
  year: 1987
  ident: 11196_CR63
– ident: 11196_CR35
– volume: 32
  start-page: 155
  year: 2017
  ident: 11196_CR28
  publication-title: Carbonates and Evaporites
  doi: 10.1007/s13146-015-0282-1
– ident: 11196_CR41
– volume: 125
  start-page: 387
  year: 2016
  ident: 11196_CR26
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-016-0657-2
– ident: 11196_CR29
  doi: 10.1080/12269328.2017.1355268
– volume: 17
  start-page: 231
  year: 2017
  ident: 11196_CR12
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/geochem2016-024
– volume: 51
  start-page: 109
  year: 1994
  ident: 11196_CR14
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(94)90013-2
– volume: 64
  start-page: 538
  year: 1969
  ident: 11196_CR47
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.64.5.538
– volume: 13
  start-page: 47
  year: 1996
  ident: 11196_CR54
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543975
– ident: 11196_CR58
– volume: 198
  start-page: 71
  year: 2019
  ident: 11196_CR71
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2018.12.004
– volume: 4
  start-page: 29
  year: 2013
  ident: 11196_CR30
  publication-title: Int. J. Econ. Environ. Geol.
– volume: 50
  start-page: 760
  year: 2012
  ident: 11196_CR59
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702912070063
– volume: 56
  start-page: 183
  year: 1996
  ident: 11196_CR15
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(96)00035-0
– volume-title: Introduction to Statistical Analysis
  year: 1957
  ident: 11196_CR20
  doi: 10.2307/2332898
– volume: 32
  start-page: 355
  year: 1989
  ident: 11196_CR65
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(89)90076-9
– volume: 5
  start-page: 359
  year: 2005
  ident: 11196_CR55
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/03-051
– volume-title: Statistics and Data Analysis in Geology
  year: 1986
  ident: 11196_CR18
– volume: 46
  start-page: 409
  year: 2008
  ident: 11196_CR67
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702908040095
– volume: 26
  start-page: 457
  year: 2017
  ident: 11196_CR75
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9345-4
– volume-title: Clustering: Basic Concepts BT - Pattern Recognition
  year: 2009
  ident: 11196_CR68
– volume: 145
  start-page: 233
  year: 2014
  ident: 11196_CR3
  publication-title: J. Geochemical Explor.
  doi: 10.1016/j.gexplo.2014.07.005
– volume: 74
  start-page: 60
  year: 2015
  ident: 11196_CR8
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.10.004
– volume: 30
  start-page: 309
  year: 1988
  ident: 11196_CR46
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(88)90066-0
– volume: 28
  start-page: 129
  year: 1982
  ident: 11196_CR49
  publication-title: IEEE Trans. Inf. theory.
  doi: 10.1109/TIT.1982.1056489
– volume: 17
  start-page: 239
  year: 2017
  ident: 11196_CR74
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/geochem2016-013
– volume: 167
  start-page: 49
  year: 2016
  ident: 11196_CR44
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2016.05.003
– volume-title: Statistics and Data Analysis in Geochemical Prospecting: Handbook of Exploration Geochemistry
  year: 1983
  ident: 11196_CR40
– volume: 78
  start-page: 1464
  year: 1990
  ident: 11196_CR45
  publication-title: Proc. IEEE.
  doi: 10.1109/5.58325
– volume: 45
  start-page: 652
  year: 2007
  ident: 11196_CR73
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702907070038
– volume: 86
  start-page: 75
  year: 2016
  ident: 11196_CR72
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.10.006
– volume: 50
  start-page: 249
  year: 2018
  ident: 11196_CR10
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-017-9707-9
– volume: 104
  start-page: 27
  year: 2010
  ident: 11196_CR32
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2009.10.002
– volume: 47
  start-page: 41
  year: 2009
  ident: 11196_CR6
  publication-title: Geochem. Int.
  doi: 10.1134/S0016702909010030
– volume: 128
  start-page: 116
  year: 2017
  ident: 11196_CR60
  publication-title: J. African Earth Sci.
  doi: 10.1016/j.jafrearsci.2016.11.032
– volume-title: Pattern Classification
  year: 2012
  ident: 11196_CR21
– volume: 3
  start-page: 129
  year: 1974
  ident: 11196_CR61
  publication-title: J. Geochemical Explor.
  doi: 10.1016/0375-6742(74)90030-2
SSID ssj0044397
Score 2.2447085
Snippet In this paper, the capabilities of demotic unsupervised learning approaches were investigated to improve the procedure of geochemical anomaly identification....
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 472
SubjectTerms Anomalies
Automation
Clustering
Coefficient of variation
Comparative analysis
Copper
Copper industry
Data
Data analysis
Data processing
Earth and Environmental Science
Earth Sciences
Electronic data processing
Fractal models
Fractals
Geochemistry
Information theory
Learning algorithms
Machine learning
Mathematical analysis
Measurement methods
Methods
Mineralization
Multivariate analysis
Numerical analysis
Porphyry
Porphyry copper
Sediment samples
Self organizing maps
Separation
Signal to noise ratio
Statistical methods
Title Comparative Analysis of Geochemical Data Processing Methods for Allocation of Anomalies and Background
URI https://link.springer.com/article/10.1134/S0016702920040084
https://www.proquest.com/docview/2388033372
Volume 58
WOSCitedRecordID wos000525599100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1556-1968
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044397
  issn: 0016-7029
  databaseCode: RSV
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK4IQuIFFTAuoOmDCQlmkpnp5xwXFD0IIfERbpPqV0JcZw2zmvjv7ZrtkSBoAueufqSruh6prq8AXnmnsHZKFpW0qhDKYmFR-CIGGXnwssQ44Mx-0Ken5vy8Oct13P34231MSQ6aetl3RFBNb6V0Sd2VSPCMWIGHksBmKET_-GVUv4Is7FL9qoLIcyrz1iWuGaO_VfKN3Ohgco4f3-uwT2Aje5hsuhSJp_AgdJuw_m7o4PtrC-LRFd43GyFJ2DyyROEyegB7gwtkuYYgbctOhj7TPUseLpvOyP4RP2nWtJt_S6586Bl2nh2i-0p1Ip3fhs_Hbz8dvS9ys4UCuTaLQqJRtokmkscRrDJBaKlR-ioG623JPUZlRXKYbCkct7oUKGNwVYNChuj4M1jt5l14DixFOZVPRlCIMghRI7qq8rV1BhupQzQTKMdbb11GIqeGGLN2iEi4aG9c3wQO_kz5voTh-B_xPrGypSea1nWYKw3S6Qjsqp3qOnmpRjTlBPZGbrf57fZtTfg4nHNdT-D1yN2r4X9uu3Mn6l14VFPoPnwC2oPVxeWP8ALW3M_FRX_5chDp367D7Xg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC40KnpRowmuRtOHgKAMzEw_57hGYySbRTBKbkP1C8RkVjKrkH-frtkeg0YFPXf1g67uetBd3wew453C2ilZVNKqQiiLhUXhixhk5MHLEuOAMzvT87k5Pm7e5zrufvztPj5JDpZ6xTsiqKa3UrokdiU6eEZchxuCWHYoRf_waTS_gjzsyvyqgsTzU-Zvh_jJGf1qkq-8jQ4uZ-_efy32PtzNESabro7EOlwL3QO49XZg8D1_CHH3Eu-bjZAkbBFZknAZPYC9xiWyXEOQpmWHA890z1KEy6Yn5P9In9Rr2i1OUygfeoadZ6_QfaE6kc5vwMe9N0e7-0UmWyiQa7MsJBplm2giRRzBKhOElhqlr2Kw3pbcY1RWpIDJlsJxq0uBMgZXNShkiI5vwlq36MIjYCnLqXxygkKUQYga0VWVr60z2EgdoplAOe566zISORFinLRDRsJFe2X7JvDiR5evKxiOvwk_J1W2dEXTuA5zpUFaHYFdtVNdpyjViKacwNao7Tbf3b6tCR-Hc67rCbwctXvZ_MdpH_-T9Dbc3j86nLWzd_ODJ3CnpjR--BC0BWvLs2_hKdx035ef-7Nnw_G-ANgf8Fw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEB60avHFu3i06j4IghKaZK95PLYeFeuheKNvYfYGYptTmij4793J2Vi0KojPmd0dMrtzYXe-D-CRdwprp2RRSasKoSwWFoUvYpCRBy9LjCPO7J5eLs3BQbOfeU776bX7dCW57mkglKZu2D72MXOQCOrvrZQuiWmJNqER5-GCSIUMvel6--7j5IoFRdu1K1YFiedrzd9O8VNg-tU9n7knHcPP4up_K34NruTMk83XW-U6nAvdDbj0YmT2_XYT4s4pDjiboErYKrIk4TKqANvFAVnuLUgqsDcj_3TPUubL5ocUF8nONGrerY5Sih96hp1nz9B9pv6Rzt-CD4vn73deFpmEoUCuzVBINMo20UTKRIJVJggtNUpfxWC9LbnHqKxIiZQtheNWlwJlDK5qUMgQHb8NG92qC3eApeqn8ik4ClEGIWpEV1W-ts5gI3WIZgblZIHWZYRyIso4bMdKhYv2zO-bwZMfQ47X8Bx_E35MZm3p6KZ5HeYOhKQdgWC1c12n7NWIppzB1mT5Np_pvq0JN4dzrusZPJ0sffr5j8ve_Sfph7C5v7to914tX9-DyzVV9-M7oS3YGE6-hPtw0X0dPvUnD8ad_h06q_lA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Geochemical+Data+Processing+Methods+for+Allocation+of+Anomalies+and+Background&rft.jtitle=Geochemistry+international&rft.au=Esmaeiloghli%2C+S&rft.au=Tabatabaei%2C+S+H&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0016-7029&rft.eissn=1556-1968&rft.volume=58&rft.issue=4&rft.spage=472&rft.epage=485&rft_id=info:doi/10.1134%2FS0016702920040084&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7029&client=summon