Air Stable, Photosensitive, Phase Pure Iron Pyrite Nanocrystal Thin Films for Photovoltaic Application

Iron pyrite (FeS2) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS2 film surfaces that lead to low open circuit voltages. We repor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters Jg. 11; H. 11; S. 4953 - 4957
Hauptverfasser: Bi, Yu, Yuan, Yongbo, Exstrom, Christopher L, Darveau, Scott A, Huang, Jinsong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington, DC American Chemical Society 09.11.2011
Schlagworte:
ISSN:1530-6984, 1530-6992, 1530-6992
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Iron pyrite (FeS2) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS2 film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS2 nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS2 NCs synthesized without TOPO. A high carrier mobility of 80 cm2/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS2 NC surfaces, efficiently inhibiting surface decomposition.
AbstractList Iron pyrite (FeS(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS(2) film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS(2) nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS(2) NCs synthesized without TOPO. A high carrier mobility of 80 cm(2)/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS(2) NC surfaces, efficiently inhibiting surface decomposition.Iron pyrite (FeS(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS(2) film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS(2) nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS(2) NCs synthesized without TOPO. A high carrier mobility of 80 cm(2)/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS(2) NC surfaces, efficiently inhibiting surface decomposition.
Iron pyrite (FeS sub(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS sub(2) film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS sub(2) nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS sub(2) NCs synthesized without TOPO. A high carrier mobility of 80 cm super(2)/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS sub(2) NC surfaces, efficiently inhibiting surface decomposition.
Iron pyrite (FeS2) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS2 film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS2 nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS2 NCs synthesized without TOPO. A high carrier mobility of 80 cm2/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS2 NC surfaces, efficiently inhibiting surface decomposition.
Iron pyrite (FeS(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however existing iron pyrite photovoltaic devices contain thermodynamically unstable FeS(2) film surfaces that lead to low open circuit voltages. We report the rational synthesis of phase pure, highly crystalline cubic FeS(2) nanocrystals (NCs) using a trioctylphosphine oxide (TOPO) assisted hot-injection method. The synthesized pyrite NC films have excellent air stability over one year. In contrast, obvious surface decomposition was observed on the surface of FeS(2) NCs synthesized without TOPO. A high carrier mobility of 80 cm(2)/(V s) and a strong photoconductivity were observed for the first time for pyrite films at room temperature. Our results indicate that TOPO passivates both iron and sulfur atoms on FeS(2) NC surfaces, efficiently inhibiting surface decomposition.
Author Huang, Jinsong
Bi, Yu
Yuan, Yongbo
Darveau, Scott A
Exstrom, Christopher L
AuthorAffiliation University of Nebraska at Kearney
Chinese Academy of Sciences
University of NebraskaLincoln
AuthorAffiliation_xml – name: Chinese Academy of Sciences
– name: University of NebraskaLincoln
– name: University of Nebraska at Kearney
Author_xml – sequence: 1
  givenname: Yu
  surname: Bi
  fullname: Bi, Yu
– sequence: 2
  givenname: Yongbo
  surname: Yuan
  fullname: Yuan, Yongbo
– sequence: 3
  givenname: Christopher L
  surname: Exstrom
  fullname: Exstrom, Christopher L
– sequence: 4
  givenname: Scott A
  surname: Darveau
  fullname: Darveau, Scott A
– sequence: 5
  givenname: Jinsong
  surname: Huang
  fullname: Huang, Jinsong
  email: jhuang2@unl.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24741064$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21992489$$D View this record in MEDLINE/PubMed
BookMark eNp90V1LIzEUBuAgih_VC_-A5GZxBatJJs00l0VWVxAtqNfD6WkGI2nSTTJC_fVGW7sg4tVJ4MlLeM8e2fTBG0IOOTvjTPBz7wQTmonXDbLLBxXrK63F5vo8lDtkL6VnxpiuBmyb7AhegBzqXdKObKT3GSbOnNLxU8ghGZ9sti8fd0iGjrto6HUMno4X0WZDb8EHjIuUwdGHJ-vppXWzRNsQlwkvwWWwSEfzubMI2Qa_T7ZacMkcrGaPPF7-ebj427-5u7q-GN30oarr3OdGcdHWiBPNtDATFC1wYaQCrhC1LGqocCBVNa0En3KUxRnWygqVEqiqHjle5s5j-NeZlJuZTWicA29ClxrNKi4lL6NHfv8oea0EK_0JWejRinaTmZk282hnEBfNZ4sF_FoBSAiujeDRpv9O1pIz9R50snQYQ0rRtGvCWfO-yWa9yWLPv1i0-aPLHMG6b1-sfgGYmufQRV-a_sa9AbXLqrE
CitedBy_id crossref_primary_10_1016_j_matchemphys_2014_09_013
crossref_primary_10_1016_j_biomaterials_2014_10_052
crossref_primary_10_1016_j_jcrysgro_2019_05_029
crossref_primary_10_1088_0953_8984_25_4_045004
crossref_primary_10_1002_smll_201401102
crossref_primary_10_1016_j_mssp_2015_06_083
crossref_primary_10_1021_ja311974n
crossref_primary_10_1039_C7CP04413E
crossref_primary_10_1063_1_4751358
crossref_primary_10_1016_j_jcis_2016_02_055
crossref_primary_10_1016_j_mssp_2014_12_073
crossref_primary_10_1016_j_jallcom_2014_11_217
crossref_primary_10_1016_j_jallcom_2024_175749
crossref_primary_10_1116_1_3699022
crossref_primary_10_1021_ja509142w
crossref_primary_10_1002_chem_201702687
crossref_primary_10_1016_j_ultsonch_2015_09_012
crossref_primary_10_1002_ange_201300401
crossref_primary_10_1016_j_matlet_2014_04_060
crossref_primary_10_1016_j_renene_2015_02_026
crossref_primary_10_1088_0957_4484_27_16_165702
crossref_primary_10_1557_s43581_024_00125_y
crossref_primary_10_1016_j_jtice_2016_04_036
crossref_primary_10_1021_ja307412e
crossref_primary_10_1016_j_matlet_2014_06_106
crossref_primary_10_1007_s11814_018_0060_6
crossref_primary_10_1021_ja3033313
crossref_primary_10_1088_0957_4484_27_29_295702
crossref_primary_10_2138_am_2023_9187
crossref_primary_10_1016_j_jhazmat_2020_123930
crossref_primary_10_1016_j_ces_2024_120664
crossref_primary_10_1007_s10967_015_4269_0
crossref_primary_10_1007_s11468_022_01630_x
crossref_primary_10_1016_j_chemgeo_2022_121139
crossref_primary_10_1016_j_mssp_2023_107608
crossref_primary_10_1016_j_susc_2013_08_014
crossref_primary_10_1088_1674_1056_22_10_107503
crossref_primary_10_1016_j_matlet_2015_08_112
crossref_primary_10_1021_jacs_1c12620
crossref_primary_10_1016_j_matpr_2020_04_173
crossref_primary_10_1002_anie_202502322
crossref_primary_10_1007_s00339_021_04369_0
crossref_primary_10_3389_fchem_2019_00297
crossref_primary_10_1016_j_jallcom_2015_06_168
crossref_primary_10_1002_smll_201302333
crossref_primary_10_1016_j_vacuum_2018_04_050
crossref_primary_10_1116_1_4828818
crossref_primary_10_1002_ente_202401155
crossref_primary_10_1016_j_matlet_2014_12_003
crossref_primary_10_1002_ente_201700638
crossref_primary_10_1016_j_matchemphys_2014_09_024
crossref_primary_10_1016_j_matlet_2017_05_027
crossref_primary_10_1002_adma_201200753
crossref_primary_10_1149_2_1381712jes
crossref_primary_10_1002_adma_201602222
crossref_primary_10_1002_ange_202502322
crossref_primary_10_1002_adom_201701241
crossref_primary_10_1016_j_tsf_2016_07_016
crossref_primary_10_1016_j_tsf_2016_08_055
crossref_primary_10_1016_j_jcrysgro_2016_12_108
crossref_primary_10_1002_anie_201300401
crossref_primary_10_1016_j_solmat_2013_05_014
crossref_primary_10_1016_j_tsf_2013_06_091
crossref_primary_10_1002_pssa_202400376
crossref_primary_10_1016_j_tsf_2014_04_033
crossref_primary_10_3390_inorganics7060075
crossref_primary_10_1016_j_jece_2019_102906
crossref_primary_10_1007_s40843_019_1255_4
crossref_primary_10_1021_jacs_3c05653
crossref_primary_10_1016_j_jallcom_2014_04_060
crossref_primary_10_1007_s10854_018_9259_x
crossref_primary_10_1016_j_ceramint_2021_04_215
crossref_primary_10_1016_j_jmst_2014_01_005
crossref_primary_10_3390_ma15196946
crossref_primary_10_1016_j_mssp_2019_104775
crossref_primary_10_1088_1361_6528_abe1f2
crossref_primary_10_1007_s11696_022_02280_3
crossref_primary_10_1016_j_tsf_2016_01_002
crossref_primary_10_1186_1556_276X_9_549
crossref_primary_10_1002_slct_201702786
crossref_primary_10_1007_s11664_019_07005_z
crossref_primary_10_1016_j_jallcom_2016_03_018
crossref_primary_10_1002_ejic_202000039
crossref_primary_10_1016_j_physe_2019_113881
crossref_primary_10_3389_fchem_2020_00818
crossref_primary_10_1002_slct_201700087
crossref_primary_10_1016_j_matlet_2013_01_101
crossref_primary_10_1016_j_matpr_2023_08_260
crossref_primary_10_1016_j_ultsonch_2016_04_002
crossref_primary_10_1007_s10854_013_1313_0
crossref_primary_10_1016_j_mattod_2019_11_007
crossref_primary_10_1002_slct_201800405
crossref_primary_10_1016_j_mattod_2019_11_008
crossref_primary_10_3762_bjnano_10_216
crossref_primary_10_1016_j_mssp_2022_107273
crossref_primary_10_1039_C4CP03453H
crossref_primary_10_1039_C6CP05913A
crossref_primary_10_1002_adma_201806593
crossref_primary_10_1016_j_solidstatesciences_2021_106722
crossref_primary_10_1039_C7FD00092H
crossref_primary_10_1016_j_apsusc_2014_11_157
crossref_primary_10_1016_j_cplett_2016_07_046
crossref_primary_10_1039_C5CP03143E
crossref_primary_10_1039_c2cs35310e
crossref_primary_10_1007_s10853_016_0538_8
crossref_primary_10_1021_ja512979y
crossref_primary_10_1016_j_jallcom_2020_157977
crossref_primary_10_1039_C5CS00033E
crossref_primary_10_1016_j_mseb_2018_11_003
crossref_primary_10_1016_j_apenergy_2016_04_042
crossref_primary_10_1016_j_matlet_2014_02_071
crossref_primary_10_1007_s10876_019_01708_3
crossref_primary_10_1039_D0NR08078K
crossref_primary_10_1002_adma_201905653
crossref_primary_10_1016_j_tsf_2014_10_072
crossref_primary_10_1016_j_solmat_2015_03_032
crossref_primary_10_1557_s43578_022_00509_1
crossref_primary_10_1016_j_jiec_2017_01_035
crossref_primary_10_1039_c2cc38218k
crossref_primary_10_1016_j_jenvman_2020_111555
crossref_primary_10_1007_s00339_022_05975_2
crossref_primary_10_1016_j_est_2024_112781
crossref_primary_10_1016_j_electacta_2016_06_067
crossref_primary_10_1038_srep20397
crossref_primary_10_1007_s12034_022_02881_4
crossref_primary_10_1016_j_electacta_2014_02_048
Cites_doi 10.1016/0927-0248(93)90095-K
10.1180/0026461046830196
10.1021/nn800336b
10.1002/aenm.201100351
10.1021/nl0259481
10.1088/0957-4484/20/40/405207
10.1149/1.2114168
10.1021/ja1096368
10.1364/AO.32.000935
10.1557/S088376940003832X
10.1016/0022-0248(68)90067-5
10.1021/nl010047y
10.1039/a701068k
10.1016/j.surfrep.2008.09.002
10.1021/cm901273v
10.1021/nl070001q
10.1063/1.351925
10.1016/j.materresbull.2008.04.013
10.1007/BF00544193
10.1016/0165-1633(90)90001-H
10.1063/1.104233
10.1021/es8019534
10.1016/S0927-0248(01)00053-8
10.1016/0038-1098(90)90455-K
10.1016/0165-1633(89)90044-0
10.1143/JPSJ.31.1277
10.1016/S0022-0248(98)01074-4
10.1021/jp9810217
10.1039/JR9600002199
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1021/nl202902z
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1530-6992
EndPage 4957
ExternalDocumentID 21992489
24741064
10_1021_nl202902z
c73449471
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AFFNX
IQODW
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-a377t-1e612f7ccb9092ebc2fa12e46a16cc94a3786c5463d321d1c4909e0f43c662c63
IEDL.DBID ACS
ISICitedReferencesCount 209
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296674700078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-6984
1530-6992
IngestDate Fri Sep 05 12:30:20 EDT 2025
Thu Sep 04 17:06:31 EDT 2025
Thu Jan 02 22:11:56 EST 2025
Mon Jul 21 09:14:40 EDT 2025
Sat Nov 29 01:49:07 EST 2025
Tue Nov 18 22:36:20 EST 2025
Thu Aug 27 13:42:10 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords photoconductive
iron pyrite
Nanocrystals
photovoltaic
Cubic lattices
Iron
Iron sulfide
Photovoltaic cell
Thin films
Pyrite
Silicon
Carrier mobility
Photoconductivity
Sulfur
Nanostructured materials
TOPO
Nanocrystal
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a377t-1e612f7ccb9092ebc2fa12e46a16cc94a3786c5463d321d1c4909e0f43c662c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21992489
PQID 1762053024
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_903144190
proquest_miscellaneous_1762053024
pubmed_primary_21992489
pascalfrancis_primary_24741064
crossref_primary_10_1021_nl202902z
crossref_citationtrail_10_1021_nl202902z
acs_journals_10_1021_nl202902z
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2011-11-09
PublicationDateYYYYMMDD 2011-11-09
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-09
  day: 09
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Murphy R. (ref9/cit9) 2009; 64
Cotton F. A. (ref31/cit31) 1960
Ferrer I. J. (ref19/cit19) 1990; 74
Alivisatos A. P. (ref27/cit27) 2001; 1
Bausch S. (ref11/cit11) 1990; 57
Dasbach R. (ref8/cit8) 1993; 18
Boughriet A. (ref29/cit29) 1997; 93
Yu L. (ref13/cit13) 2011; 1
Lalvani S. B. (ref21/cit21) 1990; 25
Ennaoui A. (ref6/cit6) 1985; 132
Ennaoui A. (ref4/cit4) 1993; 29
Turcotte S. B. (ref18/cit18) 1993; 32
Alivisatos A. P. (ref25/cit25) 2003; 3
Lin Y.-Y. (ref15/cit15) 2009; 20
Puthussery J. (ref12/cit12) 2011; 133
Breier J. A. (ref16/cit16) 2009
Buker K. (ref5/cit5) 1992; 72
Wadia C. (ref2/cit2) 2009; 21
Golan Y. (ref23/cit23) 2007; 7
Fukui T. (ref32/cit32) 1971; 31
Oertel J. (ref14/cit14) 1999; 198
Li X. F. (ref26/cit26) 2009; 44
Bouchard R. J. (ref10/cit10) 1962; 2
Wadia C. (ref1/cit1) 2009; 43
Hyun B. R. (ref24/cit24) 2008; 2
Hines M. A. (ref30/cit30) 1998; 102
Altermatt P. P. (ref3/cit3) 2002; 71
Smestad G. (ref22/cit22) 1990; 20
Smestad G. (ref20/cit20) 1989; 18
ref7/cit7
Kleppe A. K. (ref17/cit17) 2004; 68
Ellmer K. (ref28/cit28) 2000
References_xml – volume: 29
  start-page: 289
  issue: 4
  year: 1993
  ident: ref4/cit4
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/0927-0248(93)90095-K
– volume: 68
  start-page: 433
  issue: 3
  year: 2004
  ident: ref17/cit17
  publication-title: Mineral. Mag.
  doi: 10.1180/0026461046830196
– year: 2000
  ident: ref28/cit28
  publication-title: Proc. Workshop Quantum Sol. Energy Convers. (QUANTSOL 2000), 12th
– volume: 2
  start-page: 2206
  issue: 11
  year: 2008
  ident: ref24/cit24
  publication-title: ACS Nano
  doi: 10.1021/nn800336b
– volume: 1
  start-page: 748
  year: 2011
  ident: ref13/cit13
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100351
– volume: 3
  start-page: 199
  issue: 2
  year: 2003
  ident: ref25/cit25
  publication-title: Nano Lett.
  doi: 10.1021/nl0259481
– volume: 20
  start-page: 405207
  year: 2009
  ident: ref15/cit15
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/40/405207
– volume: 132
  start-page: 1579
  year: 1985
  ident: ref6/cit6
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2114168
– volume: 133
  start-page: 716
  year: 2011
  ident: ref12/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1096368
– volume: 32
  start-page: 935
  year: 1993
  ident: ref18/cit18
  publication-title: Appl. Opt.
  doi: 10.1364/AO.32.000935
– volume: 18
  start-page: 56
  issue: 10
  year: 1993
  ident: ref8/cit8
  publication-title: MRS Bull.
  doi: 10.1557/S088376940003832X
– volume: 2
  start-page: 40
  issue: 1
  year: 1962
  ident: ref10/cit10
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(68)90067-5
– volume: 1
  start-page: 349
  issue: 7
  year: 2001
  ident: ref27/cit27
  publication-title: Nano Lett.
  doi: 10.1021/nl010047y
– volume: 93
  start-page: 3209
  issue: 17
  year: 1997
  ident: ref29/cit29
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/a701068k
– volume: 64
  start-page: 1
  issue: 1
  year: 2009
  ident: ref9/cit9
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2008.09.002
– volume: 21
  start-page: 2568
  issue: 13
  year: 2009
  ident: ref2/cit2
  publication-title: Chem. Mater.
  doi: 10.1021/cm901273v
– start-page: 10
  year: 2009
  ident: ref16/cit16
  publication-title: Geochem., Geophys., Geosyst.
– volume: 7
  start-page: 1459
  issue: 6
  year: 2007
  ident: ref23/cit23
  publication-title: Nano Lett.
  doi: 10.1021/nl070001q
– volume: 72
  start-page: 5721
  issue: 12
  year: 1992
  ident: ref5/cit5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.351925
– volume: 44
  start-page: 462
  issue: 2
  year: 2009
  ident: ref26/cit26
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2008.04.013
– volume: 25
  start-page: 107
  issue: 1
  year: 1990
  ident: ref21/cit21
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00544193
– volume: 20
  start-page: 149
  issue: 3
  year: 1990
  ident: ref22/cit22
  publication-title: Sol. Energy Mater.
  doi: 10.1016/0165-1633(90)90001-H
– volume: 57
  start-page: 25
  issue: 1
  year: 1990
  ident: ref11/cit11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.104233
– volume: 43
  start-page: 2072
  issue: 6
  year: 2009
  ident: ref1/cit1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8019534
– volume: 71
  start-page: 181
  issue: 2
  year: 2002
  ident: ref3/cit3
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(01)00053-8
– volume: 74
  start-page: 913
  issue: 9
  year: 1990
  ident: ref19/cit19
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(90)90455-K
– volume: 18
  start-page: 299
  issue: 5
  year: 1989
  ident: ref20/cit20
  publication-title: Sol. Energy Mater.
  doi: 10.1016/0165-1633(89)90044-0
– ident: ref7/cit7
– volume: 31
  start-page: 1277
  issue: 4
  year: 1971
  ident: ref32/cit32
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.31.1277
– volume: 198
  start-page: 1205
  year: 1999
  ident: ref14/cit14
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)01074-4
– volume: 102
  start-page: 3655
  issue: 19
  year: 1998
  ident: ref30/cit30
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9810217
– start-page: 2199
  year: 1960
  ident: ref31/cit31
  publication-title: J. Chem. Soc.
  doi: 10.1039/JR9600002199
SSID ssj0009350
Score 2.5028
Snippet Iron pyrite (FeS2) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however...
Iron pyrite (FeS(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones; however...
Iron pyrite (FeS sub(2)) is a naturally abundant and nontoxic photovoltaic material that can potentially make devices as efficient as silicon-based ones;...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4953
SubjectTerms Air
Applied sciences
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Crystallization - methods
Decomposition
Devices
Electric Conductivity
Electronics
Exact sciences and technology
Iron
Iron - chemistry
Iron - radiation effects
Light
Materials
Materials science
Materials Testing
Membranes, Artificial
Molecular electronics, nanoelectronics
Nanocrystalline materials
Nanocrystals
Nanoscale materials and structures: fabrication and characterization
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Nanostructure
Nanostructures - chemistry
Nanostructures - radiation effects
Open circuit voltage
Photovoltaic cells
Physics
Pyrite
Radiation Dosage
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solar cells
Structure of solids and liquids; crystallography
Sulfides - chemistry
Sulfides - radiation effects
Thin films
Title Air Stable, Photosensitive, Phase Pure Iron Pyrite Nanocrystal Thin Films for Photovoltaic Application
URI http://dx.doi.org/10.1021/nl202902z
https://www.ncbi.nlm.nih.gov/pubmed/21992489
https://www.proquest.com/docview/1762053024
https://www.proquest.com/docview/903144190
Volume 11
WOSCitedRecordID wos000296674700078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7yOiSUNo8m3aZZlMchh5rasvzQcQldkktYSAt7M9JYJguuvdjeQPrrO7L3kUCW9GbDJz800swnjZgP4Cowqas1KgdVGDgiy6RDF6lDztJWQw906qet2ER0fx-Px3K0AZdrMvjc-1HktD6XLv-7CdvcSmNY_nPzsKqs67cyrDRzaR0kY7EoH_SyqQ09WL8KPR-mqqZeyDr5ivX8so0zw0__9YX78HFOI9mgs_sBbJjiEPZeFBc8gmwwqRhxSZ2b72z0WDZlbQ-rW_dm7yl6sdGsMuyuKgs2eq6IezLytSVWz8QYc2YVPdlwkv-pGRHb7gnkyxo1QTZYpb0_w-_hz183t85cVcFRfhQ1jmeI1GQRopau5EYjz5THjQiVFyJKQag4RFslP_W5l3ooCGfcTPgYhhxD_xi2irIwX4C5mfEjlCg0auEqVEQHqD1PdRhEfhT0oE_dnsxnRZ20CW_uJcsO68H1wiIJzmuSW2mM_C3oxRI67QpxvAXqvzLrEskFMSdiXz04X9g5oXlkkyOqMOWMvo2igmsllAjD1mCkrfUviEL14KQbI6sX2GO8IpZf3_vlU9htt6XtzrT8BltNNTNnsINPzaSu-rAZjeN-O8D_ARI08rk
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4NhsTQNBhj0P3oPMQDD4tIHCepHyu0CgSrKgESb5F9cbRKWYKSFAn-es5J2oIEmnhLpM-JY599n33OdwAHgUlcrVE5qMLAEWkqHbpIHJosrRp6oBM_aZJNROPx4PpaTjqZHPsvDFWioidVTRB_qS7gHeUZLdOly-9X4G1ARmOP7w2PL5YCu36TjZUGMC2H5EDMVYQeF7UeCKsnHuj9jaqoMdI2i8XLNLNxN6PN11R0Cz50pJINWyv4CG9Mvg0bj6QGP0E6nJaMmKXOzC82-VvURWWPrtvJzt6TL2OTWWnYaVnkbHJXEhNlNPMWWN4Rf8yYze_JRtPsX8WI5rZPoJmtVlNkw2UQfAeuRr8vj0-cLseCo_woqh3PEMVJI0QtXcmNRp4qjxsRKi9ElIJQgxCtZn7icy_xUBDOuKnwMQw5hv5nWM2L3OwBc1PjRyhRaNTCVaiIHFB5nugwiPwo6EGf2ivuxkgVN-Fv7sWLBuvB4bxjYuwUym2ijOw56P4CetPKcjwH6j_p3QWSC-JRxMV68HPe3TGNKhsqUbkpZlQ38hGuTahEGPYCRlrlf0GEqge7raksX2AP9YqB_PK_T_4B6yeXf87j89Px2Vd412xY2z1r-Q1W63JmvsMa3tbTquw31v4A_qP6Nw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BQGgIMX5sUGDFIB54IFriOEn9WA0qpk1VJEDaW2RfbFEpS6oknTT-es5J2m7SJsRbIn1OHNvn--xzvgP4FJnc1xqVhyqOPGGt9Ogi92iydGrokc7DvEs2kcznk_NzmQ4LRfcvDFWioSc1XRDfWfUyt4PCQHBUFrRUlz7_cx8eRORK3RG-6fGPrchu2GVkJSOmJZGciLWS0PWizgthc8MLPVmqhhrE9pks7qaancuZ7f1vZZ_B04Fcsmk_Gp7DPVO-gMfXJAdfgp0uakYMUxfmC0t_V23VuCPsbtJz9-TTWLqqDTupq5KlVzUxUkYzcIX1FfHIgrk8n2y2KC4aRnS3fwLNcK1aIJtug-H78Gv27efxd2_IteCpMElaLzBEdWyCqKUvudHIrQq4EbEKYkQpCDWJ0Wnn5yEP8gAF4YxvRYhxzDEOD2CnrErzGphvTZigRKFRC1-hIpJA5Xmu4ygJk2gEY2qzbLCVJuvC4DzINg02gs_rzslwUCp3CTOK26AfN9BlL89xG2h8o4c3SC6ITxEnG8GHdZdnZF0uZKJKU62obuQrfJdYiTDsDox0GQAEEasRvOqHy_YF7nCvmMg3__rk9_Ao_TrLzk7mp29ht9u3dlvX8h3stPXKHMJDvGwXTT3uBvxfF3P8sQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+Stable%2C+Photosensitive%2C+Phase+Pure+Iron+Pyrite+Nanocrystal+Thin+Films+for+Photovoltaic+Application&rft.jtitle=Nano+letters&rft.au=Bi%2C+Yu&rft.au=Yuan%2C+Yongbo&rft.au=Exstrom%2C+Christopher+L.&rft.au=Darveau%2C+Scott+A.&rft.date=2011-11-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=11&rft.issue=11&rft.spage=4953&rft.epage=4957&rft_id=info:doi/10.1021%2Fnl202902z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nl202902z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon