New algorithms for solving nonlinear mixed integral equations

In this article, the existence and unique solution of the nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind is discussed. We also prove the solvability of the second kind of the NVFIE using the Banach fixed point theorem. Using quadrature method, the NVFIE leads to a system of...

Full description

Saved in:
Bibliographic Details
Published in:AIMS mathematics Vol. 8; no. 11; pp. 27488 - 27512
Main Authors: Matoog, R. T., Abdou, M. A., Abdel-Aty, M. A.
Format: Journal Article
Language:English
Published: AIMS Press 01.01.2023
Subjects:
ISSN:2473-6988, 2473-6988
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, the existence and unique solution of the nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind is discussed. We also prove the solvability of the second kind of the NVFIE using the Banach fixed point theorem. Using quadrature method, the NVFIE leads to a system of nonlinear Fredholm integral equations (NFIEs). The existence and unique numerical solution of this system is discussed. Then, the modified Taylor's method was applied to transform the system of NFIEs into nonlinear algebraic systems (NAS). The existence and uniqueness of the nonlinear algebraic system's solution are discussed using Banach's fixed point theorem. Also, the stability of the modified error is presented. Some numerical examples are performed to show the efficiency and simplicity of the presented method, and all results are obtained using Wolfram Mathematica 11.
AbstractList In this article, the existence and unique solution of the nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind is discussed. We also prove the solvability of the second kind of the NVFIE using the Banach fixed point theorem. Using quadrature method, the NVFIE leads to a system of nonlinear Fredholm integral equations (NFIEs). The existence and unique numerical solution of this system is discussed. Then, the modified Taylor's method was applied to transform the system of NFIEs into nonlinear algebraic systems (NAS). The existence and uniqueness of the nonlinear algebraic system's solution are discussed using Banach's fixed point theorem. Also, the stability of the modified error is presented. Some numerical examples are performed to show the efficiency and simplicity of the presented method, and all results are obtained using Wolfram Mathematica 11.
Author Abdel-Aty, M. A.
Matoog, R. T.
Abdou, M. A.
Author_xml – sequence: 1
  givenname: R. T.
  surname: Matoog
  fullname: Matoog, R. T.
  organization: Department of Mathematics, Faculty of Applied Sciences, Umm Al–Qura University, Makkah, Saudi Arabia
– sequence: 2
  givenname: M. A.
  surname: Abdou
  fullname: Abdou, M. A.
  organization: Department of Mathematics, Faculty of Education, Alexandria University, Alexandria 21511, Egypt
– sequence: 3
  givenname: M. A.
  surname: Abdel-Aty
  fullname: Abdel-Aty, M. A.
  organization: Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Egypt
BookMark eNptUMtOwzAQtFCRKKVH7vmBFL_ix4EDqnhUquACZ2sbO6mrNAbbvP6e0FIJIfayq9HOzO6colEfeofQOcEzphm_2EJezyimjHAsjtCYcslKoZUa_ZpP0DSlDcaYEsqp5GN0ee_eC-jaEH1eb1PRhFik0L35vi0Gh873DmKx9R_OFr7Pro3QFe7lFbIPfTpDxw10yU1_-gQ93Vw_zu_K5cPtYn61LIFJmUvdSL2SUBHCGNUrIawjoCpiGyuFw1pybV09FMdUSSqtAMVIRStV1QJDxSZosde1ATbmOfotxE8TwJsdEGJrIGZfd86smLRAZYOZaDjlXEMNslYDIIUkRA1abK9Vx5BSdI2pfd69kyP4zhBsvgM134GaQ6ADq_zDOlzx__4XsJ55XA
CitedBy_id crossref_primary_10_1016_j_cam_2025_116607
crossref_primary_10_3390_axioms13090621
crossref_primary_10_1007_s12190_024_02264_4
crossref_primary_10_1007_s43994_024_00179_1
crossref_primary_10_1155_admp_5558147
Cites_doi 10.1007/s44198-022-00085-2
10.1016/j.aej.2017.10.010
10.3906/mat-1508-50
10.3390/sym15071408
10.1155/2022/3398175
10.3934/math.20231132
10.1137/1021044
10.1016/j.amc.2015.05.125
10.1007/s40819-016-0157-8
10.1016/j.jcp.2019.06.045
10.1016/j.amc.2016.01.038
10.1016/j.apnum.2018.07.002
10.1007/s11784-018-0589-3
10.1016/j.heliyon.2022.e11827
10.1016/j.trmi.2017.09.006
10.5539/jmr.v9n5p18
10.1002/mma.4237
10.1007/s11784-018-0490-0
10.1016/j.cam.2016.06.028
10.1216/JIE-2019-31-4-535
10.1016/j.amc.2012.03.106
10.1016/j.amc.2013.12.014
10.1016/j.jcp.2014.03.064
10.3390/math9172172
10.1016/j.apm.2017.11.008
10.1016/j.amc.2015.08.110
10.1016/j.amc.2015.10.035
10.1016/j.amc.2015.12.019
10.1007/s43994-023-00025-w
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20231406
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 27512
ExternalDocumentID oai_doaj_org_article_b37da27f036f42449aca7c87f0767118
10_3934_math_20231406
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a377t-9f79b7a5113329b66de1a851dfd76e09749decccc4028727d6a83152585c60a53
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001080659300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:44:10 EDT 2025
Tue Nov 18 21:16:41 EST 2025
Sat Nov 29 06:04:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a377t-9f79b7a5113329b66de1a851dfd76e09749decccc4028727d6a83152585c60a53
OpenAccessLink https://doaj.org/article/b37da27f036f42449aca7c87f0767118
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_b37da27f036f42449aca7c87f0767118
crossref_citationtrail_10_3934_math_20231406
crossref_primary_10_3934_math_20231406
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20231406-28
key-10.3934/math.20231406-29
key-10.3934/math.20231406-26
key-10.3934/math.20231406-27
key-10.3934/math.20231406-24
key-10.3934/math.20231406-25
key-10.3934/math.20231406-22
key-10.3934/math.20231406-23
key-10.3934/math.20231406-20
key-10.3934/math.20231406-21
key-10.3934/math.20231406-6
key-10.3934/math.20231406-40
key-10.3934/math.20231406-7
key-10.3934/math.20231406-41
key-10.3934/math.20231406-8
key-10.3934/math.20231406-9
key-10.3934/math.20231406-2
key-10.3934/math.20231406-3
key-10.3934/math.20231406-4
key-10.3934/math.20231406-5
key-10.3934/math.20231406-1
key-10.3934/math.20231406-19
key-10.3934/math.20231406-17
key-10.3934/math.20231406-39
key-10.3934/math.20231406-18
key-10.3934/math.20231406-15
key-10.3934/math.20231406-37
key-10.3934/math.20231406-16
key-10.3934/math.20231406-38
key-10.3934/math.20231406-13
key-10.3934/math.20231406-35
key-10.3934/math.20231406-14
key-10.3934/math.20231406-36
key-10.3934/math.20231406-11
key-10.3934/math.20231406-33
key-10.3934/math.20231406-12
key-10.3934/math.20231406-34
key-10.3934/math.20231406-31
key-10.3934/math.20231406-10
key-10.3934/math.20231406-32
key-10.3934/math.20231406-30
References_xml – ident: key-10.3934/math.20231406-40
  doi: 10.1007/s44198-022-00085-2
– ident: key-10.3934/math.20231406-8
  doi: 10.1016/j.aej.2017.10.010
– ident: key-10.3934/math.20231406-15
  doi: 10.3906/mat-1508-50
– ident: key-10.3934/math.20231406-2
  doi: 10.3390/sym15071408
– ident: key-10.3934/math.20231406-3
  doi: 10.1155/2022/3398175
– ident: key-10.3934/math.20231406-41
  doi: 10.3934/math.20231132
– ident: key-10.3934/math.20231406-25
– ident: key-10.3934/math.20231406-36
  doi: 10.1137/1021044
– ident: key-10.3934/math.20231406-23
  doi: 10.1016/j.amc.2015.05.125
– ident: key-10.3934/math.20231406-35
  doi: 10.1007/s40819-016-0157-8
– ident: key-10.3934/math.20231406-11
  doi: 10.1016/j.jcp.2019.06.045
– ident: key-10.3934/math.20231406-21
  doi: 10.1016/j.amc.2016.01.038
– ident: key-10.3934/math.20231406-27
– ident: key-10.3934/math.20231406-31
– ident: key-10.3934/math.20231406-32
  doi: 10.1016/j.apnum.2018.07.002
– ident: key-10.3934/math.20231406-10
– ident: key-10.3934/math.20231406-28
  doi: 10.1007/s11784-018-0589-3
– ident: key-10.3934/math.20231406-17
  doi: 10.1016/j.heliyon.2022.e11827
– ident: key-10.3934/math.20231406-33
– ident: key-10.3934/math.20231406-4
– ident: key-10.3934/math.20231406-24
  doi: 10.1016/j.trmi.2017.09.006
– ident: key-10.3934/math.20231406-39
– ident: key-10.3934/math.20231406-5
  doi: 10.5539/jmr.v9n5p18
– ident: key-10.3934/math.20231406-26
  doi: 10.1002/mma.4237
– ident: key-10.3934/math.20231406-1
  doi: 10.1007/s11784-018-0490-0
– ident: key-10.3934/math.20231406-12
  doi: 10.1016/j.cam.2016.06.028
– ident: key-10.3934/math.20231406-18
  doi: 10.1216/JIE-2019-31-4-535
– ident: key-10.3934/math.20231406-14
– ident: key-10.3934/math.20231406-34
  doi: 10.1016/j.amc.2012.03.106
– ident: key-10.3934/math.20231406-37
  doi: 10.1016/j.amc.2013.12.014
– ident: key-10.3934/math.20231406-16
  doi: 10.1016/j.jcp.2014.03.064
– ident: key-10.3934/math.20231406-29
  doi: 10.3390/math9172172
– ident: key-10.3934/math.20231406-30
  doi: 10.1016/j.apm.2017.11.008
– ident: key-10.3934/math.20231406-20
  doi: 10.1016/j.amc.2015.08.110
– ident: key-10.3934/math.20231406-22
  doi: 10.1016/j.amc.2015.10.035
– ident: key-10.3934/math.20231406-13
  doi: 10.1016/j.amc.2015.12.019
– ident: key-10.3934/math.20231406-6
  doi: 10.1007/s43994-023-00025-w
– ident: key-10.3934/math.20231406-7
– ident: key-10.3934/math.20231406-9
– ident: key-10.3934/math.20231406-19
– ident: key-10.3934/math.20231406-38
SSID ssj0002124274
Score 2.2535014
Snippet In this article, the existence and unique solution of the nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind is discussed. We also prove...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 27488
SubjectTerms banach fixed point theorem
modified taylor's method
nonlinear algebraic system
nonlinear volterra-fredholm integral equation
picard's method
system of nonlinear fredholm integral equations
Title New algorithms for solving nonlinear mixed integral equations
URI https://doaj.org/article/b37da27f036f42449aca7c87f0767118
Volume 8
WOSCitedRecordID wos001080659300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx4QE1Efdn32CKgVSysGkLpFju1ApbZAUxATv527OK2yIBaWRLJOifWddfednXzH2KW1He-9MInrdUOCKyQkGrNekjkd8K6CCFnZbAJGIz0em4daqy_6JizKA0fgWpkAb7uQY6TN6acsY50Fp3EAFCA7puiLrKdWTFEMxoAssd6KoprCCNlC_kdnD0hnJHU3qiWhmlZ_mVQGu2ynYoP8Js5ij22E-T7bHq6lVIsDRsJK3E6fX7GKf5kVHEkmx_VC-wB8HnUu7ILPJl_B80r7YcrDe1TwLg7Z06D_eHefVD0PEisAlonJwWRgkQYJ0TWZUj50LLIin3tQoY3s33hE3Tms-zRyD6-sFtTDSPecatueOGINfHk4ZtwDtHMZAsjMS4XgK_Aix3zsZdBC5k12vQIhdZUgOPWlmKZYGBBmKWGWrjBrsqu1-VtUwvjN8JYQXRuRgHU5gG5NK7emf7n15D8ecsq2aFJxx-SMNZaLj3DONt3nclIsLsoVg9fhd_8Ha4PGow
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+algorithms+for+solving+nonlinear+mixed+integral+equations&rft.jtitle=AIMS+mathematics&rft.au=Matoog%2C+R.+T.&rft.au=Abdou%2C+M.+A.&rft.au=Abdel-Aty%2C+M.+A.&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=11&rft.spage=27488&rft.epage=27512&rft_id=info:doi/10.3934%2Fmath.20231406&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon