A computationally efficient parallel Levenberg‐Marquardt algorithm for highly parameterized inverse model analyses

Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, comp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water resources research Ročník 52; číslo 9; s. 6948 - 6977
Hlavní autoři: Lin, Youzuo, O'Malley, Daniel, Vesselinov, Velimir V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington John Wiley & Sons, Inc 01.09.2016
American Geophysical Union (AGU)
Témata:
ISSN:0043-1397, 1944-7973
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg‐Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg‐Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large‐scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2‐D and a random hydraulic conductivity field in 3‐D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg‐Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg‐Marquardt method yields a speed‐up ratio on the order of ∼101 to ∼102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large‐scale problems. Key Points We generate a Krylov subspace and obtain a much smaller approximated problem by projecting the original problem down to the subspace We employ both coarse and fine‐grained parallelism to our LM method to parallelize the implementation of the LM algorithm in two levels We employ a subspace recycling technique to take the advantage of the solution space previously generated
AbstractList Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of 10 1 to 10 2 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~101 to ~102 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework ( http://mads.lanl.gov ). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order.
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg‐Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg‐Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large‐scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2‐D and a random hydraulic conductivity field in 3‐D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg‐Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg‐Marquardt method yields a speed‐up ratio on the order of ∼101 to ∼102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large‐scale problems. Key Points We generate a Krylov subspace and obtain a much smaller approximated problem by projecting the original problem down to the subspace We employ both coarse and fine‐grained parallelism to our LM method to parallelize the implementation of the LM algorithm in two levels We employ a subspace recycling technique to take the advantage of the solution space previously generated
Author O'Malley, Daniel
Vesselinov, Velimir V.
Lin, Youzuo
Author_xml – sequence: 1
  givenname: Youzuo
  surname: Lin
  fullname: Lin, Youzuo
  email: ylin@lanl.gov
  organization: Los Alamos National Laboratory
– sequence: 2
  givenname: Daniel
  surname: O'Malley
  fullname: O'Malley, Daniel
  organization: Los Alamos National Laboratory
– sequence: 3
  givenname: Velimir V.
  surname: Vesselinov
  fullname: Vesselinov, Velimir V.
  organization: Los Alamos National Laboratory
BackLink https://www.osti.gov/servlets/purl/1312574$$D View this record in Osti.gov
BookMark eNp9kcFqHDEMhk1JoZu0tz6AaS-5TGPZM-PxMSxJW9gSWFpyNF6PZtdhxt7YnoTtqY-QZ8yT1GF7KD1UBwnE9_-S0Ck58cEjIe-BfQLG-AVn0N6uGSjGu1dkAaquK6mkOCELxmpRgVDyDTlN6Y4xqJtWLki-pDZM-zmb7II343igOAzOOvSZ7k0sHRzpCh_QbzBun389fTPxfjaxz9SM2xBd3k10CJHu3HZX1C-aCTNG9xN76vwDxoR0Cn2xMWXAIWF6S14PZkz47k89Iz-ur74vv1Srm89fl5erygjZtlUnoduojtuBKaUagL6srdrGAHIjpS25E8NgGzSNrVkre15vJPZGDqwcwcQZ-XD0DSk7nazLaHc2eI82axDAG1kX6PwI7WO4nzFlPblkcRyNxzAnDZ2QooZGyoJ-_Ae9C3MsRxVKMSVb4AL-S3UCOiVEwwsljtSjG_Gg99FNJh40MP3ySv33K_XternmJVrxGzy1li4
ContentType Journal Article
Copyright Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
2016. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
– notice: 2016. American Geophysical Union. All Rights Reserved.
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
DBID 7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
OIOZB
OTOTI
DOI 10.1002/2016WR019028
DatabaseName Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage 6977
ExternalDocumentID 1312574
4226768891
WRCR22226
Genre article
GrantInformation_xml – fundername: Los Alamos National Laboratory (LANL) Director's Postdoctoral Fellowship
– fundername: Los Alamos National Laboratory Environmental Programs Projects
– fundername: the DiaMonD project (An Integrated Multifaceted Approach to Mathematics at the Interfaces of Data, Models, and Decisions, U.S. Department of Energy Office of Science
  funderid: 11145687
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIQQE
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WIN
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
A00
AAHHS
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
OIOZB
OTOTI
WYJ
ID FETCH-LOGICAL-a3766-8718b982cf0999511d001965a1e2a77ce2a83ffc5ea5c4067d24b7eda7f0eff03
IEDL.DBID WIN
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386977900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Tue Nov 05 04:33:40 EST 2024
Tue Oct 07 11:12:09 EDT 2025
Mon Sep 08 11:12:18 EDT 2025
Wed Aug 13 11:16:56 EDT 2025
Thu Sep 25 07:34:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3766-8718b982cf0999511d001965a1e2a77ce2a83ffc5ea5c4067d24b7eda7f0eff03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
AC52-06NA25396
LANL EP Program
LA-UR-16-22377
OpenAccessLink https://www.osti.gov/servlets/purl/1312574
PQID 1831893352
PQPubID 105507
PageCount 30
ParticipantIDs osti_scitechconnect_1312574
proquest_miscellaneous_1837341577
proquest_journals_1909761231
proquest_journals_1831893352
wiley_primary_10_1002_2016WR019028_WRCR22226
PublicationCentury 2000
PublicationDate September 2016
20160901
2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: United States
PublicationTitle Water resources research
PublicationYear 2016
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2009; 45
2012
1982b; 8
2004; 27
2010
1998
1975; 12
2005; 41
1996
1992; 13
1994
2005
2004
2011; 37
2003
2002
2013; 8
1985; 21
1998; 86
2006; 216
1999
2010; 2010‐5169
1965; 2
2009; 11
2013; 59
1963; 11
2000
1986; 22
2015; 83
1982a; 8
1944; 2
1999; 35
2014; 36
2015
2014
2012; 48
2014; 51
2010; 6457
2007; 1
2014; 50
2007; 45
1988
References_xml – volume: 11
  start-page: 110
  year: 2009
  end-page: 115
  article-title: Damping‐undamping strategies for the Levenberg Marquardt nonlinear least squares method
  publication-title: Comput. Phys.
– volume: 8
  start-page: 195
  year: 1982b
  end-page: 224
  article-title: LSQR: Sparse linear equations and least squares problems
  publication-title: ACM Trans. Math. Software
– volume: 37
  start-page: 731
  year: 2011
  end-page: 738
  article-title: A truncated Levenberg‐Marquardt algorithm for the calibration of highly parameterized nonlinear models
  publication-title: Comput. Geosci.
– year: 2005
– volume: 45
  start-page: W08405
  year: 2009
  article-title: Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A Bayesian geostatistical parameter estimation approach
  publication-title: Water Resour. Res.
– volume: 27
  start-page: 737
  year: 2004
  end-page: 750
  article-title: A modified Levenberg‐Marquardt algorithm for quasi‐linear geostatistical inversing
  publication-title: Adv. Water Resour.
– volume: 35
  start-page: 1975
  year: 1999
  end-page: 1985
  article-title: Application of inverse methods to contaminant source identification from aquitard diffusion profiles at Dover AFB
  publication-title: Delaware, Water Resour. Res.
– volume: 21
  start-page: 1525
  issue: 10
  year: 1985
  end-page: 1538
  article-title: A comparison of several methods of solving nonlinear regression groundwater flow problems
  publication-title: Water Resour. Res.
– year: 2003
– year: 1996
– year: 2000
– volume: 6457
  start-page: 623
  year: 2010
  end-page: 632
  article-title: Modified Levenberg Marquardt algorithm for inverse problems
  publication-title: Simulated Evol. Learning
– volume: 41
  start-page: W10412
  year: 2005
  article-title: A hybrid regularized inversion methodology for highly parameterized environmental models
  publication-title: Water Resour. Res.
– volume: 50
  start-page: 198
  year: 2014
  end-page: 207
  article-title: Fast iterative implementation of large‐scale nonlinear geostatistical inverse modeling
  publication-title: Water Resour. Res.
– year: 2014
– year: 1994
– year: 1998
– volume: 45
  start-page: 254
  year: 2007
  end-page: 262
  article-title: Are models too simple? Arguments for increased parameterization
  publication-title: Groundwater
– year: 2010
– year: 2012
– volume: 8
  start-page: 43
  year: 1982a
  end-page: 71
  article-title: LSQR: An algorithm for sparse linear equations and sparse least squares
  publication-title: ACM Trans. Math. Software
– volume: 83
  start-page: 127
  year: 2015
  end-page: 138
  article-title: Active subspaces for sensitivity analysis and dimension reduction of an integrated hydrologic model
  publication-title: Comput. Geosci.
– volume: 2010‐5169
  year: 2010
  article-title: Approaches to highly parameterized inversion: A guide to using PEST for groundwater‐model calibration
  publication-title: U.S. Geol. Surv. Sci. Invest. Rep.
– volume: 48
  start-page: W05522
  year: 2012
  article-title: Efficient methods for large‐scale linear inversion using a geostatistical approach
  publication-title: Water Resour. Res.
