Air Stable, Photosensitive, Phase Pure Iron Pyrite Nanocrystal Thin Films for Photovoltaic Application
Iron pyrite (FeS2) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS2 film surfaces that lead to low open circuit voltages. We repor...
Gespeichert in:
| Veröffentlicht in: | Nano letters Jg. 11; H. 11; S. 4953 - 4957 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Washington, DC
American Chemical Society
09.11.2011
|
| Schlagworte: | |
| ISSN: | 1530-6984, 1530-6992, 1530-6992 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Iron pyrite (FeS2) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS2 film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS2 nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS2 NCs synthesized without TOPO. A high carrier mobility of 80 cm2/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS2 NC surfaces, efficiently inhibiting surface decomposition. |
|---|---|
| AbstractList | Iron pyrite (FeS(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS(2) film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS(2) nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS(2) NCs synthesized without TOPO. A high carrier mobility of 80 cm(2)/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS(2) NC surfaces, efficiently inhibiting surface decomposition.Iron pyrite (FeS(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS(2) film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS(2) nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS(2) NCs synthesized without TOPO. A high carrier mobility of 80 cm(2)/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS(2) NC surfaces, efficiently inhibiting surface decomposition. Iron pyrite (FeS sub(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS sub(2) film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS sub(2) nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS sub(2) NCs synthesized without TOPO. A high carrier mobility of 80 cm super(2)/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS sub(2) NC surfaces, efficiently inhibiting surface decomposition. Iron pyrite (FeS2) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS2 film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS2 nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS2 NCs synthesized without TOPO. A high carrier mobility of 80 cm2/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS2 NC surfaces, efficiently inhibiting surface decomposition. Iron pyrite (FeS(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS(2) film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS(2) nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS(2) NCs synthesized without TOPO. A high carrier mobility of 80 cm(2)/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS(2) NC surfaces, efficiently inhibiting surface decomposition. |
| Author | Huang, Jinsong Bi, Yu Yuan, Yongbo Darveau, Scott A Exstrom, Christopher L |
| AuthorAffiliation | University of Nebraska at Kearney Chinese Academy of Sciences University of NebraskaLincoln |
| AuthorAffiliation_xml | – name: Chinese Academy of Sciences – name: University of NebraskaLincoln – name: University of Nebraska at Kearney |
| Author_xml | – sequence: 1 givenname: Yu surname: Bi fullname: Bi, Yu – sequence: 2 givenname: Yongbo surname: Yuan fullname: Yuan, Yongbo – sequence: 3 givenname: Christopher L surname: Exstrom fullname: Exstrom, Christopher L – sequence: 4 givenname: Scott A surname: Darveau fullname: Darveau, Scott A – sequence: 5 givenname: Jinsong surname: Huang fullname: Huang, Jinsong email: jhuang2@unl.edu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24741064$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21992489$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90V1LIzEUBuAgih_VC_-A5GZxBatJJs00l0VWVxAtqNfD6WkGI2nSTTJC_fVGW7sg4tVJ4MlLeM8e2fTBG0IOOTvjTPBz7wQTmonXDbLLBxXrK63F5vo8lDtkL6VnxpiuBmyb7AhegBzqXdKObKT3GSbOnNLxU8ghGZ9sti8fd0iGjrto6HUMno4X0WZDb8EHjIuUwdGHJ-vppXWzRNsQlwkvwWWwSEfzubMI2Qa_T7ZacMkcrGaPPF7-ebj427-5u7q-GN30oarr3OdGcdHWiBPNtDATFC1wYaQCrhC1LGqocCBVNa0En3KUxRnWygqVEqiqHjle5s5j-NeZlJuZTWicA29ClxrNKi4lL6NHfv8oea0EK_0JWejRinaTmZk282hnEBfNZ4sF_FoBSAiujeDRpv9O1pIz9R50snQYQ0rRtGvCWfO-yWa9yWLPv1i0-aPLHMG6b1-sfgGYmufQRV-a_sa9AbXLqrE |
| CitedBy_id | crossref_primary_10_1016_j_matchemphys_2014_09_013 crossref_primary_10_1016_j_biomaterials_2014_10_052 crossref_primary_10_1016_j_jcrysgro_2019_05_029 crossref_primary_10_1088_0953_8984_25_4_045004 crossref_primary_10_1002_smll_201401102 crossref_primary_10_1016_j_mssp_2015_06_083 crossref_primary_10_1021_ja311974n crossref_primary_10_1039_C7CP04413E crossref_primary_10_1063_1_4751358 crossref_primary_10_1016_j_jcis_2016_02_055 crossref_primary_10_1016_j_mssp_2014_12_073 crossref_primary_10_1016_j_jallcom_2014_11_217 crossref_primary_10_1016_j_jallcom_2024_175749 crossref_primary_10_1116_1_3699022 crossref_primary_10_1021_ja509142w crossref_primary_10_1002_chem_201702687 crossref_primary_10_1016_j_ultsonch_2015_09_012 crossref_primary_10_1002_ange_201300401 crossref_primary_10_1016_j_matlet_2014_04_060 crossref_primary_10_1016_j_renene_2015_02_026 crossref_primary_10_1088_0957_4484_27_16_165702 crossref_primary_10_1557_s43581_024_00125_y crossref_primary_10_1016_j_jtice_2016_04_036 crossref_primary_10_1021_ja307412e crossref_primary_10_1016_j_matlet_2014_06_106 crossref_primary_10_1007_s11814_018_0060_6 crossref_primary_10_1021_ja3033313 crossref_primary_10_1088_0957_4484_27_29_295702 crossref_primary_10_2138_am_2023_9187 crossref_primary_10_1016_j_jhazmat_2020_123930 crossref_primary_10_1016_j_ces_2024_120664 crossref_primary_10_1007_s10967_015_4269_0 crossref_primary_10_1007_s11468_022_01630_x crossref_primary_10_1016_j_chemgeo_2022_121139 crossref_primary_10_1016_j_mssp_2023_107608 crossref_primary_10_1016_j_susc_2013_08_014 crossref_primary_10_1088_1674_1056_22_10_107503 crossref_primary_10_1016_j_matlet_2015_08_112 crossref_primary_10_1021_jacs_1c12620 crossref_primary_10_1016_j_matpr_2020_04_173 crossref_primary_10_1002_anie_202502322 crossref_primary_10_1007_s00339_021_04369_0 crossref_primary_10_3389_fchem_2019_00297 crossref_primary_10_1016_j_jallcom_2015_06_168 crossref_primary_10_1002_smll_201302333 crossref_primary_10_1016_j_vacuum_2018_04_050 crossref_primary_10_1116_1_4828818 crossref_primary_10_1002_ente_202401155 crossref_primary_10_1016_j_matlet_2014_12_003 crossref_primary_10_1002_ente_201700638 crossref_primary_10_1016_j_matchemphys_2014_09_024 crossref_primary_10_1016_j_matlet_2017_05_027 crossref_primary_10_1002_adma_201200753 crossref_primary_10_1149_2_1381712jes crossref_primary_10_1002_adma_201602222 crossref_primary_10_1002_ange_202502322 crossref_primary_10_1002_adom_201701241 crossref_primary_10_1016_j_tsf_2016_07_016 crossref_primary_10_1016_j_tsf_2016_08_055 crossref_primary_10_1016_j_jcrysgro_2016_12_108 crossref_primary_10_1002_anie_201300401 crossref_primary_10_1016_j_solmat_2013_05_014 crossref_primary_10_1016_j_tsf_2013_06_091 crossref_primary_10_1002_pssa_202400376 crossref_primary_10_1016_j_tsf_2014_04_033 crossref_primary_10_3390_inorganics7060075 crossref_primary_10_1016_j_jece_2019_102906 crossref_primary_10_1007_s40843_019_1255_4 crossref_primary_10_1021_jacs_3c05653 crossref_primary_10_1016_j_jallcom_2014_04_060 crossref_primary_10_1007_s10854_018_9259_x crossref_primary_10_1016_j_ceramint_2021_04_215 crossref_primary_10_1016_j_jmst_2014_01_005 crossref_primary_10_3390_ma15196946 crossref_primary_10_1016_j_mssp_2019_104775 crossref_primary_10_1088_1361_6528_abe1f2 crossref_primary_10_1007_s11696_022_02280_3 crossref_primary_10_1016_j_tsf_2016_01_002 crossref_primary_10_1186_1556_276X_9_549 crossref_primary_10_1002_slct_201702786 crossref_primary_10_1007_s11664_019_07005_z crossref_primary_10_1016_j_jallcom_2016_03_018 crossref_primary_10_1002_ejic_202000039 crossref_primary_10_1016_j_physe_2019_113881 crossref_primary_10_3389_fchem_2020_00818 crossref_primary_10_1002_slct_201700087 crossref_primary_10_1016_j_matlet_2013_01_101 crossref_primary_10_1016_j_matpr_2023_08_260 crossref_primary_10_1016_j_ultsonch_2016_04_002 crossref_primary_10_1007_s10854_013_1313_0 crossref_primary_10_1016_j_mattod_2019_11_007 crossref_primary_10_1002_slct_201800405 crossref_primary_10_1016_j_mattod_2019_11_008 crossref_primary_10_3762_bjnano_10_216 crossref_primary_10_1016_j_mssp_2022_107273 crossref_primary_10_1039_C4CP03453H crossref_primary_10_1039_C6CP05913A crossref_primary_10_1002_adma_201806593 crossref_primary_10_1016_j_solidstatesciences_2021_106722 crossref_primary_10_1039_C7FD00092H crossref_primary_10_1016_j_apsusc_2014_11_157 crossref_primary_10_1016_j_cplett_2016_07_046 crossref_primary_10_1039_C5CP03143E crossref_primary_10_1039_c2cs35310e crossref_primary_10_1007_s10853_016_0538_8 crossref_primary_10_1021_ja512979y crossref_primary_10_1016_j_jallcom_2020_157977 crossref_primary_10_1039_C5CS00033E crossref_primary_10_1016_j_mseb_2018_11_003 crossref_primary_10_1016_j_apenergy_2016_04_042 crossref_primary_10_1016_j_matlet_2014_02_071 crossref_primary_10_1007_s10876_019_01708_3 crossref_primary_10_1039_D0NR08078K crossref_primary_10_1002_adma_201905653 crossref_primary_10_1016_j_tsf_2014_10_072 crossref_primary_10_1016_j_solmat_2015_03_032 crossref_primary_10_1557_s43578_022_00509_1 crossref_primary_10_1016_j_jiec_2017_01_035 crossref_primary_10_1039_c2cc38218k crossref_primary_10_1016_j_jenvman_2020_111555 crossref_primary_10_1007_s00339_022_05975_2 crossref_primary_10_1016_j_est_2024_112781 crossref_primary_10_1016_j_electacta_2016_06_067 crossref_primary_10_1038_srep20397 crossref_primary_10_1007_s12034_022_02881_4 crossref_primary_10_1016_j_electacta_2014_02_048 |
| Cites_doi | 10.1016/0927-0248(93)90095-K 10.1180/0026461046830196 10.1021/nn800336b 10.1002/aenm.201100351 10.1021/nl0259481 10.1088/0957-4484/20/40/405207 10.1149/1.2114168 10.1021/ja1096368 10.1364/AO.32.000935 10.1557/S088376940003832X 10.1016/0022-0248(68)90067-5 10.1021/nl010047y 10.1039/a701068k 10.1016/j.surfrep.2008.09.002 10.1021/cm901273v 10.1021/nl070001q 10.1063/1.351925 10.1016/j.materresbull.2008.04.013 10.1007/BF00544193 10.1016/0165-1633(90)90001-H 10.1063/1.104233 10.1021/es8019534 10.1016/S0927-0248(01)00053-8 10.1016/0038-1098(90)90455-K 10.1016/0165-1633(89)90044-0 10.1143/JPSJ.31.1277 10.1016/S0022-0248(98)01074-4 10.1021/jp9810217 10.1039/JR9600002199 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 American Chemical Society 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1021/nl202902z |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences Physics |
| EISSN | 1530-6992 |
| EndPage | 4957 |
| ExternalDocumentID | 21992489 24741064 10_1021_nl202902z c73449471 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AFFNX IQODW AAYOK CGR CUY CVF ECM EIF NPM 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-a377t-1e612f7ccb9092ebc2fa12e46a16cc94a3786c5463d321d1c4909e0f43c662c63 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 209 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296674700078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-6984 1530-6992 |
| IngestDate | Fri Sep 05 12:30:20 EDT 2025 Thu Sep 04 17:06:31 EDT 2025 Thu Jan 02 22:11:56 EST 2025 Mon Jul 21 09:14:40 EDT 2025 Sat Nov 29 01:49:07 EST 2025 Tue Nov 18 22:36:20 EST 2025 Thu Aug 27 13:42:10 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | photoconductive iron pyrite Nanocrystals photovoltaic Cubic lattices Iron Iron sulfide Photovoltaic cell Thin films Pyrite Silicon Carrier mobility Photoconductivity Sulfur Nanostructured materials TOPO Nanocrystal |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a377t-1e612f7ccb9092ebc2fa12e46a16cc94a3786c5463d321d1c4909e0f43c662c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 21992489 |
| PQID | 1762053024 |
| PQPubID | 23500 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_903144190 proquest_miscellaneous_1762053024 pubmed_primary_21992489 pascalfrancis_primary_24741064 crossref_primary_10_1021_nl202902z crossref_citationtrail_10_1021_nl202902z acs_journals_10_1021_nl202902z |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-11-09 |
| PublicationDateYYYYMMDD | 2011-11-09 |
| PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington, DC |
| PublicationPlace_xml | – name: Washington, DC – name: United States |
| PublicationTitle | Nano letters |
| PublicationTitleAlternate | Nano Lett |
| PublicationYear | 2011 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | Murphy R. (ref9/cit9) 2009; 64 Cotton F. A. (ref31/cit31) 1960 Ferrer I. J. (ref19/cit19) 1990; 74 Alivisatos A. P. (ref27/cit27) 2001; 1 Bausch S. (ref11/cit11) 1990; 57 Dasbach R. (ref8/cit8) 1993; 18 Boughriet A. (ref29/cit29) 1997; 93 Yu L. (ref13/cit13) 2011; 1 Lalvani S. B. (ref21/cit21) 1990; 25 Ennaoui A. (ref6/cit6) 1985; 132 Ennaoui A. (ref4/cit4) 1993; 29 Turcotte S. B. (ref18/cit18) 1993; 32 Alivisatos A. P. (ref25/cit25) 2003; 3 Lin Y.-Y. (ref15/cit15) 2009; 20 Puthussery J. (ref12/cit12) 2011; 133 Breier J. A. (ref16/cit16) 2009 Buker K. (ref5/cit5) 1992; 72 Wadia C. (ref2/cit2) 2009; 21 Golan Y. (ref23/cit23) 2007; 7 Fukui T. (ref32/cit32) 1971; 31 Oertel J. (ref14/cit14) 1999; 198 Li X. F. (ref26/cit26) 2009; 44 Bouchard R. J. (ref10/cit10) 1962; 2 Wadia C. (ref1/cit1) 2009; 43 Hyun B. R. (ref24/cit24) 2008; 2 Hines M. A. (ref30/cit30) 1998; 102 Altermatt P. P. (ref3/cit3) 2002; 71 Smestad G. (ref22/cit22) 1990; 20 Smestad G. (ref20/cit20) 1989; 18 ref7/cit7 Kleppe A. K. (ref17/cit17) 2004; 68 Ellmer K. (ref28/cit28) 2000 |
| References_xml | – volume: 29 start-page: 289 issue: 4 year: 1993 ident: ref4/cit4 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(93)90095-K – volume: 68 start-page: 433 issue: 3 year: 2004 ident: ref17/cit17 publication-title: Mineral. Mag. doi: 10.1180/0026461046830196 – year: 2000 ident: ref28/cit28 publication-title: Proc. Workshop Quantum Sol. Energy Convers. (QUANTSOL 2000), 12th – volume: 2 start-page: 2206 issue: 11 year: 2008 ident: ref24/cit24 publication-title: ACS Nano doi: 10.1021/nn800336b – volume: 1 start-page: 748 year: 2011 ident: ref13/cit13 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100351 – volume: 3 start-page: 199 issue: 2 year: 2003 ident: ref25/cit25 publication-title: Nano Lett. doi: 10.1021/nl0259481 – volume: 20 start-page: 405207 year: 2009 ident: ref15/cit15 publication-title: Nanotechnology doi: 10.1088/0957-4484/20/40/405207 – volume: 132 start-page: 1579 year: 1985 ident: ref6/cit6 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2114168 – volume: 133 start-page: 716 year: 2011 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1096368 – volume: 32 start-page: 935 year: 1993 ident: ref18/cit18 publication-title: Appl. Opt. doi: 10.1364/AO.32.000935 – volume: 18 start-page: 56 issue: 10 year: 1993 ident: ref8/cit8 publication-title: MRS Bull. doi: 10.1557/S088376940003832X – volume: 2 start-page: 40 issue: 1 year: 1962 ident: ref10/cit10 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(68)90067-5 – volume: 1 start-page: 349 issue: 7 year: 2001 ident: ref27/cit27 publication-title: Nano Lett. doi: 10.1021/nl010047y – volume: 93 start-page: 3209 issue: 17 year: 1997 ident: ref29/cit29 publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/a701068k – volume: 64 start-page: 1 issue: 1 year: 2009 ident: ref9/cit9 publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2008.09.002 – volume: 21 start-page: 2568 issue: 13 year: 2009 ident: ref2/cit2 publication-title: Chem. Mater. doi: 10.1021/cm901273v – start-page: 10 year: 2009 ident: ref16/cit16 publication-title: Geochem., Geophys., Geosyst. – volume: 7 start-page: 1459 issue: 6 year: 2007 ident: ref23/cit23 publication-title: Nano Lett. doi: 10.1021/nl070001q – volume: 72 start-page: 5721 issue: 12 year: 1992 ident: ref5/cit5 publication-title: J. Appl. Phys. doi: 10.1063/1.351925 – volume: 44 start-page: 462 issue: 2 year: 2009 ident: ref26/cit26 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2008.04.013 – volume: 25 start-page: 107 issue: 1 year: 1990 ident: ref21/cit21 publication-title: J. Mater. Sci. doi: 10.1007/BF00544193 – volume: 20 start-page: 149 issue: 3 year: 1990 ident: ref22/cit22 publication-title: Sol. Energy Mater. doi: 10.1016/0165-1633(90)90001-H – volume: 57 start-page: 25 issue: 1 year: 1990 ident: ref11/cit11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.104233 – volume: 43 start-page: 2072 issue: 6 year: 2009 ident: ref1/cit1 publication-title: Environ. Sci. Technol. doi: 10.1021/es8019534 – volume: 71 start-page: 181 issue: 2 year: 2002 ident: ref3/cit3 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(01)00053-8 – volume: 74 start-page: 913 issue: 9 year: 1990 ident: ref19/cit19 publication-title: Solid State Commun. doi: 10.1016/0038-1098(90)90455-K – volume: 18 start-page: 299 issue: 5 year: 1989 ident: ref20/cit20 publication-title: Sol. Energy Mater. doi: 10.1016/0165-1633(89)90044-0 – ident: ref7/cit7 – volume: 31 start-page: 1277 issue: 4 year: 1971 ident: ref32/cit32 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.31.1277 – volume: 198 start-page: 1205 year: 1999 ident: ref14/cit14 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(98)01074-4 – volume: 102 start-page: 3655 issue: 19 year: 1998 ident: ref30/cit30 publication-title: J. Phys. Chem. B doi: 10.1021/jp9810217 – start-page: 2199 year: 1960 ident: ref31/cit31 publication-title: J. Chem. Soc. doi: 10.1039/JR9600002199 |
| SSID | ssj0009350 |
| Score | 2.5028 |
| Snippet | Iron pyrite (FeS2) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however... Iron pyrite (FeS(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however... Iron pyrite (FeS sub(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones;... |
| SourceID | proquest pubmed pascalfrancis crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4953 |
| SubjectTerms | Air Applied sciences Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Crystallization - methods Decomposition Devices Electric Conductivity Electronics Exact sciences and technology Iron Iron - chemistry Iron - radiation effects Light Materials Materials science Materials Testing Membranes, Artificial Molecular electronics, nanoelectronics Nanocrystalline materials Nanocrystals Nanoscale materials and structures: fabrication and characterization Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Nanostructure Nanostructures - chemistry Nanostructures - radiation effects Open circuit voltage Photovoltaic cells Physics Pyrite Radiation Dosage Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solar cells Structure of solids and liquids; crystallography Sulfides - chemistry Sulfides - radiation effects Thin films |
| Title | Air Stable, Photosensitive, Phase Pure Iron Pyrite Nanocrystal Thin Films for Photovoltaic Application |
| URI | http://dx.doi.org/10.1021/nl202902z https://www.ncbi.nlm.nih.gov/pubmed/21992489 https://www.proquest.com/docview/1762053024 https://www.proquest.com/docview/903144190 |
| Volume | 11 |
| WOSCitedRecordID | wos000296674700078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1530-6992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009350 issn: 1530-6984 databaseCode: ACS dateStart: 20010101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7yOiSUNo8m3aZZlMchh5rasvzQcQldkktYSAt7M9JYJguuvdjeQPrrO7L3kUCW9GbDJz800swnjZgP4Cowqas1KgdVGDgiy6RDF6lDztJWQw906qet2ER0fx-Px3K0AZdrMvjc-1HktD6XLv-7CdvcSmNY_nPzsKqs67cyrDRzaR0kY7EoH_SyqQ09WL8KPR-mqqZeyDr5ivX8so0zw0__9YX78HFOI9mgs_sBbJjiEPZeFBc8gmwwqRhxSZ2b72z0WDZlbQ-rW_dm7yl6sdGsMuyuKgs2eq6IezLytSVWz8QYc2YVPdlwkv-pGRHb7gnkyxo1QTZYpb0_w-_hz183t85cVcFRfhQ1jmeI1GQRopau5EYjz5THjQiVFyJKQag4RFslP_W5l3ooCGfcTPgYhhxD_xi2irIwX4C5mfEjlCg0auEqVEQHqD1PdRhEfhT0oE_dnsxnRZ20CW_uJcsO68H1wiIJzmuSW2mM_C3oxRI67QpxvAXqvzLrEskFMSdiXz04X9g5oXlkkyOqMOWMvo2igmsllAjD1mCkrfUviEL14KQbI6sX2GO8IpZf3_vlU9htt6XtzrT8BltNNTNnsINPzaSu-rAZjeN-O8D_ARI08rk |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4NhsTQNBhj0P3oPMQDD4tIHCepHyu0CgSrKgESb5F9cbRKWYKSFAn-es5J2oIEmnhLpM-JY599n33OdwAHgUlcrVE5qMLAEWkqHbpIHJosrRp6oBM_aZJNROPx4PpaTjqZHPsvDFWioidVTRB_qS7gHeUZLdOly-9X4G1ARmOP7w2PL5YCu36TjZUGMC2H5EDMVYQeF7UeCKsnHuj9jaqoMdI2i8XLNLNxN6PN11R0Cz50pJINWyv4CG9Mvg0bj6QGP0E6nJaMmKXOzC82-VvURWWPrtvJzt6TL2OTWWnYaVnkbHJXEhNlNPMWWN4Rf8yYze_JRtPsX8WI5rZPoJmtVlNkw2UQfAeuRr8vj0-cLseCo_woqh3PEMVJI0QtXcmNRp4qjxsRKi9ElIJQgxCtZn7icy_xUBDOuKnwMQw5hv5nWM2L3OwBc1PjRyhRaNTCVaiIHFB5nugwiPwo6EGf2ivuxkgVN-Fv7sWLBuvB4bxjYuwUym2ijOw56P4CetPKcjwH6j_p3QWSC-JRxMV68HPe3TGNKhsqUbkpZlQ38hGuTahEGPYCRlrlf0GEqge7raksX2AP9YqB_PK_T_4B6yeXf87j89Px2Vd412xY2z1r-Q1W63JmvsMa3tbTquw31v4A_qP6Nw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BQGgIMX5sUGDFIB54IFriOEn9WA0qpk1VJEDaW2RfbFEpS6oknTT-es5J2m7SJsRbIn1OHNvn--xzvgP4FJnc1xqVhyqOPGGt9Ogi92iydGrokc7DvEs2kcznk_NzmQ4LRfcvDFWioSc1XRDfWfUyt4PCQHBUFrRUlz7_cx8eRORK3RG-6fGPrchu2GVkJSOmJZGciLWS0PWizgthc8MLPVmqhhrE9pks7qaancuZ7f1vZZ_B04Fcsmk_Gp7DPVO-gMfXJAdfgp0uakYMUxfmC0t_V23VuCPsbtJz9-TTWLqqDTupq5KlVzUxUkYzcIX1FfHIgrk8n2y2KC4aRnS3fwLNcK1aIJtug-H78Gv27efxd2_IteCpMElaLzBEdWyCqKUvudHIrQq4EbEKYkQpCDWJ0Wnn5yEP8gAF4YxvRYhxzDEOD2CnrErzGphvTZigRKFRC1-hIpJA5Xmu4ygJk2gEY2qzbLCVJuvC4DzINg02gs_rzslwUCp3CTOK26AfN9BlL89xG2h8o4c3SC6ITxEnG8GHdZdnZF0uZKJKU62obuQrfJdYiTDsDox0GQAEEasRvOqHy_YF7nCvmMg3__rk9_Ao_TrLzk7mp29ht9u3dlvX8h3stPXKHMJDvGwXTT3uBvxfF3P8sQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+Stable%2C+Photosensitive%2C+Phase+Pure+Iron+Pyrite+Nanocrystal+Thin+Films+for+Photovoltaic+Application&rft.jtitle=Nano+letters&rft.au=Bi%2C+Yu&rft.au=Yuan%2C+Yongbo&rft.au=Exstrom%2C+Christopher+L.&rft.au=Darveau%2C+Scott+A.&rft.date=2011-11-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=11&rft.issue=11&rft.spage=4953&rft.epage=4957&rft_id=info:doi/10.1021%2Fnl202902z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nl202902z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |