Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model
The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional or local scales. Aiming to overcome this limitation, the partial least squares regression (PLSR) model is firstly utilized to assess the imp...
Uložené v:
| Vydané v: | Hydrogeology journal Ročník 30; číslo 3; s. 947 - 963 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1431-2174, 1435-0157 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional or local scales. Aiming to overcome this limitation, the partial least squares regression (PLSR) model is firstly utilized to assess the importance of some independent variables that are commonly employed in GRACE downscaling research. Three kinds of downscaling models are chosen to improve the resolution of GRACE-based water storage estimates from 1 to 0.25°, namely: multivariable linear regression, random forest (RF), and NoahV2.1. Results indicate that terrestrial water storage anomalies are more closely related to four independent variables in the Haihe River Basin, China: these variables are evapotranspiration, land surface temperature, air temperature, and soil moisture. With respect to the spatial distribution, the downscaled results based on the NoahV2.1 and RF models can effectively capture the subgrid heterogeneity while preserving the water storage characteristics at the original scale. By verifying the downscaled results with measured groundwater levels, it can be observed that the correlation coefficient between the RF-based downscaled groundwater storage anomalies (GWSA) and in-situ measurements is increased by 20.55% (Beijing), 9.13% (Tianjin), and 10.48% (Hebei) relative to the downscaled results based on the NoahV2.1 model. The cross wavelet transform illustrates that the meteorological factors have a strong influence on the GWSA series in the Haihe River Basin with an approximately 12-month signal during 2003–2016. This study can provide high-resolution GWSA datasets for water resources management and also provide a reference for the selection of dominant independent variables. |
|---|---|
| AbstractList | The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional or local scales. Aiming to overcome this limitation, the partial least squares regression (PLSR) model is firstly utilized to assess the importance of some independent variables that are commonly employed in GRACE downscaling research. Three kinds of downscaling models are chosen to improve the resolution of GRACE-based water storage estimates from 1 to 0.25°, namely: multivariable linear regression, random forest (RF), and NoahV2.1. Results indicate that terrestrial water storage anomalies are more closely related to four independent variables in the Haihe River Basin, China: these variables are evapotranspiration, land surface temperature, air temperature, and soil moisture. With respect to the spatial distribution, the downscaled results based on the NoahV2.1 and RF models can effectively capture the subgrid heterogeneity while preserving the water storage characteristics at the original scale. By verifying the downscaled results with measured groundwater levels, it can be observed that the correlation coefficient between the RF-based downscaled groundwater storage anomalies (GWSA) and in-situ measurements is increased by 20.55% (Beijing), 9.13% (Tianjin), and 10.48% (Hebei) relative to the downscaled results based on the NoahV2.1 model. The cross wavelet transform illustrates that the meteorological factors have a strong influence on the GWSA series in the Haihe River Basin with an approximately 12-month signal during 2003–2016. This study can provide high-resolution GWSA datasets for water resources management and also provide a reference for the selection of dominant independent variables. |
| Author | Zhang, Gangqiang Yin, Wenjie Chen, Sheming Zhang, Dasheng Zhang, Xiuping Liu, Futian |
| Author_xml | – sequence: 1 givenname: Wenjie surname: Yin fullname: Yin, Wenjie organization: Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology – sequence: 2 givenname: Gangqiang surname: Zhang fullname: Zhang, Gangqiang email: 211804020040@home.hpu.edu.cn organization: Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, School of Surveying and Landing Information Engineering, Henan Polytechnic University – sequence: 3 givenname: Futian surname: Liu fullname: Liu, Futian organization: Tianjin Center, China Geological Survey – sequence: 4 givenname: Dasheng surname: Zhang fullname: Zhang, Dasheng organization: Hebei Provincial Institute of Water Science – sequence: 5 givenname: Xiuping surname: Zhang fullname: Zhang, Xiuping organization: Jiangxi Academy of Water Science and Engineering – sequence: 6 givenname: Sheming surname: Chen fullname: Chen, Sheming organization: Tianjin Center, China Geological Survey |
| BookMark | eNp9kc1q3DAUhUVJoUnaF-hK0E03bvRrjZdhSNNAoFDatZCla4-CLE0luSVPkNeuZqYQyCIL_XD5ztHVPRfoLKYICH2k5AslRF2VtgvSEUbbEkJ14g06p4LLjlCpzo532jGqxDt0UcoDaThV_Bw93S37nP74OOO6A1z2pnoTcIaSwlp9ijhN-PbH9famG00Bh-ec1uj-mgoZl5qymQFDqX5plYLXcnAyeDF25yPgACbHYynMKfu6W7CJDu8eXU4hzd62t5bkILxHbycTCnz4f16iX19vfm6_dfffb--21_ed4UrWbuSmh9G4gYxyAAJUMMY5V0Q46yYrqVHDxAbpCBvHEQQQa5UlEwfXy2HD-CX6fPJtv_69tsb14ouFEEyEtBbN-p4MGyI2qqGfXqAPac2xddcoyYngvTwYbk6UzamUDJO2vprD5Go2PmhK9CEhfUpIt4T0MSEtmpS9kO5zm2N-fF3ET6LS4DhDfu7qFdU__1Cnug |
| CitedBy_id | crossref_primary_10_3390_rs15092247 crossref_primary_10_1016_j_asr_2024_05_003 crossref_primary_10_1016_j_jhydrol_2022_128447 crossref_primary_10_3390_rs16234566 crossref_primary_10_1016_j_scitotenv_2023_168239 crossref_primary_10_1016_j_gsd_2025_101430 crossref_primary_10_1016_j_scitotenv_2022_161138 crossref_primary_10_1016_j_jhydrol_2024_130622 crossref_primary_10_1016_j_scitotenv_2023_168958 crossref_primary_10_1007_s10661_024_12457_w crossref_primary_10_1016_j_jhydrol_2024_131591 crossref_primary_10_1080_10106049_2024_2387784 crossref_primary_10_1016_j_atmosres_2023_106815 crossref_primary_10_1080_01431161_2024_2427915 crossref_primary_10_1029_2024WR038888 crossref_primary_10_1016_j_rse_2024_114359 crossref_primary_10_1002_hyp_15034 crossref_primary_10_3390_rs17142526 crossref_primary_10_1007_s10661_023_11480_7 crossref_primary_10_1016_j_eswa_2024_123785 crossref_primary_10_3390_hydrology9100179 crossref_primary_10_1016_j_ejrh_2025_102552 crossref_primary_10_1007_s00267_025_02247_6 crossref_primary_10_3390_rs17183172 crossref_primary_10_3390_w16131904 crossref_primary_10_1007_s11053_025_10528_4 crossref_primary_10_3390_w15152838 crossref_primary_10_1016_j_gsd_2024_101113 crossref_primary_10_2166_hydro_2023_062 crossref_primary_10_1007_s10040_022_02578_2 crossref_primary_10_1007_s10661_025_14207_y crossref_primary_10_3390_rs15112913 crossref_primary_10_1109_TGRS_2024_3511944 crossref_primary_10_1029_2023JD039387 crossref_primary_10_1038_s44221_024_00194_w crossref_primary_10_1007_s00190_025_01943_9 |
| Cites_doi | 10.1029/2017JD027468 10.1016/j.scitotenv.2016.09.124 10.1002/wrcr.20192 10.1029/2005GL025285 10.1016/j.advwatres.2017.10.021 10.1016/j.jhydrol.2018.11.030 10.1029/2020WR028648 10.3390/rs11243050 10.1007/s10040-015-1278-6 10.1038/s41597-021-00862-6 10.3390/rs13030523 10.1016/j.advwatres.2019.103425 10.1016/j.jhazmat.2019.121766 10.1007/s10040-018-1768-4 10.1016/j.jhydrol.2021.126735 10.1126/science.1089802 10.1155/2014/578372 10.1002/2016JB013844 10.1016/j.jhydrol.2020.125348 10.1029/2010JB000850 10.1023/A:1010933404324 10.3390/rs12030511 10.3390/rs10010143 10.1007/978-3-540-69496-0_26 10.1029/2008JB006056 10.3969/j.issn.1004-7328.2015.01.001 10.1002/2014GL062498 10.3390/rs13050900 10.1016/j.jhydrol.2011.06.013 10.1016/j.pce.2021.103042 10.1038/s41467-020-17428-6 10.3390/su12041588 10.1002/2016JB013073 10.1016/j.renene.2018.03.056 10.1029/2009WR008564 10.1002/cem.2736 10.5194/hess-20-1405-2016 10.1080/02626667.2021.1896719 10.1029/2020WR028944 10.1002/2014WR016853 10.1007/s12517-016-2593-5 10.3390/rs11242979 10.1038/srep24398 10.3390/rs10050674 10.1002/wrcr.20421 10.1029/2005GL025305 10.3390/rs10040493 10.1038/nature08238 10.1016/j.jhydrol.2020.124849 10.1002/2016GL071287 10.1126/science.1099192 10.1002/2015WR017311 10.1002/2013GL058632 10.1016/j.jhydrol.2018.12.037 10.1016/j.jhydrol.2020.124793 10.1029/2009GL039459 10.13203/j.whugis20190108 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.19789/j.1004-9398.2013.04.020 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to International Association of Hydrogeologists 2022 The Author(s), under exclusive licence to International Association of Hydrogeologists 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to International Association of Hydrogeologists 2022 – notice: The Author(s), under exclusive licence to International Association of Hydrogeologists 2022. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M2P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s10040-021-02447-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| DocumentTitle_FL | Amélioration de la résolution spatiale des estimations du stockage des eaux souterraines basées sur GRACE à l’aide d’un algorithme d’apprentissage automatique et d’un modèle hydrologique |
| EISSN | 1435-0157 |
| EndPage | 963 |
| ExternalDocumentID | 10_1007_s10040_021_02447_4 |
| GeographicLocations | Haihe River Basin China |
| GeographicLocations_xml | – name: Haihe River Basin – name: China |
| GroupedDBID | -5A -5G -5~ -BR -DZ -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29I 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 78A 7XC 88I 8CJ 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPPZ ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7Y Z7Z Z85 Z86 ZMTXR ZY4 ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7QH 7ST 7TG 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KL. KR7 L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-a375t-b3a6ebad90b59e0e1422333704dcdfc51a79f295d02bbbe4e0cc7c0f3ed659823 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755098700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1431-2174 |
| IngestDate | Sun Nov 09 14:34:53 EST 2025 Wed Nov 05 01:15:21 EST 2025 Sat Nov 29 02:09:09 EST 2025 Tue Nov 18 22:22:35 EST 2025 Fri Feb 21 02:46:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Groundwater storage anomalies Downscaling methods China Remote and satellite sensing GRACE satellites |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a375t-b3a6ebad90b59e0e1422333704dcdfc51a79f295d02bbbe4e0cc7c0f3ed659823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2653043652 |
| PQPubID | 55405 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2660980487 proquest_journals_2653043652 crossref_citationtrail_10_1007_s10040_021_02447_4 crossref_primary_10_1007_s10040_021_02447_4 springer_journals_10_1007_s10040_021_02447_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20220500 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Official Journal of the International Association of Hydrogeologists |
| PublicationTitle | Hydrogeology journal |
| PublicationTitleAbbrev | Hydrogeol J |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Woldesenbet, Elagib, Ribbe, Heinrich (CR47) 2017; 575 Long, Longuevergne, Scanlon (CR19) 2015; 51 Yin, Fan, Tangdamrongsub, Hu, Zhang (CR52) 2021; 602 Feng, Shum, Zhong, Pan (CR11) 2018; 10 Long, Yang, Scanlon, Zhao, Liu, Burek, Pan, You, Wada (CR21) 2020; 11 CR31 Zhong, Wang, Li (CR61) 2021; 57 Prokoph, El Bilali (CR29) 2008; 40 Vishwakarma, Zhang, Sneeuw (CR41) 2021; 8 Yuan, Chang, Gupta, Niu (CR54) 2019; 133 Han (CR13) 2015; 1 Hu, Jiao (CR14) 2015; 23 Jyolsna, Kambhammettu, Gorugantula (CR17) 2021; 66 Pan, Zhang, Gong, Yeh, Shen, Guo, Huang, Li (CR25) 2017; 44 Wan, Zhang, Xue, Hong, Hong, Gourley (CR43) 2015; 51 CR3 Huang, Pan, Gong, Yeh, Li, Zhou (CR15) 2015; 42 Wang, Wang, Yang, Di, Zhao, Liang (CR45) 2020; 585 Long, Chen, Scanlon, Wada, Yang (CR20) 2016; 6 Sun (CR35) 2013; 49 Zhong, Wang, Li, Zhong, Wang, Li (CR62) 2021; 13 Wang, Zhang, Ning, Wang (CR44) 2018; 36 Zhong, Zhong, Feng, Zhang, Shen, Wu (CR58) 2018; 10 Peltier, Argus, Drummond (CR27) 2018; 123 CR40 Longuevergne, Scanlon, Wilson (CR22) 2010; 46 Alsdorf, Lettenmaier (CR2) 2003; 301 Pellet, Aires, Yamazaki (CR26) 2021; 57 Cheng, Ries, Tapley (CR7) 2011; 116 Gong, Pan, Zheng, Li, Zhu (CR12) 2018; 26 Xing, Niu, Wan, Jiang, Gao, Xiukang (CR49) 2020; 12 CR18 Rodell, Velicogna, Famiglietti (CR32) 2009; 460 Seyoum, Kwon, Milewski (CR34) 2017; 110 CR16 Chen, He, Liu, Li, Jing (CR6) 2019; 11 Yin, Hu, Zhang, Wang, Han (CR50) 2018; 123 CR55 Breiman (CR4) 2001; 45 Yosri, Abd-Elmegeed, Hassan (CR53) 2016; 9 Zhong, Feng, Humphrey, Zhong (CR59) 2019; 11 Wang, Wang, Yang, Di, Zhao, Liang (CR46) 2020; 585 Swenson, Wahr (CR38) 2006; 33 Farrés, Platikanov, Tsakovski, Tauler (CR9) 2015; 29 Zhong, Zhong, Mao, Ji (CR60) 2020; 12 Sun, Riva, Ditmar (CR37) 2016; 121 Wu, Li, Teng, Chen, Wang (CR48) 2019; 388 Zhang, Liu, Bai (CR56) 2019; 568 Olauson (CR24) 2018; 126 Sakumura, Bettadpur, Bruinsma (CR33) 2014; 41 Zuo, Xu, Chen, Li (CR63) 2021; 123 Adamowski, Chan (CR1) 2011; 407 CR28 Feng, Zhong, Lemoine, Biancale, Hsu, Xia (CR10) 2013; 49 Wahr, Swenson, Velicogna (CR42) 2006; 33 Yin, Han, Zheng, Yeo, Tangdamrongsub, Ghobadi-Far (CR51) 2020; 590 Du, Chen, Zhang, Sun, Yang (CR8) 2020; 41 Tapley, Bettadpur, Ries, Thompson, Watkins (CR39) 2004; 305 Miro, Famiglietti (CR23) 2018; 10 Sun, Wendi, Kim, Liong (CR36) 2016; 20 Zhang, Liu, Wang (CR57) 2021; 13 Chen, Wilson, Tapley, Yang, Niu (CR5) 2005; 114 Rajaee, Ebrahimi, Nourani (CR30) 2019; 572 S Swenson (2447_CR38) 2006; 33 W Feng (2447_CR10) 2013; 49 D Long (2447_CR20) 2016; 6 2447_CR18 2447_CR3 T Rajaee (2447_CR30) 2019; 572 J Adamowski (2447_CR1) 2011; 407 J Wahr (2447_CR42) 2006; 33 D Long (2447_CR21) 2020; 11 TA Woldesenbet (2447_CR47) 2017; 575 Y Xing (2447_CR49) 2020; 12 Y Sun (2447_CR37) 2016; 121 D Zhong (2447_CR62) 2021; 13 P Jyolsna (2447_CR17) 2021; 66 A Prokoph (2447_CR29) 2008; 40 2447_CR55 P Han (2447_CR13) 2015; 1 2447_CR16 WM Seyoum (2447_CR34) 2017; 110 L Chen (2447_CR6) 2019; 11 Y Pan (2447_CR25) 2017; 44 D Long (2447_CR19) 2015; 51 L Hu (2447_CR14) 2015; 23 Y Sun (2447_CR36) 2016; 20 DE Alsdorf (2447_CR2) 2003; 301 W Yin (2447_CR52) 2021; 602 R Yuan (2447_CR54) 2019; 133 J Zhang (2447_CR57) 2021; 13 F Wang (2447_CR45) 2020; 585 Z Wan (2447_CR43) 2015; 51 WR Peltier (2447_CR27) 2018; 123 M Rodell (2447_CR32) 2009; 460 AM Yosri (2447_CR53) 2016; 9 W Yin (2447_CR51) 2020; 590 B Vishwakarma (2447_CR41) 2021; 8 Y Zhong (2447_CR60) 2020; 12 L Breiman (2447_CR4) 2001; 45 2447_CR28 Y Du (2447_CR8) 2020; 41 L Longuevergne (2447_CR22) 2010; 46 M Miro (2447_CR23) 2018; 10 J Olauson (2447_CR24) 2018; 126 Z Huang (2447_CR15) 2015; 42 Y Zhong (2447_CR59) 2019; 11 W Feng (2447_CR11) 2018; 10 J Wang (2447_CR44) 2018; 36 W Yin (2447_CR50) 2018; 123 BD Tapley (2447_CR39) 2004; 305 V Pellet (2447_CR26) 2021; 57 J Zuo (2447_CR63) 2021; 123 2447_CR31 F Wang (2447_CR46) 2020; 585 J Wu (2447_CR48) 2019; 388 M Farrés (2447_CR9) 2015; 29 M Cheng (2447_CR7) 2011; 116 D Zhang (2447_CR56) 2019; 568 AY Sun (2447_CR35) 2013; 49 JL Chen (2447_CR5) 2005; 114 D Zhong (2447_CR61) 2021; 57 2447_CR40 Y Zhong (2447_CR58) 2018; 10 C Sakumura (2447_CR33) 2014; 41 H Gong (2447_CR12) 2018; 26 |
| References_xml | – volume: 123 start-page: 5973 issue: 11 year: 2018 end-page: 5987 ident: CR50 article-title: Statistical downscaling of GRACE-derived groundwater storage using ET data in the North China plain publication-title: J Geophys Res: Atmos doi: 10.1029/2017JD027468 – volume: 575 start-page: 724 year: 2017 end-page: 741 ident: CR47 article-title: Hydrological responses to land use/cover changes in the source region of the upper Blue Nile Basin, Ethiopia publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.09.124 – ident: CR16 – volume: 49 start-page: 2110 issue: 4 year: 2013 end-page: 2118 ident: CR10 article-title: Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements publication-title: Water Resour Res doi: 10.1002/wrcr.20192 – volume: 33 issue: 8 year: 2006 ident: CR38 article-title: Post-processing removal of correlated errors in GRACE data publication-title: Geophys Res Lett doi: 10.1029/2005GL025285 – volume: 110 start-page: 279 year: 2017 end-page: 290 ident: CR34 article-title: Improved methods for estimating local terrestrial water dynamics from GRACE in the northern High Plains publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2017.10.021 – volume: 568 start-page: 592 year: 2019 end-page: 603 ident: CR56 article-title: Assessment of hydrological drought and its recovery time for eight tributaries of the Yangtze River (China) based on downscaled GRACE data publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.11.030 – volume: 57 issue: 5 year: 2021 ident: CR26 article-title: Coherent satellite monitoring of the water cycle over the Amazon, part 2: total water storage change and river discharge estimation publication-title: Water Resour Res doi: 10.1029/2020WR028648 – volume: 11 start-page: 3050 issue: 24 year: 2019 ident: CR59 article-title: Human-induced and climate-driven contributions to water storage variations in the Haihe River basin, China publication-title: Remote Sens doi: 10.3390/rs11243050 – volume: 23 start-page: 1305 issue: 7 year: 2015 end-page: 1317 ident: CR14 article-title: Calibration of a large-scale groundwater flow model using GRACE data: a case study in the Qaidam Basin, China publication-title: Hydrogeol J doi: 10.1007/s10040-015-1278-6 – volume: 8 start-page: 95 issue: 1 year: 2021 ident: CR41 article-title: Downscaling GRACE total water storage change using partial least squares regression publication-title: Sci Data doi: 10.1038/s41597-021-00862-6 – volume: 13 start-page: 523 issue: 3 year: 2021 ident: CR57 article-title: Downscaling groundwater storage data in China to a 1-km resolution using machine learning methods publication-title: Remote Sens doi: 10.3390/rs13030523 – volume: 133 start-page: 103425 issue: 11 year: 2019 ident: CR54 article-title: Climatic forcing for recent significant terrestrial drying and wetting publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2019.103425 – volume: 388 start-page: 121766 year: 2019 ident: CR48 article-title: A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks publication-title: Hazard Mater doi: 10.1016/j.jhazmat.2019.121766 – volume: 26 start-page: 1417 issue: 5 year: 2018 end-page: 1427 ident: CR12 article-title: Long-term groundwater storage changes and land subsidence development in the North China plain (1971–2015) publication-title: Hydrogeol J doi: 10.1007/s10040-018-1768-4 – volume: 602 start-page: 126735 year: 2021 ident: CR52 article-title: Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE: a case study over the state of Victoria, Australia publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126735 – volume: 301 start-page: 1491 issue: 5639 year: 2003 end-page: 1494 ident: CR2 article-title: Tracking fresh water from space publication-title: Science doi: 10.1126/science.1089802 – volume: 41 start-page: 44 issue: 10 year: 2020 end-page: 48 ident: CR8 article-title: Drought monitoring and analysis over Haihe River basin based on GRACE and MODIS datasets publication-title: Pearl River doi: 10.1155/2014/578372 – volume: 123 start-page: 2019 year: 2018 end-page: 2018 ident: CR27 article-title: Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. publication-title: JGR Solid Earth doi: 10.1002/2016JB013844 – volume: 590 start-page: 125348 year: 2020 ident: CR51 article-title: Improved water storage estimates within the North China plain by assimilating GRACE data into the CABLE model publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125348 – volume: 116 issue: B1 year: 2011 ident: CR7 article-title: Variations of the Earth’s figure axis from satellite laser ranging and GRACE publication-title: J Geophys Res doi: 10.1029/2010JB000850 – volume: 36 start-page: 1 issue: 10 year: 2018 end-page: 5 ident: CR44 article-title: Downscaling analysis of GRACE terrestrial water storage changes in Yunnan Province publication-title: Water Resour Power – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR4 article-title: Random forest publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 12 start-page: 511 issue: 3 year: 2020 ident: CR60 article-title: Evaluation of evapotranspiration for exorheic catchments of China during the GRACE era: from a water balance perspective publication-title: Remote Sens doi: 10.3390/rs12030511 – volume: 10 start-page: 143 issue: 1 year: 2018 ident: CR23 article-title: Downscaling GRACE remote sensing datasets to high-resolution groundwater storage change maps of California’s Central Valley publication-title: Remote Sens doi: 10.3390/rs10010143 – volume: 40 start-page: 575 year: 2008 end-page: 586 ident: CR29 article-title: Cross-wavelet analysis: a tool for detection of relationships between paleoclimate proxy records publication-title: Math Geosci doi: 10.1007/978-3-540-69496-0_26 – volume: 114 issue: B5 year: 2005 ident: CR5 article-title: Drought event in the Amazon River basin as measured by GRACE and estimated by climate models publication-title: J Geophys Res doi: 10.1029/2008JB006056 – volume: 1 start-page: 1 year: 2015 end-page: 15 ident: CR13 article-title: Status quo of groundwater development and utilization in Haihe River basin and its management publication-title: Haihe Water Resour doi: 10.3969/j.issn.1004-7328.2015.01.001 – volume: 42 start-page: 1791 issue: 6 year: 2015 end-page: 1799 ident: CR15 article-title: Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China plain publication-title: Geophys Res Lett doi: 10.1002/2014GL062498 – volume: 13 start-page: 900 issue: 5 year: 2021 ident: CR62 article-title: Spatiotemporal downscaling of GRACE total water storage using land surface model outputs publication-title: Remote Sens doi: 10.3390/rs13050900 – ident: CR18 – volume: 407 start-page: 28 year: 2011 end-page: 40 ident: CR1 article-title: A wavelet neural network conjunction model for groundwater level forecasting publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.06.013 – volume: 123 start-page: 103042 year: 2021 ident: CR63 article-title: Downscaling simulation of groundwater storage in the Tarim River basin in Northwest China based on GRACE data publication-title: Phys Chem Earth A/B/C doi: 10.1016/j.pce.2021.103042 – volume: 11 start-page: 3665 year: 2020 ident: CR21 article-title: South-to-north water diversion stabilizing Beijing’s groundwater levels publication-title: Nat Commun doi: 10.1038/s41467-020-17428-6 – volume: 12 start-page: 1588 year: 2020 ident: CR49 article-title: The correlation between soil nutrient and potato quality in Loess Plateau of China based on PLSR publication-title: Sustainability doi: 10.3390/su12041588 – volume: 121 start-page: 8352 issue: 11 year: 2016 end-page: 8370 ident: CR37 article-title: Optimizing estimates of annual variations and trends in geocenter motion and J from a combination of GRACE data and geophysical models publication-title: J Geophys Res: Solid Earth doi: 10.1002/2016JB013073 – volume: 126 start-page: 322 year: 2018 end-page: 331 ident: CR24 article-title: ERA5: the new champion of wind power modelling publication-title: Renew Energ doi: 10.1016/j.renene.2018.03.056 – volume: 46 year: 2010 ident: CR22 article-title: GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains aquifer, USA publication-title: Water Resour Res doi: 10.1029/2009WR008564 – volume: 29 start-page: 528 year: 2015 end-page: 536 ident: CR9 article-title: Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation publication-title: J Chemom doi: 10.1002/cem.2736 – ident: CR40 – volume: 20 start-page: 1405 issue: 4 year: 2016 end-page: 1412 ident: CR36 article-title: Technical note: application of artificial neural networks in groundwater table forecasting: a case study in a Singapore swamp forest publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-20-1405-2016 – volume: 66 start-page: 874 issue: 5 year: 2021 end-page: 887 ident: CR17 article-title: Application of random forest and multi linear regression methods in downscaling GRACE derived groundwater storage changes publication-title: Hydrol Sci J doi: 10.1080/02626667.2021.1896719 – volume: 57 issue: 1 year: 2021 ident: CR61 article-title: A self-calibration variance-component model for spatial downscaling of GRACE observations using land surface model outputs publication-title: Water Resour Res doi: 10.1029/2020WR028944 – ident: CR3 – volume: 51 start-page: 2574 issue: 4 year: 2015 end-page: 2594 ident: CR19 article-title: Global analysis of approaches for deriving total water storage changes from GRACE satellites publication-title: Water Resour Res doi: 10.1002/2014WR016853 – volume: 9 start-page: 1 issue: 10 year: 2016 end-page: 9 ident: CR53 article-title: Assessing groundwater storage changes in the Nubian aquifer using GRACE data publication-title: Arab J Geosci doi: 10.1007/s12517-016-2593-5 – volume: 11 start-page: 2979 issue: 24 year: 2019 ident: CR6 article-title: Downscaling of GRACE-derived groundwater storage based on the random forest model publication-title: Remote Sens doi: 10.3390/rs11242979 – ident: CR31 – volume: 6 start-page: 24398 year: 2016 ident: CR20 article-title: Have GRACE satellites overestimated groundwater depletion in the Northwest India aquifer? publication-title: Sci Rep-Uk doi: 10.1038/srep24398 – volume: 10 start-page: 674 year: 2018 ident: CR11 article-title: Groundwater storage changes in China from satellite gravity: an overview publication-title: Remote Sens doi: 10.3390/rs10050674 – volume: 49 start-page: 5900 issue: 9 year: 2013 end-page: 5912 ident: CR35 article-title: Predicting groundwater level changes using GRACE data publication-title: Water Resour Res doi: 10.1002/wrcr.20421 – volume: 33 issue: 6 year: 2006 ident: CR42 article-title: Accuracy of GRACE mass estimates publication-title: Geophys Res Lett doi: 10.1029/2005GL025305 – volume: 10 start-page: 493 issue: 4 year: 2018 ident: CR58 article-title: Groundwater depletion in the west Liaohe River basin, China and its implications revealed by GRACE and in situ measurements publication-title: Remote Sens doi: 10.3390/rs10040493 – volume: 460 start-page: 999 issue: 7258 year: 2009 end-page: 1002 ident: CR32 article-title: Satellite-based estimates of groundwater depletion in India publication-title: Nature doi: 10.1038/nature08238 – ident: CR55 – volume: 585 start-page: 124849 year: 2020 ident: CR46 article-title: Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China plain publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124849 – volume: 44 start-page: 190 issue: 1 year: 2017 end-page: 199 ident: CR25 article-title: Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China publication-title: Geophys Res Lett doi: 10.1002/2016GL071287 – ident: CR28 – volume: 305 start-page: 503 issue: 5683 year: 2004 end-page: 505 ident: CR39 article-title: GRACE measurements of mass variability in the earth system publication-title: Science doi: 10.1126/science.1099192 – volume: 51 start-page: 6485 issue: 8 year: 2015 end-page: 6499 ident: CR43 article-title: Water balance based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States publication-title: Water Resour Res doi: 10.1002/2015WR017311 – volume: 41 start-page: 1389 issue: 5 year: 2014 end-page: 1397 ident: CR33 article-title: Ensemble prediction and inter-comparison analysis of GRACE time-variable gravity field models publication-title: Geophys Res Lett doi: 10.1002/2013GL058632 – volume: 572 start-page: 336 year: 2019 end-page: 351 ident: CR30 article-title: A review of the artificial intelligence methods in groundwater level modeling publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.12.037 – volume: 585 start-page: 124793 year: 2020 ident: CR45 article-title: A new copula-based standardized precipitation evapotranspiration streamflow index for drought monitoring publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124793 – volume: 575 start-page: 724 year: 2017 ident: 2447_CR47 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.09.124 – volume: 57 issue: 1 year: 2021 ident: 2447_CR61 publication-title: Water Resour Res doi: 10.1029/2020WR028944 – ident: 2447_CR28 – volume: 11 start-page: 3050 issue: 24 year: 2019 ident: 2447_CR59 publication-title: Remote Sens doi: 10.3390/rs11243050 – volume: 1 start-page: 1 year: 2015 ident: 2447_CR13 publication-title: Haihe Water Resour doi: 10.3969/j.issn.1004-7328.2015.01.001 – volume: 10 start-page: 143 issue: 1 year: 2018 ident: 2447_CR23 publication-title: Remote Sens doi: 10.3390/rs10010143 – ident: 2447_CR55 doi: 10.1029/2009GL039459 – volume: 13 start-page: 523 issue: 3 year: 2021 ident: 2447_CR57 publication-title: Remote Sens doi: 10.3390/rs13030523 – volume: 33 issue: 6 year: 2006 ident: 2447_CR42 publication-title: Geophys Res Lett doi: 10.1029/2005GL025305 – volume: 585 start-page: 124849 year: 2020 ident: 2447_CR46 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124849 – volume: 66 start-page: 874 issue: 5 year: 2021 ident: 2447_CR17 publication-title: Hydrol Sci J doi: 10.1080/02626667.2021.1896719 – volume: 10 start-page: 493 issue: 4 year: 2018 ident: 2447_CR58 publication-title: Remote Sens doi: 10.3390/rs10040493 – volume: 126 start-page: 322 year: 2018 ident: 2447_CR24 publication-title: Renew Energ doi: 10.1016/j.renene.2018.03.056 – volume: 114 issue: B5 year: 2005 ident: 2447_CR5 publication-title: J Geophys Res doi: 10.1029/2008JB006056 – volume: 116 issue: B1 year: 2011 ident: 2447_CR7 publication-title: J Geophys Res doi: 10.1029/2010JB000850 – volume: 121 start-page: 8352 issue: 11 year: 2016 ident: 2447_CR37 publication-title: J Geophys Res: Solid Earth doi: 10.1002/2016JB013073 – volume: 36 start-page: 1 issue: 10 year: 2018 ident: 2447_CR44 publication-title: Water Resour Power – volume: 46 year: 2010 ident: 2447_CR22 publication-title: Water Resour Res doi: 10.1029/2009WR008564 – volume: 123 start-page: 2019 year: 2018 ident: 2447_CR27 publication-title: JGR Solid Earth doi: 10.1002/2016JB013844 – ident: 2447_CR18 doi: 10.13203/j.whugis20190108 – volume: 590 start-page: 125348 year: 2020 ident: 2447_CR51 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125348 – ident: 2447_CR40 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – volume: 12 start-page: 1588 year: 2020 ident: 2447_CR49 publication-title: Sustainability doi: 10.3390/su12041588 – volume: 8 start-page: 95 issue: 1 year: 2021 ident: 2447_CR41 publication-title: Sci Data doi: 10.1038/s41597-021-00862-6 – volume: 123 start-page: 5973 issue: 11 year: 2018 ident: 2447_CR50 publication-title: J Geophys Res: Atmos doi: 10.1029/2017JD027468 – ident: 2447_CR31 doi: 10.19789/j.1004-9398.2013.04.020 – volume: 44 start-page: 190 issue: 1 year: 2017 ident: 2447_CR25 publication-title: Geophys Res Lett doi: 10.1002/2016GL071287 – volume: 572 start-page: 336 year: 2019 ident: 2447_CR30 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.12.037 – volume: 42 start-page: 1791 issue: 6 year: 2015 ident: 2447_CR15 publication-title: Geophys Res Lett doi: 10.1002/2014GL062498 – volume: 26 start-page: 1417 issue: 5 year: 2018 ident: 2447_CR12 publication-title: Hydrogeol J doi: 10.1007/s10040-018-1768-4 – volume: 305 start-page: 503 issue: 5683 year: 2004 ident: 2447_CR39 publication-title: Science doi: 10.1126/science.1099192 – volume: 49 start-page: 2110 issue: 4 year: 2013 ident: 2447_CR10 publication-title: Water Resour Res doi: 10.1002/wrcr.20192 – volume: 13 start-page: 900 issue: 5 year: 2021 ident: 2447_CR62 publication-title: Remote Sens doi: 10.3390/rs13050900 – volume: 20 start-page: 1405 issue: 4 year: 2016 ident: 2447_CR36 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-20-1405-2016 – volume: 11 start-page: 2979 issue: 24 year: 2019 ident: 2447_CR6 publication-title: Remote Sens doi: 10.3390/rs11242979 – ident: 2447_CR3 – volume: 23 start-page: 1305 issue: 7 year: 2015 ident: 2447_CR14 publication-title: Hydrogeol J doi: 10.1007/s10040-015-1278-6 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 2447_CR4 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 585 start-page: 124793 year: 2020 ident: 2447_CR45 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124793 – volume: 12 start-page: 511 issue: 3 year: 2020 ident: 2447_CR60 publication-title: Remote Sens doi: 10.3390/rs12030511 – volume: 51 start-page: 2574 issue: 4 year: 2015 ident: 2447_CR19 publication-title: Water Resour Res doi: 10.1002/2014WR016853 – volume: 51 start-page: 6485 issue: 8 year: 2015 ident: 2447_CR43 publication-title: Water Resour Res doi: 10.1002/2015WR017311 – volume: 568 start-page: 592 year: 2019 ident: 2447_CR56 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.11.030 – volume: 41 start-page: 1389 issue: 5 year: 2014 ident: 2447_CR33 publication-title: Geophys Res Lett doi: 10.1002/2013GL058632 – volume: 11 start-page: 3665 year: 2020 ident: 2447_CR21 publication-title: Nat Commun doi: 10.1038/s41467-020-17428-6 – volume: 9 start-page: 1 issue: 10 year: 2016 ident: 2447_CR53 publication-title: Arab J Geosci doi: 10.1007/s12517-016-2593-5 – volume: 57 issue: 5 year: 2021 ident: 2447_CR26 publication-title: Water Resour Res doi: 10.1029/2020WR028648 – volume: 29 start-page: 528 year: 2015 ident: 2447_CR9 publication-title: J Chemom doi: 10.1002/cem.2736 – volume: 460 start-page: 999 issue: 7258 year: 2009 ident: 2447_CR32 publication-title: Nature doi: 10.1038/nature08238 – volume: 123 start-page: 103042 year: 2021 ident: 2447_CR63 publication-title: Phys Chem Earth A/B/C doi: 10.1016/j.pce.2021.103042 – volume: 49 start-page: 5900 issue: 9 year: 2013 ident: 2447_CR35 publication-title: Water Resour Res doi: 10.1002/wrcr.20421 – volume: 10 start-page: 674 year: 2018 ident: 2447_CR11 publication-title: Remote Sens doi: 10.3390/rs10050674 – volume: 40 start-page: 575 year: 2008 ident: 2447_CR29 publication-title: Math Geosci doi: 10.1007/978-3-540-69496-0_26 – volume: 6 start-page: 24398 year: 2016 ident: 2447_CR20 publication-title: Sci Rep-Uk doi: 10.1038/srep24398 – volume: 388 start-page: 121766 year: 2019 ident: 2447_CR48 publication-title: Hazard Mater doi: 10.1016/j.jhazmat.2019.121766 – volume: 110 start-page: 279 year: 2017 ident: 2447_CR34 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2017.10.021 – volume: 33 issue: 8 year: 2006 ident: 2447_CR38 publication-title: Geophys Res Lett doi: 10.1029/2005GL025285 – volume: 407 start-page: 28 year: 2011 ident: 2447_CR1 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.06.013 – volume: 301 start-page: 1491 issue: 5639 year: 2003 ident: 2447_CR2 publication-title: Science doi: 10.1126/science.1089802 – volume: 133 start-page: 103425 issue: 11 year: 2019 ident: 2447_CR54 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2019.103425 – ident: 2447_CR16 – volume: 602 start-page: 126735 year: 2021 ident: 2447_CR52 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126735 – volume: 41 start-page: 44 issue: 10 year: 2020 ident: 2447_CR8 publication-title: Pearl River doi: 10.1155/2014/578372 |
| SSID | ssj0004173 |
| Score | 2.499256 |
| Snippet | The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 947 |
| SubjectTerms | Air temperature Algorithms Anomalies Aquatic Pollution China climate Correlation coefficient Correlation coefficients data collection Earth and Environmental Science Earth Sciences Estimates Evapotranspiration Geology Geophysics/Geodesy GRACE (experiment) Gravity Groundwater Groundwater levels Groundwater storage Heterogeneity Hydrogeology Hydrologic models Hydrology Hydrology/Water Resources Independent variables Land surface temperature Least squares method Machine learning Modelling Moisture effects Regression models remote sensing Resolution River basins Rivers Satellite data Soil moisture Soil temperature soil water Spatial discrimination Spatial distribution Spatial resolution Surface temperature Waste Water Technology Water Management Water Pollution Control Water Quality/Water Pollution Water resources Water resources management Water storage watersheds wavelet Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Springer Nature Consortium list (Orbis Cascade Alliance) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5thQle-D1RYMiTeANLSZzE8SNCpTxM1QRs6ltkxw5FoumUtqD-Bfzb-Fyn3SZA2l4T24nOZ9_Z9913ACdZrEqRyJJyqWMap5mkSpqUypCXKtPMRIWb6W-818v6ffHdJ4WNG7R7E5J0O_VvyW6IfkNIgbUrMafxR1ix5i7Dgg3XNz-X2ZDzuLJ1BEKKDrdPlXl9jD_N0dLH_Css6qzN5eb__ecWbHjvkpzP1WEbPphqB9Z8ofPBbAc-dV0l39kuPC-uE4j1AckYkdW2qz19e2Uko5J0r88vOhQtnSaY_1HpJ-ub1gQhlXYjIkjRMURvlSB-_o5IMnTgTEN8NQr76OFuVN9PBkMiK00GM1032y1xVXj24Mdl5_biivqqDFQynkyoYjI1SmoRqESYwOAlEmOMB7EudFkkoeSijESig0gpZWITFAUvgpIZnSJbIPsMrWpUmX0ggiuWaaT0kxgwDmVqe0a6zDKRsEioNoTN5OSFpyzHyhkP-ZJsGYWdW2HnTth53IbTRZ9fc8KOd1sfNXOe-8U7zqM0YcjMn0Rt-Lp4bZcdxlJkZUZTbJOi6tnjXhvOGj1YDvH2Fw_-rfkhrEeYcOEglkfQmtRT8wVWi8fJ_bg-dor_AsTZ_ak priority: 102 providerName: Springer Nature |
| Title | Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model |
| URI | https://link.springer.com/article/10.1007/s10040-021-02447-4 https://www.proquest.com/docview/2653043652 https://www.proquest.com/docview/2660980487 |
| Volume | 30 |
| WOSCitedRecordID | wos000755098700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1435-0157 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004173 issn: 1431-2174 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-ND2l7GRsMraMgT9rbsEjsJI6fUEGFPWxVVTbEW-Sv0Ek0ZW3ZxF-wf3u-1Gk0JHjhxQ-JHVu6893l7nd3AJ_yRJcyVSUVyiY0yXJFtXIZVbEodW65Y6am9FcxGORXV3IYHG7zAKtsZGItqO3UoI_8iGUpx3LpKTu-_UWxaxRGV0MLjTXY8JZNjJCub2zY5kUuI8zeJIgpmt4haSakziGWDgEKXkslgib_K6bW2nwQIK31ztnWc0_8Bl4Hi5P0lizyFl64ahtehubn4_sd-LtyLBBvDZI5Yqz9Av8fHtiSTEtyPuqd9inqPEswE6Syf7yVOiMIrvQiiWCxjgnarQSR9NdEkUkN03Qk9KXwj26u_fEW4wlRlSXjeztrBC-p-_G8gx9n_e-nX2joz0AVF-mCaq4yp5WVkU6lixy6kzjnIkqssaVJYyVkyWRqI6a1domLjBEmKrmzGdYN5LuwXk0r9x6IFJrnFov7KQwdxyrzK5kt81ymnEndgbghTmFC8XLsoXFTtGWXkaCFJ2hRE7RIOvB5teZ2WbrjydndhopFuMbzoiVhBz6uXvsLiFEVVbnpHc7JIpl7QSg6cNjwSvuJx3f88PSOe_CKYapFDa7swvpiduf2YdP8Xvyczw5g46Q_GI4OaobHUVz4cXRx-Q9bngiR |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglQuUF5i6QMjwQksEtuJ4wNCVR-06rKqUJF6C36li9TNluy21f6C_pv-RjzZZCOQ6K0HrkmcSPbnmYnnm28A3mbCFCrRBZXaCSrSTFOjfUp1LAuTOe6ZrVe6LweD7OREHS3BTVsLg7TK1ibWhtqNLZ6Rf2RpwlEuPWGfz39R7BqF2dW2hcYcFod-dhV-2SafDnbC-r5jbG_3eHufNl0FqOYymVLDdeqNdioyifKRx0MQzrmMhLOusEmspSqYSlzEjDFe-MhaaaOCe5ei2h0P770H9wUqiyFVkB11dZjzjHYIQWKKoX5TpNOU6iF3DwkRwSsKScWfjrCLbv9KyNZ-bu_x_zZDq_CoiajJ1nwLPIElXz6Flaa5-3D2DK4XByckRLtkghzyMKDy7bYj44J8-ba1vUvRpzuClS6luwpReEWQPBpMLkExkhHG5QQrBU6JJqOahupJ03cjXDo7DdMxHY6ILh0ZzlzVOhZS9xt6Dt_vZB5ewHI5Lv1LIEoanjkUL9SYGo91GkYyV2SZSjhTpgdxC4bcNuLs2CPkLO9kpRFAeQBQXgMoFz14vxhzPpcmufXp9RY1eWOmJnkHmR68WdwOBgazRrr04wt8Jo1UFgy97MGHFpvdK_79xVe3f_E1rOwff-3n_YPB4Ro8ZFhWUhNJ12F5Wl34DXhgL6c_J9VmvckI_LhrzP4GS6Fjig |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLQIufCMWChgJTmA1sZ04PiBU2l2oWq1WFUi9BTt2ukjdbMluqfYX8J_4dXiyzkYg0VsPXJM4keznmRfPmxmAV5kwpUp0SaW2goo009Rol1Idy9JkljtWNCt9KEej7PhYjTfgV5sLg7LK1iY2htrOCjwj32ZpwrFcesK2yyCLGO8N3599p9hBCiOtbTuNFUQO3PLC_77N3-3v-bV-zdhw8Hn3Ew0dBqjmMllQw3XqjLYqMolykcMDEc65jIQtbFkksZaqZCqxETPGOOGiopBFVHJnU6x8x_17r8Gm9CRD9GDzw2A0PuqyMlfxbU9IYorEP6TshMQ9VPKhPML7SCGp-NMtdlz3r_Bs4_WGd_7n-boLtwPXJjurzXEPNlx1H26Gtu-T5QP4uT5SIZ4Hkzmqy_2A2rUbksxK8vFoZ3dA0dtbgjkwlb3w_LwmKCv1xphgmZIpMnaCOQQnRJNpI1B1JHTk8JdOT_x0LCZToitLJktbty6HNJ2IHsKXK5mHR9CrZpV7DERJwzOLZQ01Bs1jnfqRzJZZphLOlOlD3AIjL0LZduwecpp3BacRTLkHU96AKRd9eLMec7YqWnLp01stgvJgwOZ5B58-vFzf9qYH40m6crNzfCaNVOZdgOzD2xan3Sv-_cUnl3_xBdzwUM0P90cHT-EWw3yTRmG6Bb1Ffe6ewfXix-LbvH4edhyBr1cN2t83e22k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+spatial+resolution+of+GRACE-based+groundwater+storage+estimates+using+a+machine+learning+algorithm+and+hydrological+model&rft.jtitle=Hydrogeology+journal&rft.au=Yin+Wenjie&rft.au=Zhang+Gangqiang&rft.au=Liu+Futian&rft.au=Zhang+Dasheng&rft.date=2022-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1431-2174&rft.eissn=1435-0157&rft.volume=30&rft.issue=3&rft.spage=947&rft.epage=963&rft_id=info:doi/10.1007%2Fs10040-021-02447-4&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-2174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-2174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-2174&client=summon |