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  article-title: A method for the solution of certain non‐linear problems in least squares
  publication-title: Q. Appl. Math.
– volume: 51
  start-page: 4516
  year: 2014
  end-page: 4531
  article-title: Linear functional minimization for inverse modeling
  publication-title: Water Resour. Res.
– volume: 50
  start-page: 5410
  year: 2014
  end-page: 5427
  article-title: Large‐scale hydraulic tomography and joint inversion of head and tracer data using the principal component geostatistical approach (PCGA)
  publication-title: Water Resour. Res.
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  article-title: An algorithm for least‐squares estimation of nonlinear parameters,
  publication-title: J. Appl. Math.
– volume: 1
  year: 2007
– year: 2002
– year: 1988
– volume: 8
  start-page: 0076665
  year: 2013
  article-title: Efficient parallel Levenberg‐Marquardt model fitting towards real‐time automated parametric imaging microscopy
  publication-title: PLOS ONE
– year: 2004
– year: 2004
  article-title: A variation of the Levenberg‐Marquardt method: An attempt to improve efficiency
– volume: 22
  start-page: 199
  year: 1986
  end-page: 210
  article-title: Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information
  publication-title: Water Resour. Res.
– volume: 216
  start-page: 707
  issue: 2
  year: 2006
  end-page: 723
  article-title: On level set regularization for highly ill‐posed distributed parameter estimation problems
  publication-title: J. Comput. Phys.
– volume: 36
  start-page: A1500
  issue: 4
  year: 2014
  end-page: A1524
  article-title: Active subspace methods in theory and practice: Applications to kriging surfaces
  publication-title: SIAM J. Sci. Comput.
– volume: 2
  start-page: 205
  issue: 2
  year: 1965
  end-page: 224
  article-title: Calculating the singular values and pseudo‐inverse of a matrix
  publication-title: J. Soc. Ind. Appl. Math.
– start-page: 54
  year: 2015
– volume: 13
  start-page: 771
  issue: 3
  year: 1992
  end-page: 793
  article-title: A parallel nonlinear least‐squares solver: Theoretical analysis and numerical results
  publication-title: SIAM J. Sci. Stat. Comput.
– year: 2015
– volume: 12
  start-page: 617
  year: 1975
  end-page: 629
  article-title: Solution of sparse indefinite systems of linear equations
  publication-title: SIAM J. Numer. Anal.
– volume: 86
  start-page: 61
  year: 1998
  end-page: 81
  article-title: Using an inverse method to estimate the hydraulic properties of crusted soils from tension‐disc infiltrometer data
  publication-title: Geoderma
– year: 1999
– volume: 50
  start-page: 5428
  year: 2014
  end-page: 5443
  article-title: Principal component geostatistical approach for large‐dimensional inverse problem
  publication-title: Water Resour. Res.
– volume: 59
  start-page: 6587
  year: 2013
  end-page: 6600
  article-title: Geostatistical reduced‐order models in underdetermined inverse problems
  publication-title: Water Resour. Res.
SSID ssj0014567
Score 2.3066766
Snippet Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the...
SourceID osti
proquest
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 6948
SubjectTerms Algorithms
Computational efficiency
Computer applications
Damping
dimensionality reduction
Earth Sciences
Efficiency
Environment models
Fields
Frameworks
Heterogeneity
Hydraulic conductivity
hydraulic inverse modeling
Krylov subspace approximation
Levenberg‐Marquardt method
LSQR iterative method
Mathematical models
MATHEMATICS AND COMPUTING
Methods
Modelling
Parameterization
Parameters
Problems
Software
subspace recycling
Three dimensional models
Transmissivity
Title A computationally efficient parallel Levenberg‐Marquardt algorithm for highly parameterized inverse model analyses
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016WR019028
https://www.proquest.com/docview/1831893352
https://www.proquest.com/docview/1909761231
https://www.proquest.com/docview/1837341577
https://www.osti.gov/servlets/purl/1312574
Volume 52
WOSCitedRecordID wos000386977900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231213
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC5EBffiY3Vx1gct7NFguvPozFFcBwUdZFgZb6G709GBmNFJXHBP-xP8jf6SrepkZkfwIl5CoFOhobqqvu6u-grgB_eNrxVP0PtFoUf85Z5SUntBLkzEleBZpl2zCdnvJzc33av2wI1qYRp-iNmBG1mG89dk4EpXR_9JQzFyxcMBlUILqvXlobPL4Xl_domA2EBOL5gJ6LR57yh-NC-MzniM5vQGYs4DVRdpemufneM6rLYYkx03i2IDFmz5FVamJcgVvretz--eN6E-ZsZ1dmhPBYtnZh2tBEYjRsTgRWELdkFET5QK9vr35VJNHmlh1UwVt-PJqL67Zwh9GTEfozTJ3FOSzeiPzdiopLwPy1zHHaYcBYqttuC6d_rr5MxrWzF4Cj1QjD6TJ7qbCJMTokSQljVchIpboaSkrmJJkOcmsioyiBFkJkItbaZk7uOk_eAbLJbj0m4DMyq0Ah--r6NQRlrjhoV2NYb7Kg5M3IEdUkeKCIBobA3l-5g65QFCMRl2YHeqpbS1tipFt8QRdyGWfH-46yPowhDNO3AwG0YzorsRVdrxk_uFxIAeSdmBQ6fS9KGh-0gbYmeRziszHQ5OBgitRPz9Y5_vwBcaaLLUdmGxnjzZPVg2v-tRNdmHpZ-D3vXFvlvH_wA-ufOH
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED-xDgleYLBNlDJmpD0uInb-OH1ECASiVFPFVN4sx3GgUkhHG5DgiY_AZ-STcOekpZP2MvESWbIvsnS-u5_t8-8AfnDf-KnmCXq_KPSIv9zTWqZekAsTcS14lqWu2ITs95PLy-6vps4pvYWp-SHmB25kGc5fk4HTgfT-G2sohq54OKC30CL5AB_DOOwSef7wtD-_RkB0IGdXzAR1msx3lN9flEZ3PEaD-gtkLkJVF2uO1989y0-w1sBMdlCviw1YsuUmrMxeIU-x3VQ_v374DNUBM664Q3MwWDww65glMCAx4gYvCluwHnE9UTbYy9PzuZ7c0tqqmC6uxpNRdX3DEP0yIj9GaZK5oTyb0aPN2Kik1A_LXNEdph0Lip1-gd_HRxeHJ15TjcHT6IRidJs8SbuJMDmBSsRpWU1HqLkVWkoqLJYEeW4iqyODMEFmIkylzbTMfZy0H3yFVjku7RYwo0Mr8OP7aRTKKE1xz0IbG8N9HQcmbkOH9KEQBBCTraGUH1MpHiAak2EbdmZqUo3BTRV6Jo7QC-Hkv7u7PuIujNK8DXvzbrQkuh7RpR3fuV9IjOmRlG346XSq_tSMH6rmdhZqUZlqODgcILoS8fb_Df8OKycX5z3VO-2fdWCVBtVJazvQqiZ39hssm_tqNJ3susX8CvFN9hI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4ViigXKC-x5VFX4khE7DycPSJgVVRYoVUR3CzHcdiVQpbuBiQ49Sf0N_aXMONkt4vEpeISRbInijSvz_b4G4B97hs_1TzB6BeFHvGXe1rL1AtyYSKuBc-y1DWbkN1ucnPTvmz6nNJdmJofYrrhRp7h4jU5uL3P8sN_rKGYuuLrHt2FFskcfAxjtF66UnLWnR4jIDqQkyNmgjpN5TvKH85KYzgeokO9ApmzUNXlms7Ku__yMyw3MJMd1XaxCh9suQafJreQx_jedD_vP61DdcSMa-7QbAwWT8w6ZglMSIy4wYvCFuycuJ6oGuzv7z8XevSLbKtiurgdjgZV_44h-mVEfozSJHNHdTaDZ5uxQUmlH5a5pjtMOxYUO96Aq87pz-PvXtONwdMYhGIMmzxJ24kwOYFKxGlZTUeouRVaSmoslgR5biKrI4MwQWYiTKXNtMx9_Gk_2IT5cljaLWBGh1bgw_fTKJRRmuKahRY2hvs6Dkzcgm3Sh0IQQEy2hkp-TKV4gGhMhi3YmahJNQ43VhiZOEIvhJNvD7d9xF2YpXkLvk2H0ZPoeESXdvjgPiExp0dStuDA6VTd14wfquZ2FmpWmeq6d9xDdCXiL_83_SssXp501PlZ98c2LNGcumZtB-ar0YPdhQXzWA3Goz1nyy9wu_WE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computationally+efficient+parallel+Levenberg-Marquardt+algorithm+for+highly+parameterized+inverse+model+analyses&rft.jtitle=Water+resources+research&rft.au=Lin%2C+Youzuo&rft.au=O%27Malley%2C+Daniel&rft.au=Vesselinov%2C+Velimir+V.&rft.date=2016-09-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.issn=0043-1397&rft_id=info:doi/10.1002%2F2016WR019028&rft.externalDocID=1312574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon