Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde
Gold nanoparticles (AuNPs) supported on MgCuCr2O4-spinel are highly active and selective for the aerobic oxidation of ethanol to acetaldehyde (conversion 100%; yield ∼95%). The catalyst is stable for at least 500 h. The unprecedented catalytic performance is due to strong synergy between metallic Au...
Saved in:
| Published in: | Journal of the American Chemical Society Vol. 135; no. 38; p. 14032 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
25.09.2013
|
| ISSN: | 1520-5126, 1520-5126 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Gold nanoparticles (AuNPs) supported on MgCuCr2O4-spinel are highly active and selective for the aerobic oxidation of ethanol to acetaldehyde (conversion 100%; yield ∼95%). The catalyst is stable for at least 500 h. The unprecedented catalytic performance is due to strong synergy between metallic AuNPs and surface Cu(+) species. X-ray photoelectron spectroscopy shows that Cu(+) is already formed during catalyst preparation and becomes more dominant at the surface during ethanol oxidation. These Cu(+) species are stabilized at the surface of the ternary MgCuCr2O4-spinel support. Further kinetic measurements indicate that the Cu(+) species act as sites for O2 activation. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1520-5126 1520-5126 |
| DOI: | 10.1021/ja406820f |