New algorithms for solving nonlinear mixed integral equations
In this article, the existence and unique solution of the nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind is discussed. We also prove the solvability of the second kind of the NVFIE using the Banach fixed point theorem. Using quadrature method, the NVFIE leads to a system of...
Uloženo v:
| Vydáno v: | AIMS mathematics Ročník 8; číslo 11; s. 27488 - 27512 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
AIMS Press
01.01.2023
|
| Témata: | |
| ISSN: | 2473-6988, 2473-6988 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, the existence and unique solution of the nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind is discussed. We also prove the solvability of the second kind of the NVFIE using the Banach fixed point theorem. Using quadrature method, the NVFIE leads to a system of nonlinear Fredholm integral equations (NFIEs). The existence and unique numerical solution of this system is discussed. Then, the modified Taylor's method was applied to transform the system of NFIEs into nonlinear algebraic systems (NAS). The existence and uniqueness of the nonlinear algebraic system's solution are discussed using Banach's fixed point theorem. Also, the stability of the modified error is presented. Some numerical examples are performed to show the efficiency and simplicity of the presented method, and all results are obtained using Wolfram Mathematica 11. |
|---|---|
| AbstractList | In this article, the existence and unique solution of the nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind is discussed. We also prove the solvability of the second kind of the NVFIE using the Banach fixed point theorem. Using quadrature method, the NVFIE leads to a system of nonlinear Fredholm integral equations (NFIEs). The existence and unique numerical solution of this system is discussed. Then, the modified Taylor's method was applied to transform the system of NFIEs into nonlinear algebraic systems (NAS). The existence and uniqueness of the nonlinear algebraic system's solution are discussed using Banach's fixed point theorem. Also, the stability of the modified error is presented. Some numerical examples are performed to show the efficiency and simplicity of the presented method, and all results are obtained using Wolfram Mathematica 11. |
| Author | Abdel-Aty, M. A. Matoog, R. T. Abdou, M. A. |
| Author_xml | – sequence: 1 givenname: R. T. surname: Matoog fullname: Matoog, R. T. organization: Department of Mathematics, Faculty of Applied Sciences, Umm Al–Qura University, Makkah, Saudi Arabia – sequence: 2 givenname: M. A. surname: Abdou fullname: Abdou, M. A. organization: Department of Mathematics, Faculty of Education, Alexandria University, Alexandria 21511, Egypt – sequence: 3 givenname: M. A. surname: Abdel-Aty fullname: Abdel-Aty, M. A. organization: Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Egypt |
| BookMark | eNptUMtOwzAQtFCRKKVH7vmBFL_ix4EDqnhUquACZ2sbO6mrNAbbvP6e0FIJIfayq9HOzO6colEfeofQOcEzphm_2EJezyimjHAsjtCYcslKoZUa_ZpP0DSlDcaYEsqp5GN0ee_eC-jaEH1eb1PRhFik0L35vi0Gh873DmKx9R_OFr7Pro3QFe7lFbIPfTpDxw10yU1_-gQ93Vw_zu_K5cPtYn61LIFJmUvdSL2SUBHCGNUrIawjoCpiGyuFw1pybV09FMdUSSqtAMVIRStV1QJDxSZosde1ATbmOfotxE8TwJsdEGJrIGZfd86smLRAZYOZaDjlXEMNslYDIIUkRA1abK9Vx5BSdI2pfd69kyP4zhBsvgM134GaQ6ADq_zDOlzx__4XsJ55XA |
| CitedBy_id | crossref_primary_10_1016_j_cam_2025_116607 crossref_primary_10_3390_axioms13090621 crossref_primary_10_1007_s12190_024_02264_4 crossref_primary_10_1007_s43994_024_00179_1 crossref_primary_10_1155_admp_5558147 |
| Cites_doi | 10.1007/s44198-022-00085-2 10.1016/j.aej.2017.10.010 10.3906/mat-1508-50 10.3390/sym15071408 10.1155/2022/3398175 10.3934/math.20231132 10.1137/1021044 10.1016/j.amc.2015.05.125 10.1007/s40819-016-0157-8 10.1016/j.jcp.2019.06.045 10.1016/j.amc.2016.01.038 10.1016/j.apnum.2018.07.002 10.1007/s11784-018-0589-3 10.1016/j.heliyon.2022.e11827 10.1016/j.trmi.2017.09.006 10.5539/jmr.v9n5p18 10.1002/mma.4237 10.1007/s11784-018-0490-0 10.1016/j.cam.2016.06.028 10.1216/JIE-2019-31-4-535 10.1016/j.amc.2012.03.106 10.1016/j.amc.2013.12.014 10.1016/j.jcp.2014.03.064 10.3390/math9172172 10.1016/j.apm.2017.11.008 10.1016/j.amc.2015.08.110 10.1016/j.amc.2015.10.035 10.1016/j.amc.2015.12.019 10.1007/s43994-023-00025-w |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.20231406 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 27512 |
| ExternalDocumentID | oai_doaj_org_article_b37da27f036f42449aca7c87f0767118 10_3934_math_20231406 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a377t-9f79b7a5113329b66de1a851dfd76e09749decccc4028727d6a83152585c60a53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001080659300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:44:10 EDT 2025 Tue Nov 18 21:16:41 EST 2025 Sat Nov 29 06:04:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a377t-9f79b7a5113329b66de1a851dfd76e09749decccc4028727d6a83152585c60a53 |
| OpenAccessLink | https://doaj.org/article/b37da27f036f42449aca7c87f0767118 |
| PageCount | 25 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b37da27f036f42449aca7c87f0767118 crossref_citationtrail_10_3934_math_20231406 crossref_primary_10_3934_math_20231406 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.20231406-28 key-10.3934/math.20231406-29 key-10.3934/math.20231406-26 key-10.3934/math.20231406-27 key-10.3934/math.20231406-24 key-10.3934/math.20231406-25 key-10.3934/math.20231406-22 key-10.3934/math.20231406-23 key-10.3934/math.20231406-20 key-10.3934/math.20231406-21 key-10.3934/math.20231406-6 key-10.3934/math.20231406-40 key-10.3934/math.20231406-7 key-10.3934/math.20231406-41 key-10.3934/math.20231406-8 key-10.3934/math.20231406-9 key-10.3934/math.20231406-2 key-10.3934/math.20231406-3 key-10.3934/math.20231406-4 key-10.3934/math.20231406-5 key-10.3934/math.20231406-1 key-10.3934/math.20231406-19 key-10.3934/math.20231406-17 key-10.3934/math.20231406-39 key-10.3934/math.20231406-18 key-10.3934/math.20231406-15 key-10.3934/math.20231406-37 key-10.3934/math.20231406-16 key-10.3934/math.20231406-38 key-10.3934/math.20231406-13 key-10.3934/math.20231406-35 key-10.3934/math.20231406-14 key-10.3934/math.20231406-36 key-10.3934/math.20231406-11 key-10.3934/math.20231406-33 key-10.3934/math.20231406-12 key-10.3934/math.20231406-34 key-10.3934/math.20231406-31 key-10.3934/math.20231406-10 key-10.3934/math.20231406-32 key-10.3934/math.20231406-30 |
| References_xml | – ident: key-10.3934/math.20231406-40 doi: 10.1007/s44198-022-00085-2 – ident: key-10.3934/math.20231406-8 doi: 10.1016/j.aej.2017.10.010 – ident: key-10.3934/math.20231406-15 doi: 10.3906/mat-1508-50 – ident: key-10.3934/math.20231406-2 doi: 10.3390/sym15071408 – ident: key-10.3934/math.20231406-3 doi: 10.1155/2022/3398175 – ident: key-10.3934/math.20231406-41 doi: 10.3934/math.20231132 – ident: key-10.3934/math.20231406-25 – ident: key-10.3934/math.20231406-36 doi: 10.1137/1021044 – ident: key-10.3934/math.20231406-23 doi: 10.1016/j.amc.2015.05.125 – ident: key-10.3934/math.20231406-35 doi: 10.1007/s40819-016-0157-8 – ident: key-10.3934/math.20231406-11 doi: 10.1016/j.jcp.2019.06.045 – ident: key-10.3934/math.20231406-21 doi: 10.1016/j.amc.2016.01.038 – ident: key-10.3934/math.20231406-27 – ident: key-10.3934/math.20231406-31 – ident: key-10.3934/math.20231406-32 doi: 10.1016/j.apnum.2018.07.002 – ident: key-10.3934/math.20231406-10 – ident: key-10.3934/math.20231406-28 doi: 10.1007/s11784-018-0589-3 – ident: key-10.3934/math.20231406-17 doi: 10.1016/j.heliyon.2022.e11827 – ident: key-10.3934/math.20231406-33 – ident: key-10.3934/math.20231406-4 – ident: key-10.3934/math.20231406-24 doi: 10.1016/j.trmi.2017.09.006 – ident: key-10.3934/math.20231406-39 – ident: key-10.3934/math.20231406-5 doi: 10.5539/jmr.v9n5p18 – ident: key-10.3934/math.20231406-26 doi: 10.1002/mma.4237 – ident: key-10.3934/math.20231406-1 doi: 10.1007/s11784-018-0490-0 – ident: key-10.3934/math.20231406-12 doi: 10.1016/j.cam.2016.06.028 – ident: key-10.3934/math.20231406-18 doi: 10.1216/JIE-2019-31-4-535 – ident: key-10.3934/math.20231406-14 – ident: key-10.3934/math.20231406-34 doi: 10.1016/j.amc.2012.03.106 – ident: key-10.3934/math.20231406-37 doi: 10.1016/j.amc.2013.12.014 – ident: key-10.3934/math.20231406-16 doi: 10.1016/j.jcp.2014.03.064 – ident: key-10.3934/math.20231406-29 doi: 10.3390/math9172172 – ident: key-10.3934/math.20231406-30 doi: 10.1016/j.apm.2017.11.008 – ident: key-10.3934/math.20231406-20 doi: 10.1016/j.amc.2015.08.110 – ident: key-10.3934/math.20231406-22 doi: 10.1016/j.amc.2015.10.035 – ident: key-10.3934/math.20231406-13 doi: 10.1016/j.amc.2015.12.019 – ident: key-10.3934/math.20231406-6 doi: 10.1007/s43994-023-00025-w – ident: key-10.3934/math.20231406-7 – ident: key-10.3934/math.20231406-9 – ident: key-10.3934/math.20231406-19 – ident: key-10.3934/math.20231406-38 |
| SSID | ssj0002124274 |
| Score | 2.2535014 |
| Snippet | In this article, the existence and unique solution of the nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind is discussed. We also prove... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 27488 |
| SubjectTerms | banach fixed point theorem modified taylor's method nonlinear algebraic system nonlinear volterra-fredholm integral equation picard's method system of nonlinear fredholm integral equations |
| Title | New algorithms for solving nonlinear mixed integral equations |
| URI | https://doaj.org/article/b37da27f036f42449aca7c87f0767118 |
| Volume | 8 |
| WOSCitedRecordID | wos001080659300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx4QE1EfdvwYAbVioBUDoG7R-RGo1BZoCmLit3OO0yoLYmHJYJ0S67vT-btL8h0h52Cc9ErxBMNFJVxwlSiRYtUqAcPFqNyU43ye7uRwqEYjfV8b9RW-CYvywBG4lmHSQVfmmGnz8FOWBgvSKlyQQiI7DtkXWU-tmAo5GBMyx3orimoyzXgL-V9494B0hofpRrVDqKbVXx4q_W2yVbFBehV3sUPW_GyXbA5WUqrFHgnCShQmz69Yxb9MC4okk2K8hD4AnUWdC5jT6fjLO1ppP0yof48K3sU-eez3Hm5uk2rmQQJMykWic6mNBKRBjHW1EcL5DiArcrmTwreR_WuHqFuLdZ9C7uEEKBZmGKnUijak7IA08OH-kFDITWqgY3y3q7kBJIKubDspi3jyFJrkcglCZitB8DCXYpJhYRAwywJm2RKzJrlYmb9FJYzfDK8DoiujIGBdLqBbs8qt2V9uPfqPmxyTjbCp2DE5IY3F_MOfknX7uRgX87MyYvA6-O79AEGUxVU |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+algorithms+for+solving+nonlinear+mixed+integral+equations&rft.jtitle=AIMS+mathematics&rft.au=Matoog%2C+R.+T.&rft.au=Abdou%2C+M.+A.&rft.au=Abdel-Aty%2C+M.+A.&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=11&rft.spage=27488&rft.epage=27512&rft_id=info:doi/10.3934%2Fmath.20231406&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231406 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |