Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model

The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional or local scales. Aiming to overcome this limitation, the partial least squares regression (PLSR) model is firstly utilized to assess the imp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Hydrogeology journal Ročník 30; číslo 3; s. 947 - 963
Hlavní autori: Yin, Wenjie, Zhang, Gangqiang, Liu, Futian, Zhang, Dasheng, Zhang, Xiuping, Chen, Sheming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2022
Springer Nature B.V
Predmet:
ISSN:1431-2174, 1435-0157
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional or local scales. Aiming to overcome this limitation, the partial least squares regression (PLSR) model is firstly utilized to assess the importance of some independent variables that are commonly employed in GRACE downscaling research. Three kinds of downscaling models are chosen to improve the resolution of GRACE-based water storage estimates from 1 to 0.25°, namely: multivariable linear regression, random forest (RF), and NoahV2.1. Results indicate that terrestrial water storage anomalies are more closely related to four independent variables in the Haihe River Basin, China: these variables are evapotranspiration, land surface temperature, air temperature, and soil moisture. With respect to the spatial distribution, the downscaled results based on the NoahV2.1 and RF models can effectively capture the subgrid heterogeneity while preserving the water storage characteristics at the original scale. By verifying the downscaled results with measured groundwater levels, it can be observed that the correlation coefficient between the RF-based downscaled groundwater storage anomalies (GWSA) and in-situ measurements is increased by 20.55% (Beijing), 9.13% (Tianjin), and 10.48% (Hebei) relative to the downscaled results based on the NoahV2.1 model. The cross wavelet transform illustrates that the meteorological factors have a strong influence on the GWSA series in the Haihe River Basin with an approximately 12-month signal during 2003–2016. This study can provide high-resolution GWSA datasets for water resources management and also provide a reference for the selection of dominant independent variables.
AbstractList The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional or local scales. Aiming to overcome this limitation, the partial least squares regression (PLSR) model is firstly utilized to assess the importance of some independent variables that are commonly employed in GRACE downscaling research. Three kinds of downscaling models are chosen to improve the resolution of GRACE-based water storage estimates from 1 to 0.25°, namely: multivariable linear regression, random forest (RF), and NoahV2.1. Results indicate that terrestrial water storage anomalies are more closely related to four independent variables in the Haihe River Basin, China: these variables are evapotranspiration, land surface temperature, air temperature, and soil moisture. With respect to the spatial distribution, the downscaled results based on the NoahV2.1 and RF models can effectively capture the subgrid heterogeneity while preserving the water storage characteristics at the original scale. By verifying the downscaled results with measured groundwater levels, it can be observed that the correlation coefficient between the RF-based downscaled groundwater storage anomalies (GWSA) and in-situ measurements is increased by 20.55% (Beijing), 9.13% (Tianjin), and 10.48% (Hebei) relative to the downscaled results based on the NoahV2.1 model. The cross wavelet transform illustrates that the meteorological factors have a strong influence on the GWSA series in the Haihe River Basin with an approximately 12-month signal during 2003–2016. This study can provide high-resolution GWSA datasets for water resources management and also provide a reference for the selection of dominant independent variables.
Author Zhang, Gangqiang
Yin, Wenjie
Chen, Sheming
Zhang, Dasheng
Zhang, Xiuping
Liu, Futian
Author_xml – sequence: 1
  givenname: Wenjie
  surname: Yin
  fullname: Yin, Wenjie
  organization: Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology
– sequence: 2
  givenname: Gangqiang
  surname: Zhang
  fullname: Zhang, Gangqiang
  email: 211804020040@home.hpu.edu.cn
  organization: Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, School of Surveying and Landing Information Engineering, Henan Polytechnic University
– sequence: 3
  givenname: Futian
  surname: Liu
  fullname: Liu, Futian
  organization: Tianjin Center, China Geological Survey
– sequence: 4
  givenname: Dasheng
  surname: Zhang
  fullname: Zhang, Dasheng
  organization: Hebei Provincial Institute of Water Science
– sequence: 5
  givenname: Xiuping
  surname: Zhang
  fullname: Zhang, Xiuping
  organization: Jiangxi Academy of Water Science and Engineering
– sequence: 6
  givenname: Sheming
  surname: Chen
  fullname: Chen, Sheming
  organization: Tianjin Center, China Geological Survey
BookMark eNp9kc1q3DAUhUVJoUnaF-hK0E03bvRrjZdhSNNAoFDatZCla4-CLE0luSVPkNeuZqYQyCIL_XD5ztHVPRfoLKYICH2k5AslRF2VtgvSEUbbEkJ14g06p4LLjlCpzo532jGqxDt0UcoDaThV_Bw93S37nP74OOO6A1z2pnoTcIaSwlp9ijhN-PbH9famG00Bh-ec1uj-mgoZl5qymQFDqX5plYLXcnAyeDF25yPgACbHYynMKfu6W7CJDu8eXU4hzd62t5bkILxHbycTCnz4f16iX19vfm6_dfffb--21_ed4UrWbuSmh9G4gYxyAAJUMMY5V0Q46yYrqVHDxAbpCBvHEQQQa5UlEwfXy2HD-CX6fPJtv_69tsb14ouFEEyEtBbN-p4MGyI2qqGfXqAPac2xddcoyYngvTwYbk6UzamUDJO2vprD5Go2PmhK9CEhfUpIt4T0MSEtmpS9kO5zm2N-fF3ET6LS4DhDfu7qFdU__1Cnug
CitedBy_id crossref_primary_10_3390_rs15092247
crossref_primary_10_1016_j_asr_2024_05_003
crossref_primary_10_1016_j_jhydrol_2022_128447
crossref_primary_10_3390_rs16234566
crossref_primary_10_1016_j_scitotenv_2023_168239
crossref_primary_10_1016_j_gsd_2025_101430
crossref_primary_10_1016_j_scitotenv_2022_161138
crossref_primary_10_1016_j_jhydrol_2024_130622
crossref_primary_10_1016_j_scitotenv_2023_168958
crossref_primary_10_1007_s10661_024_12457_w
crossref_primary_10_1016_j_jhydrol_2024_131591
crossref_primary_10_1080_10106049_2024_2387784
crossref_primary_10_1016_j_atmosres_2023_106815
crossref_primary_10_1080_01431161_2024_2427915
crossref_primary_10_1029_2024WR038888
crossref_primary_10_1016_j_rse_2024_114359
crossref_primary_10_1002_hyp_15034
crossref_primary_10_3390_rs17142526
crossref_primary_10_1007_s10661_023_11480_7
crossref_primary_10_1016_j_eswa_2024_123785
crossref_primary_10_3390_hydrology9100179
crossref_primary_10_1016_j_ejrh_2025_102552
crossref_primary_10_1007_s00267_025_02247_6
crossref_primary_10_3390_rs17183172
crossref_primary_10_3390_w16131904
crossref_primary_10_1007_s11053_025_10528_4
crossref_primary_10_3390_w15152838
crossref_primary_10_1016_j_gsd_2024_101113
crossref_primary_10_2166_hydro_2023_062
crossref_primary_10_1007_s10040_022_02578_2
crossref_primary_10_1007_s10661_025_14207_y
crossref_primary_10_3390_rs15112913
crossref_primary_10_1109_TGRS_2024_3511944
crossref_primary_10_1029_2023JD039387
crossref_primary_10_1038_s44221_024_00194_w
crossref_primary_10_1007_s00190_025_01943_9
Cites_doi 10.1029/2017JD027468
10.1016/j.scitotenv.2016.09.124
10.1002/wrcr.20192
10.1029/2005GL025285
10.1016/j.advwatres.2017.10.021
10.1016/j.jhydrol.2018.11.030
10.1029/2020WR028648
10.3390/rs11243050
10.1007/s10040-015-1278-6
10.1038/s41597-021-00862-6
10.3390/rs13030523
10.1016/j.advwatres.2019.103425
10.1016/j.jhazmat.2019.121766
10.1007/s10040-018-1768-4
10.1016/j.jhydrol.2021.126735
10.1126/science.1089802
10.1155/2014/578372
10.1002/2016JB013844
10.1016/j.jhydrol.2020.125348
10.1029/2010JB000850
10.1023/A:1010933404324
10.3390/rs12030511
10.3390/rs10010143
10.1007/978-3-540-69496-0_26
10.1029/2008JB006056
10.3969/j.issn.1004-7328.2015.01.001
10.1002/2014GL062498
10.3390/rs13050900
10.1016/j.jhydrol.2011.06.013
10.1016/j.pce.2021.103042
10.1038/s41467-020-17428-6
10.3390/su12041588
10.1002/2016JB013073
10.1016/j.renene.2018.03.056
10.1029/2009WR008564
10.1002/cem.2736
10.5194/hess-20-1405-2016
10.1080/02626667.2021.1896719
10.1029/2020WR028944
10.1002/2014WR016853
10.1007/s12517-016-2593-5
10.3390/rs11242979
10.1038/srep24398
10.3390/rs10050674
10.1002/wrcr.20421
10.1029/2005GL025305
10.3390/rs10040493
10.1038/nature08238
10.1016/j.jhydrol.2020.124849
10.1002/2016GL071287
10.1126/science.1099192
10.1002/2015WR017311
10.1002/2013GL058632
10.1016/j.jhydrol.2018.12.037
10.1016/j.jhydrol.2020.124793
10.1029/2009GL039459
10.13203/j.whugis20190108
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.19789/j.1004-9398.2013.04.020
ContentType Journal Article
Copyright The Author(s), under exclusive licence to International Association of Hydrogeologists 2022
The Author(s), under exclusive licence to International Association of Hydrogeologists 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to International Association of Hydrogeologists 2022
– notice: The Author(s), under exclusive licence to International Association of Hydrogeologists 2022.
DBID AAYXX
CITATION
3V.
7QH
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s10040-021-02447-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
DocumentTitle_FL Amélioration de la résolution spatiale des estimations du stockage des eaux souterraines basées sur GRACE à l’aide d’un algorithme d’apprentissage automatique et d’un modèle hydrologique
EISSN 1435-0157
EndPage 963
ExternalDocumentID 10_1007_s10040_021_02447_4
GeographicLocations Haihe River Basin
China
GeographicLocations_xml – name: Haihe River Basin
– name: China
GroupedDBID -5A
-5G
-5~
-BR
-DZ
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29I
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67M
67Z
6NX
78A
7XC
88I
8CJ
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPPZ
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z85
Z86
ZMTXR
ZY4
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7QH
7ST
7TG
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KL.
KR7
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-a375t-b3a6ebad90b59e0e1422333704dcdfc51a79f295d02bbbe4e0cc7c0f3ed659823
IEDL.DBID M2P
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755098700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1431-2174
IngestDate Sun Nov 09 14:34:53 EST 2025
Wed Nov 05 01:15:21 EST 2025
Sat Nov 29 02:09:09 EST 2025
Tue Nov 18 22:22:35 EST 2025
Fri Feb 21 02:46:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Groundwater storage anomalies
Downscaling methods
China
Remote and satellite sensing
GRACE satellites
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-b3a6ebad90b59e0e1422333704dcdfc51a79f295d02bbbe4e0cc7c0f3ed659823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2653043652
PQPubID 55405
PageCount 17
ParticipantIDs proquest_miscellaneous_2660980487
proquest_journals_2653043652
crossref_citationtrail_10_1007_s10040_021_02447_4
crossref_primary_10_1007_s10040_021_02447_4
springer_journals_10_1007_s10040_021_02447_4
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Official Journal of the International Association of Hydrogeologists
PublicationTitle Hydrogeology journal
PublicationTitleAbbrev Hydrogeol J
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Woldesenbet, Elagib, Ribbe, Heinrich (CR47) 2017; 575
Long, Longuevergne, Scanlon (CR19) 2015; 51
Yin, Fan, Tangdamrongsub, Hu, Zhang (CR52) 2021; 602
Feng, Shum, Zhong, Pan (CR11) 2018; 10
Long, Yang, Scanlon, Zhao, Liu, Burek, Pan, You, Wada (CR21) 2020; 11
CR31
Zhong, Wang, Li (CR61) 2021; 57
Prokoph, El Bilali (CR29) 2008; 40
Vishwakarma, Zhang, Sneeuw (CR41) 2021; 8
Yuan, Chang, Gupta, Niu (CR54) 2019; 133
Han (CR13) 2015; 1
Hu, Jiao (CR14) 2015; 23
Jyolsna, Kambhammettu, Gorugantula (CR17) 2021; 66
Pan, Zhang, Gong, Yeh, Shen, Guo, Huang, Li (CR25) 2017; 44
Wan, Zhang, Xue, Hong, Hong, Gourley (CR43) 2015; 51
CR3
Huang, Pan, Gong, Yeh, Li, Zhou (CR15) 2015; 42
Wang, Wang, Yang, Di, Zhao, Liang (CR45) 2020; 585
Long, Chen, Scanlon, Wada, Yang (CR20) 2016; 6
Sun (CR35) 2013; 49
Zhong, Wang, Li, Zhong, Wang, Li (CR62) 2021; 13
Wang, Zhang, Ning, Wang (CR44) 2018; 36
Zhong, Zhong, Feng, Zhang, Shen, Wu (CR58) 2018; 10
Peltier, Argus, Drummond (CR27) 2018; 123
CR40
Longuevergne, Scanlon, Wilson (CR22) 2010; 46
Alsdorf, Lettenmaier (CR2) 2003; 301
Pellet, Aires, Yamazaki (CR26) 2021; 57
Cheng, Ries, Tapley (CR7) 2011; 116
Gong, Pan, Zheng, Li, Zhu (CR12) 2018; 26
Xing, Niu, Wan, Jiang, Gao, Xiukang (CR49) 2020; 12
CR18
Rodell, Velicogna, Famiglietti (CR32) 2009; 460
Seyoum, Kwon, Milewski (CR34) 2017; 110
CR16
Chen, He, Liu, Li, Jing (CR6) 2019; 11
Yin, Hu, Zhang, Wang, Han (CR50) 2018; 123
CR55
Breiman (CR4) 2001; 45
Yosri, Abd-Elmegeed, Hassan (CR53) 2016; 9
Zhong, Feng, Humphrey, Zhong (CR59) 2019; 11
Wang, Wang, Yang, Di, Zhao, Liang (CR46) 2020; 585
Swenson, Wahr (CR38) 2006; 33
Farrés, Platikanov, Tsakovski, Tauler (CR9) 2015; 29
Zhong, Zhong, Mao, Ji (CR60) 2020; 12
Sun, Riva, Ditmar (CR37) 2016; 121
Wu, Li, Teng, Chen, Wang (CR48) 2019; 388
Zhang, Liu, Bai (CR56) 2019; 568
Olauson (CR24) 2018; 126
Sakumura, Bettadpur, Bruinsma (CR33) 2014; 41
Zuo, Xu, Chen, Li (CR63) 2021; 123
Adamowski, Chan (CR1) 2011; 407
CR28
Feng, Zhong, Lemoine, Biancale, Hsu, Xia (CR10) 2013; 49
Wahr, Swenson, Velicogna (CR42) 2006; 33
Yin, Han, Zheng, Yeo, Tangdamrongsub, Ghobadi-Far (CR51) 2020; 590
Du, Chen, Zhang, Sun, Yang (CR8) 2020; 41
Tapley, Bettadpur, Ries, Thompson, Watkins (CR39) 2004; 305
Miro, Famiglietti (CR23) 2018; 10
Sun, Wendi, Kim, Liong (CR36) 2016; 20
Zhang, Liu, Wang (CR57) 2021; 13
Chen, Wilson, Tapley, Yang, Niu (CR5) 2005; 114
Rajaee, Ebrahimi, Nourani (CR30) 2019; 572
S Swenson (2447_CR38) 2006; 33
W Feng (2447_CR10) 2013; 49
D Long (2447_CR20) 2016; 6
2447_CR18
2447_CR3
T Rajaee (2447_CR30) 2019; 572
J Adamowski (2447_CR1) 2011; 407
J Wahr (2447_CR42) 2006; 33
D Long (2447_CR21) 2020; 11
TA Woldesenbet (2447_CR47) 2017; 575
Y Xing (2447_CR49) 2020; 12
Y Sun (2447_CR37) 2016; 121
D Zhong (2447_CR62) 2021; 13
P Jyolsna (2447_CR17) 2021; 66
A Prokoph (2447_CR29) 2008; 40
2447_CR55
P Han (2447_CR13) 2015; 1
2447_CR16
WM Seyoum (2447_CR34) 2017; 110
L Chen (2447_CR6) 2019; 11
Y Pan (2447_CR25) 2017; 44
D Long (2447_CR19) 2015; 51
L Hu (2447_CR14) 2015; 23
Y Sun (2447_CR36) 2016; 20
DE Alsdorf (2447_CR2) 2003; 301
W Yin (2447_CR52) 2021; 602
R Yuan (2447_CR54) 2019; 133
J Zhang (2447_CR57) 2021; 13
F Wang (2447_CR45) 2020; 585
Z Wan (2447_CR43) 2015; 51
WR Peltier (2447_CR27) 2018; 123
M Rodell (2447_CR32) 2009; 460
AM Yosri (2447_CR53) 2016; 9
W Yin (2447_CR51) 2020; 590
B Vishwakarma (2447_CR41) 2021; 8
Y Zhong (2447_CR60) 2020; 12
L Breiman (2447_CR4) 2001; 45
2447_CR28
Y Du (2447_CR8) 2020; 41
L Longuevergne (2447_CR22) 2010; 46
M Miro (2447_CR23) 2018; 10
J Olauson (2447_CR24) 2018; 126
Z Huang (2447_CR15) 2015; 42
Y Zhong (2447_CR59) 2019; 11
W Feng (2447_CR11) 2018; 10
J Wang (2447_CR44) 2018; 36
W Yin (2447_CR50) 2018; 123
BD Tapley (2447_CR39) 2004; 305
V Pellet (2447_CR26) 2021; 57
J Zuo (2447_CR63) 2021; 123
2447_CR31
F Wang (2447_CR46) 2020; 585
J Wu (2447_CR48) 2019; 388
M Farrés (2447_CR9) 2015; 29
M Cheng (2447_CR7) 2011; 116
D Zhang (2447_CR56) 2019; 568
AY Sun (2447_CR35) 2013; 49
JL Chen (2447_CR5) 2005; 114
D Zhong (2447_CR61) 2021; 57
2447_CR40
Y Zhong (2447_CR58) 2018; 10
C Sakumura (2447_CR33) 2014; 41
H Gong (2447_CR12) 2018; 26
References_xml – volume: 123
  start-page: 5973
  issue: 11
  year: 2018
  end-page: 5987
  ident: CR50
  article-title: Statistical downscaling of GRACE-derived groundwater storage using ET data in the North China plain
  publication-title: J Geophys Res: Atmos
  doi: 10.1029/2017JD027468
– volume: 575
  start-page: 724
  year: 2017
  end-page: 741
  ident: CR47
  article-title: Hydrological responses to land use/cover changes in the source region of the upper Blue Nile Basin, Ethiopia
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.09.124
– ident: CR16
– volume: 49
  start-page: 2110
  issue: 4
  year: 2013
  end-page: 2118
  ident: CR10
  article-title: Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20192
– volume: 33
  issue: 8
  year: 2006
  ident: CR38
  article-title: Post-processing removal of correlated errors in GRACE data
  publication-title: Geophys Res Lett
  doi: 10.1029/2005GL025285
– volume: 110
  start-page: 279
  year: 2017
  end-page: 290
  ident: CR34
  article-title: Improved methods for estimating local terrestrial water dynamics from GRACE in the northern High Plains
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2017.10.021
– volume: 568
  start-page: 592
  year: 2019
  end-page: 603
  ident: CR56
  article-title: Assessment of hydrological drought and its recovery time for eight tributaries of the Yangtze River (China) based on downscaled GRACE data
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.11.030
– volume: 57
  issue: 5
  year: 2021
  ident: CR26
  article-title: Coherent satellite monitoring of the water cycle over the Amazon, part 2: total water storage change and river discharge estimation
  publication-title: Water Resour Res
  doi: 10.1029/2020WR028648
– volume: 11
  start-page: 3050
  issue: 24
  year: 2019
  ident: CR59
  article-title: Human-induced and climate-driven contributions to water storage variations in the Haihe River basin, China
  publication-title: Remote Sens
  doi: 10.3390/rs11243050
– volume: 23
  start-page: 1305
  issue: 7
  year: 2015
  end-page: 1317
  ident: CR14
  article-title: Calibration of a large-scale groundwater flow model using GRACE data: a case study in the Qaidam Basin, China
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-015-1278-6
– volume: 8
  start-page: 95
  issue: 1
  year: 2021
  ident: CR41
  article-title: Downscaling GRACE total water storage change using partial least squares regression
  publication-title: Sci Data
  doi: 10.1038/s41597-021-00862-6
– volume: 13
  start-page: 523
  issue: 3
  year: 2021
  ident: CR57
  article-title: Downscaling groundwater storage data in China to a 1-km resolution using machine learning methods
  publication-title: Remote Sens
  doi: 10.3390/rs13030523
– volume: 133
  start-page: 103425
  issue: 11
  year: 2019
  ident: CR54
  article-title: Climatic forcing for recent significant terrestrial drying and wetting
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2019.103425
– volume: 388
  start-page: 121766
  year: 2019
  ident: CR48
  article-title: A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks
  publication-title: Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121766
– volume: 26
  start-page: 1417
  issue: 5
  year: 2018
  end-page: 1427
  ident: CR12
  article-title: Long-term groundwater storage changes and land subsidence development in the North China plain (1971–2015)
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-018-1768-4
– volume: 602
  start-page: 126735
  year: 2021
  ident: CR52
  article-title: Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE: a case study over the state of Victoria, Australia
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126735
– volume: 301
  start-page: 1491
  issue: 5639
  year: 2003
  end-page: 1494
  ident: CR2
  article-title: Tracking fresh water from space
  publication-title: Science
  doi: 10.1126/science.1089802
– volume: 41
  start-page: 44
  issue: 10
  year: 2020
  end-page: 48
  ident: CR8
  article-title: Drought monitoring and analysis over Haihe River basin based on GRACE and MODIS datasets
  publication-title: Pearl River
  doi: 10.1155/2014/578372
– volume: 123
  start-page: 2019
  year: 2018
  end-page: 2018
  ident: CR27
  article-title: Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al.
  publication-title: JGR Solid Earth
  doi: 10.1002/2016JB013844
– volume: 590
  start-page: 125348
  year: 2020
  ident: CR51
  article-title: Improved water storage estimates within the North China plain by assimilating GRACE data into the CABLE model
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125348
– volume: 116
  issue: B1
  year: 2011
  ident: CR7
  article-title: Variations of the Earth’s figure axis from satellite laser ranging and GRACE
  publication-title: J Geophys Res
  doi: 10.1029/2010JB000850
– volume: 36
  start-page: 1
  issue: 10
  year: 2018
  end-page: 5
  ident: CR44
  article-title: Downscaling analysis of GRACE terrestrial water storage changes in Yunnan Province
  publication-title: Water Resour Power
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR4
  article-title: Random forest
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 12
  start-page: 511
  issue: 3
  year: 2020
  ident: CR60
  article-title: Evaluation of evapotranspiration for exorheic catchments of China during the GRACE era: from a water balance perspective
  publication-title: Remote Sens
  doi: 10.3390/rs12030511
– volume: 10
  start-page: 143
  issue: 1
  year: 2018
  ident: CR23
  article-title: Downscaling GRACE remote sensing datasets to high-resolution groundwater storage change maps of California’s Central Valley
  publication-title: Remote Sens
  doi: 10.3390/rs10010143
– volume: 40
  start-page: 575
  year: 2008
  end-page: 586
  ident: CR29
  article-title: Cross-wavelet analysis: a tool for detection of relationships between paleoclimate proxy records
  publication-title: Math Geosci
  doi: 10.1007/978-3-540-69496-0_26
– volume: 114
  issue: B5
  year: 2005
  ident: CR5
  article-title: Drought event in the Amazon River basin as measured by GRACE and estimated by climate models
  publication-title: J Geophys Res
  doi: 10.1029/2008JB006056
– volume: 1
  start-page: 1
  year: 2015
  end-page: 15
  ident: CR13
  article-title: Status quo of groundwater development and utilization in Haihe River basin and its management
  publication-title: Haihe Water Resour
  doi: 10.3969/j.issn.1004-7328.2015.01.001
– volume: 42
  start-page: 1791
  issue: 6
  year: 2015
  end-page: 1799
  ident: CR15
  article-title: Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China plain
  publication-title: Geophys Res Lett
  doi: 10.1002/2014GL062498
– volume: 13
  start-page: 900
  issue: 5
  year: 2021
  ident: CR62
  article-title: Spatiotemporal downscaling of GRACE total water storage using land surface model outputs
  publication-title: Remote Sens
  doi: 10.3390/rs13050900
– ident: CR18
– volume: 407
  start-page: 28
  year: 2011
  end-page: 40
  ident: CR1
  article-title: A wavelet neural network conjunction model for groundwater level forecasting
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.06.013
– volume: 123
  start-page: 103042
  year: 2021
  ident: CR63
  article-title: Downscaling simulation of groundwater storage in the Tarim River basin in Northwest China based on GRACE data
  publication-title: Phys Chem Earth A/B/C
  doi: 10.1016/j.pce.2021.103042
– volume: 11
  start-page: 3665
  year: 2020
  ident: CR21
  article-title: South-to-north water diversion stabilizing Beijing’s groundwater levels
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17428-6
– volume: 12
  start-page: 1588
  year: 2020
  ident: CR49
  article-title: The correlation between soil nutrient and potato quality in Loess Plateau of China based on PLSR
  publication-title: Sustainability
  doi: 10.3390/su12041588
– volume: 121
  start-page: 8352
  issue: 11
  year: 2016
  end-page: 8370
  ident: CR37
  article-title: Optimizing estimates of annual variations and trends in geocenter motion and J from a combination of GRACE data and geophysical models
  publication-title: J Geophys Res: Solid Earth
  doi: 10.1002/2016JB013073
– volume: 126
  start-page: 322
  year: 2018
  end-page: 331
  ident: CR24
  article-title: ERA5: the new champion of wind power modelling
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2018.03.056
– volume: 46
  year: 2010
  ident: CR22
  article-title: GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains aquifer, USA
  publication-title: Water Resour Res
  doi: 10.1029/2009WR008564
– volume: 29
  start-page: 528
  year: 2015
  end-page: 536
  ident: CR9
  article-title: Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation
  publication-title: J Chemom
  doi: 10.1002/cem.2736
– ident: CR40
– volume: 20
  start-page: 1405
  issue: 4
  year: 2016
  end-page: 1412
  ident: CR36
  article-title: Technical note: application of artificial neural networks in groundwater table forecasting: a case study in a Singapore swamp forest
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-20-1405-2016
– volume: 66
  start-page: 874
  issue: 5
  year: 2021
  end-page: 887
  ident: CR17
  article-title: Application of random forest and multi linear regression methods in downscaling GRACE derived groundwater storage changes
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2021.1896719
– volume: 57
  issue: 1
  year: 2021
  ident: CR61
  article-title: A self-calibration variance-component model for spatial downscaling of GRACE observations using land surface model outputs
  publication-title: Water Resour Res
  doi: 10.1029/2020WR028944
– ident: CR3
– volume: 51
  start-page: 2574
  issue: 4
  year: 2015
  end-page: 2594
  ident: CR19
  article-title: Global analysis of approaches for deriving total water storage changes from GRACE satellites
  publication-title: Water Resour Res
  doi: 10.1002/2014WR016853
– volume: 9
  start-page: 1
  issue: 10
  year: 2016
  end-page: 9
  ident: CR53
  article-title: Assessing groundwater storage changes in the Nubian aquifer using GRACE data
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2593-5
– volume: 11
  start-page: 2979
  issue: 24
  year: 2019
  ident: CR6
  article-title: Downscaling of GRACE-derived groundwater storage based on the random forest model
  publication-title: Remote Sens
  doi: 10.3390/rs11242979
– ident: CR31
– volume: 6
  start-page: 24398
  year: 2016
  ident: CR20
  article-title: Have GRACE satellites overestimated groundwater depletion in the Northwest India aquifer?
  publication-title: Sci Rep-Uk
  doi: 10.1038/srep24398
– volume: 10
  start-page: 674
  year: 2018
  ident: CR11
  article-title: Groundwater storage changes in China from satellite gravity: an overview
  publication-title: Remote Sens
  doi: 10.3390/rs10050674
– volume: 49
  start-page: 5900
  issue: 9
  year: 2013
  end-page: 5912
  ident: CR35
  article-title: Predicting groundwater level changes using GRACE data
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20421
– volume: 33
  issue: 6
  year: 2006
  ident: CR42
  article-title: Accuracy of GRACE mass estimates
  publication-title: Geophys Res Lett
  doi: 10.1029/2005GL025305
– volume: 10
  start-page: 493
  issue: 4
  year: 2018
  ident: CR58
  article-title: Groundwater depletion in the west Liaohe River basin, China and its implications revealed by GRACE and in situ measurements
  publication-title: Remote Sens
  doi: 10.3390/rs10040493
– volume: 460
  start-page: 999
  issue: 7258
  year: 2009
  end-page: 1002
  ident: CR32
  article-title: Satellite-based estimates of groundwater depletion in India
  publication-title: Nature
  doi: 10.1038/nature08238
– ident: CR55
– volume: 585
  start-page: 124849
  year: 2020
  ident: CR46
  article-title: Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China plain
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124849
– volume: 44
  start-page: 190
  issue: 1
  year: 2017
  end-page: 199
  ident: CR25
  article-title: Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL071287
– ident: CR28
– volume: 305
  start-page: 503
  issue: 5683
  year: 2004
  end-page: 505
  ident: CR39
  article-title: GRACE measurements of mass variability in the earth system
  publication-title: Science
  doi: 10.1126/science.1099192
– volume: 51
  start-page: 6485
  issue: 8
  year: 2015
  end-page: 6499
  ident: CR43
  article-title: Water balance based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States
  publication-title: Water Resour Res
  doi: 10.1002/2015WR017311
– volume: 41
  start-page: 1389
  issue: 5
  year: 2014
  end-page: 1397
  ident: CR33
  article-title: Ensemble prediction and inter-comparison analysis of GRACE time-variable gravity field models
  publication-title: Geophys Res Lett
  doi: 10.1002/2013GL058632
– volume: 572
  start-page: 336
  year: 2019
  end-page: 351
  ident: CR30
  article-title: A review of the artificial intelligence methods in groundwater level modeling
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.12.037
– volume: 585
  start-page: 124793
  year: 2020
  ident: CR45
  article-title: A new copula-based standardized precipitation evapotranspiration streamflow index for drought monitoring
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124793
– volume: 575
  start-page: 724
  year: 2017
  ident: 2447_CR47
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.09.124
– volume: 57
  issue: 1
  year: 2021
  ident: 2447_CR61
  publication-title: Water Resour Res
  doi: 10.1029/2020WR028944
– ident: 2447_CR28
– volume: 11
  start-page: 3050
  issue: 24
  year: 2019
  ident: 2447_CR59
  publication-title: Remote Sens
  doi: 10.3390/rs11243050
– volume: 1
  start-page: 1
  year: 2015
  ident: 2447_CR13
  publication-title: Haihe Water Resour
  doi: 10.3969/j.issn.1004-7328.2015.01.001
– volume: 10
  start-page: 143
  issue: 1
  year: 2018
  ident: 2447_CR23
  publication-title: Remote Sens
  doi: 10.3390/rs10010143
– ident: 2447_CR55
  doi: 10.1029/2009GL039459
– volume: 13
  start-page: 523
  issue: 3
  year: 2021
  ident: 2447_CR57
  publication-title: Remote Sens
  doi: 10.3390/rs13030523
– volume: 33
  issue: 6
  year: 2006
  ident: 2447_CR42
  publication-title: Geophys Res Lett
  doi: 10.1029/2005GL025305
– volume: 585
  start-page: 124849
  year: 2020
  ident: 2447_CR46
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124849
– volume: 66
  start-page: 874
  issue: 5
  year: 2021
  ident: 2447_CR17
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2021.1896719
– volume: 10
  start-page: 493
  issue: 4
  year: 2018
  ident: 2447_CR58
  publication-title: Remote Sens
  doi: 10.3390/rs10040493
– volume: 126
  start-page: 322
  year: 2018
  ident: 2447_CR24
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2018.03.056
– volume: 114
  issue: B5
  year: 2005
  ident: 2447_CR5
  publication-title: J Geophys Res
  doi: 10.1029/2008JB006056
– volume: 116
  issue: B1
  year: 2011
  ident: 2447_CR7
  publication-title: J Geophys Res
  doi: 10.1029/2010JB000850
– volume: 121
  start-page: 8352
  issue: 11
  year: 2016
  ident: 2447_CR37
  publication-title: J Geophys Res: Solid Earth
  doi: 10.1002/2016JB013073
– volume: 36
  start-page: 1
  issue: 10
  year: 2018
  ident: 2447_CR44
  publication-title: Water Resour Power
– volume: 46
  year: 2010
  ident: 2447_CR22
  publication-title: Water Resour Res
  doi: 10.1029/2009WR008564
– volume: 123
  start-page: 2019
  year: 2018
  ident: 2447_CR27
  publication-title: JGR Solid Earth
  doi: 10.1002/2016JB013844
– ident: 2447_CR18
  doi: 10.13203/j.whugis20190108
– volume: 590
  start-page: 125348
  year: 2020
  ident: 2447_CR51
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125348
– ident: 2447_CR40
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– volume: 12
  start-page: 1588
  year: 2020
  ident: 2447_CR49
  publication-title: Sustainability
  doi: 10.3390/su12041588
– volume: 8
  start-page: 95
  issue: 1
  year: 2021
  ident: 2447_CR41
  publication-title: Sci Data
  doi: 10.1038/s41597-021-00862-6
– volume: 123
  start-page: 5973
  issue: 11
  year: 2018
  ident: 2447_CR50
  publication-title: J Geophys Res: Atmos
  doi: 10.1029/2017JD027468
– ident: 2447_CR31
  doi: 10.19789/j.1004-9398.2013.04.020
– volume: 44
  start-page: 190
  issue: 1
  year: 2017
  ident: 2447_CR25
  publication-title: Geophys Res Lett
  doi: 10.1002/2016GL071287
– volume: 572
  start-page: 336
  year: 2019
  ident: 2447_CR30
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.12.037
– volume: 42
  start-page: 1791
  issue: 6
  year: 2015
  ident: 2447_CR15
  publication-title: Geophys Res Lett
  doi: 10.1002/2014GL062498
– volume: 26
  start-page: 1417
  issue: 5
  year: 2018
  ident: 2447_CR12
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-018-1768-4
– volume: 305
  start-page: 503
  issue: 5683
  year: 2004
  ident: 2447_CR39
  publication-title: Science
  doi: 10.1126/science.1099192
– volume: 49
  start-page: 2110
  issue: 4
  year: 2013
  ident: 2447_CR10
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20192
– volume: 13
  start-page: 900
  issue: 5
  year: 2021
  ident: 2447_CR62
  publication-title: Remote Sens
  doi: 10.3390/rs13050900
– volume: 20
  start-page: 1405
  issue: 4
  year: 2016
  ident: 2447_CR36
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-20-1405-2016
– volume: 11
  start-page: 2979
  issue: 24
  year: 2019
  ident: 2447_CR6
  publication-title: Remote Sens
  doi: 10.3390/rs11242979
– ident: 2447_CR3
– volume: 23
  start-page: 1305
  issue: 7
  year: 2015
  ident: 2447_CR14
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-015-1278-6
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 2447_CR4
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 585
  start-page: 124793
  year: 2020
  ident: 2447_CR45
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124793
– volume: 12
  start-page: 511
  issue: 3
  year: 2020
  ident: 2447_CR60
  publication-title: Remote Sens
  doi: 10.3390/rs12030511
– volume: 51
  start-page: 2574
  issue: 4
  year: 2015
  ident: 2447_CR19
  publication-title: Water Resour Res
  doi: 10.1002/2014WR016853
– volume: 51
  start-page: 6485
  issue: 8
  year: 2015
  ident: 2447_CR43
  publication-title: Water Resour Res
  doi: 10.1002/2015WR017311
– volume: 568
  start-page: 592
  year: 2019
  ident: 2447_CR56
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.11.030
– volume: 41
  start-page: 1389
  issue: 5
  year: 2014
  ident: 2447_CR33
  publication-title: Geophys Res Lett
  doi: 10.1002/2013GL058632
– volume: 11
  start-page: 3665
  year: 2020
  ident: 2447_CR21
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17428-6
– volume: 9
  start-page: 1
  issue: 10
  year: 2016
  ident: 2447_CR53
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2593-5
– volume: 57
  issue: 5
  year: 2021
  ident: 2447_CR26
  publication-title: Water Resour Res
  doi: 10.1029/2020WR028648
– volume: 29
  start-page: 528
  year: 2015
  ident: 2447_CR9
  publication-title: J Chemom
  doi: 10.1002/cem.2736
– volume: 460
  start-page: 999
  issue: 7258
  year: 2009
  ident: 2447_CR32
  publication-title: Nature
  doi: 10.1038/nature08238
– volume: 123
  start-page: 103042
  year: 2021
  ident: 2447_CR63
  publication-title: Phys Chem Earth A/B/C
  doi: 10.1016/j.pce.2021.103042
– volume: 49
  start-page: 5900
  issue: 9
  year: 2013
  ident: 2447_CR35
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20421
– volume: 10
  start-page: 674
  year: 2018
  ident: 2447_CR11
  publication-title: Remote Sens
  doi: 10.3390/rs10050674
– volume: 40
  start-page: 575
  year: 2008
  ident: 2447_CR29
  publication-title: Math Geosci
  doi: 10.1007/978-3-540-69496-0_26
– volume: 6
  start-page: 24398
  year: 2016
  ident: 2447_CR20
  publication-title: Sci Rep-Uk
  doi: 10.1038/srep24398
– volume: 388
  start-page: 121766
  year: 2019
  ident: 2447_CR48
  publication-title: Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121766
– volume: 110
  start-page: 279
  year: 2017
  ident: 2447_CR34
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2017.10.021
– volume: 33
  issue: 8
  year: 2006
  ident: 2447_CR38
  publication-title: Geophys Res Lett
  doi: 10.1029/2005GL025285
– volume: 407
  start-page: 28
  year: 2011
  ident: 2447_CR1
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.06.013
– volume: 301
  start-page: 1491
  issue: 5639
  year: 2003
  ident: 2447_CR2
  publication-title: Science
  doi: 10.1126/science.1089802
– volume: 133
  start-page: 103425
  issue: 11
  year: 2019
  ident: 2447_CR54
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2019.103425
– ident: 2447_CR16
– volume: 602
  start-page: 126735
  year: 2021
  ident: 2447_CR52
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126735
– volume: 41
  start-page: 44
  issue: 10
  year: 2020
  ident: 2447_CR8
  publication-title: Pearl River
  doi: 10.1155/2014/578372
SSID ssj0004173
Score 2.499256
Snippet The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 947
SubjectTerms Air temperature
Algorithms
Anomalies
Aquatic Pollution
China
climate
Correlation coefficient
Correlation coefficients
data collection
Earth and Environmental Science
Earth Sciences
Estimates
Evapotranspiration
Geology
Geophysics/Geodesy
GRACE (experiment)
Gravity
Groundwater
Groundwater levels
Groundwater storage
Heterogeneity
Hydrogeology
Hydrologic models
Hydrology
Hydrology/Water Resources
Independent variables
Land surface temperature
Least squares method
Machine learning
Modelling
Moisture effects
Regression models
remote sensing
Resolution
River basins
Rivers
Satellite data
Soil moisture
Soil temperature
soil water
Spatial discrimination
Spatial distribution
Spatial resolution
Surface temperature
Waste Water Technology
Water Management
Water Pollution Control
Water Quality/Water Pollution
Water resources
Water resources management
Water storage
watersheds
wavelet
Wavelet transforms
SummonAdditionalLinks – databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5thQle-D1RYMiTeANLSZzE8SNCpTxM1QRs6ltkxw5FoumUtqD-Bfzb-Fyn3SZA2l4T24nOZ9_Z9913ACdZrEqRyJJyqWMap5mkSpqUypCXKtPMRIWb6W-818v6ffHdJ4WNG7R7E5J0O_VvyW6IfkNIgbUrMafxR1ix5i7Dgg3XNz-X2ZDzuLJ1BEKKDrdPlXl9jD_N0dLH_Css6qzN5eb__ecWbHjvkpzP1WEbPphqB9Z8ofPBbAc-dV0l39kuPC-uE4j1AckYkdW2qz19e2Uko5J0r88vOhQtnSaY_1HpJ-ub1gQhlXYjIkjRMURvlSB-_o5IMnTgTEN8NQr76OFuVN9PBkMiK00GM1032y1xVXj24Mdl5_biivqqDFQynkyoYjI1SmoRqESYwOAlEmOMB7EudFkkoeSijESig0gpZWITFAUvgpIZnSJbIPsMrWpUmX0ggiuWaaT0kxgwDmVqe0a6zDKRsEioNoTN5OSFpyzHyhkP-ZJsGYWdW2HnTth53IbTRZ9fc8KOd1sfNXOe-8U7zqM0YcjMn0Rt-Lp4bZcdxlJkZUZTbJOi6tnjXhvOGj1YDvH2Fw_-rfkhrEeYcOEglkfQmtRT8wVWi8fJ_bg-dor_AsTZ_ak
  priority: 102
  providerName: Springer Nature
Title Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model
URI https://link.springer.com/article/10.1007/s10040-021-02447-4
https://www.proquest.com/docview/2653043652
https://www.proquest.com/docview/2660980487
Volume 30
WOSCitedRecordID wos000755098700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1435-0157
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004173
  issn: 1431-2174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-ND2l7GRsMraMgT9rbsEjsJI6fUEGFPWxVVTbEW-Sv0Ek0ZW3ZxF-wf3u-1Gk0JHjhxQ-JHVu6893l7nd3AJ_yRJcyVSUVyiY0yXJFtXIZVbEodW65Y6am9FcxGORXV3IYHG7zAKtsZGItqO3UoI_8iGUpx3LpKTu-_UWxaxRGV0MLjTXY8JZNjJCub2zY5kUuI8zeJIgpmt4haSakziGWDgEKXkslgib_K6bW2nwQIK31ztnWc0_8Bl4Hi5P0lizyFl64ahtehubn4_sd-LtyLBBvDZI5Yqz9Av8fHtiSTEtyPuqd9inqPEswE6Syf7yVOiMIrvQiiWCxjgnarQSR9NdEkUkN03Qk9KXwj26u_fEW4wlRlSXjeztrBC-p-_G8gx9n_e-nX2joz0AVF-mCaq4yp5WVkU6lixy6kzjnIkqssaVJYyVkyWRqI6a1domLjBEmKrmzGdYN5LuwXk0r9x6IFJrnFov7KQwdxyrzK5kt81ymnEndgbghTmFC8XLsoXFTtGWXkaCFJ2hRE7RIOvB5teZ2WbrjydndhopFuMbzoiVhBz6uXvsLiFEVVbnpHc7JIpl7QSg6cNjwSvuJx3f88PSOe_CKYapFDa7swvpiduf2YdP8Xvyczw5g46Q_GI4OaobHUVz4cXRx-Q9bngiR
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglQuUF5i6QMjwQksEtuJ4wNCVR-06rKqUJF6C36li9TNluy21f6C_pv-RjzZZCOQ6K0HrkmcSPbnmYnnm28A3mbCFCrRBZXaCSrSTFOjfUp1LAuTOe6ZrVe6LweD7OREHS3BTVsLg7TK1ibWhtqNLZ6Rf2RpwlEuPWGfz39R7BqF2dW2hcYcFod-dhV-2SafDnbC-r5jbG_3eHufNl0FqOYymVLDdeqNdioyifKRx0MQzrmMhLOusEmspSqYSlzEjDFe-MhaaaOCe5ei2h0P770H9wUqiyFVkB11dZjzjHYIQWKKoX5TpNOU6iF3DwkRwSsKScWfjrCLbv9KyNZ-bu_x_zZDq_CoiajJ1nwLPIElXz6Flaa5-3D2DK4XByckRLtkghzyMKDy7bYj44J8-ba1vUvRpzuClS6luwpReEWQPBpMLkExkhHG5QQrBU6JJqOahupJ03cjXDo7DdMxHY6ILh0ZzlzVOhZS9xt6Dt_vZB5ewHI5Lv1LIEoanjkUL9SYGo91GkYyV2SZSjhTpgdxC4bcNuLs2CPkLO9kpRFAeQBQXgMoFz14vxhzPpcmufXp9RY1eWOmJnkHmR68WdwOBgazRrr04wt8Jo1UFgy97MGHFpvdK_79xVe3f_E1rOwff-3n_YPB4Ro8ZFhWUhNJ12F5Wl34DXhgL6c_J9VmvckI_LhrzP4GS6Fjig
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLQIufCMWChgJTmA1sZ04PiBU2l2oWq1WFUi9BTt2ukjdbMluqfYX8J_4dXiyzkYg0VsPXJM4keznmRfPmxmAV5kwpUp0SaW2goo009Rol1Idy9JkljtWNCt9KEej7PhYjTfgV5sLg7LK1iY2htrOCjwj32ZpwrFcesK2yyCLGO8N3599p9hBCiOtbTuNFUQO3PLC_77N3-3v-bV-zdhw8Hn3Ew0dBqjmMllQw3XqjLYqMolykcMDEc65jIQtbFkksZaqZCqxETPGOOGiopBFVHJnU6x8x_17r8Gm9CRD9GDzw2A0PuqyMlfxbU9IYorEP6TshMQ9VPKhPML7SCGp-NMtdlz3r_Bs4_WGd_7n-boLtwPXJjurzXEPNlx1H26Gtu-T5QP4uT5SIZ4Hkzmqy_2A2rUbksxK8vFoZ3dA0dtbgjkwlb3w_LwmKCv1xphgmZIpMnaCOQQnRJNpI1B1JHTk8JdOT_x0LCZToitLJktbty6HNJ2IHsKXK5mHR9CrZpV7DERJwzOLZQ01Bs1jnfqRzJZZphLOlOlD3AIjL0LZduwecpp3BacRTLkHU96AKRd9eLMec7YqWnLp01stgvJgwOZ5B58-vFzf9qYH40m6crNzfCaNVOZdgOzD2xan3Sv-_cUnl3_xBdzwUM0P90cHT-EWw3yTRmG6Bb1Ffe6ewfXix-LbvH4edhyBr1cN2t83e22k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+spatial+resolution+of+GRACE-based+groundwater+storage+estimates+using+a+machine+learning+algorithm+and+hydrological+model&rft.jtitle=Hydrogeology+journal&rft.au=Yin+Wenjie&rft.au=Zhang+Gangqiang&rft.au=Liu+Futian&rft.au=Zhang+Dasheng&rft.date=2022-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1431-2174&rft.eissn=1435-0157&rft.volume=30&rft.issue=3&rft.spage=947&rft.epage=963&rft_id=info:doi/10.1007%2Fs10040-021-02447-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-2174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-2174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-2174&client=summon