Modeling Hydrological Responses of Watershed Under Climate Change Scenarios Using Machine Learning Techniques

Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature, wind speed, relative humidity and surface runoff in Saghez watershed in Iran investigated. The main methods were using the Coupled Model Inter...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water resources management Ročník 37; číslo 13; s. 5235 - 5254
Hlavní autori: Karimizadeh, Keivan, Yi, Jaeeung
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.10.2023
Springer Nature B.V
Predmet:
ISSN:0920-4741, 1573-1650
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature, wind speed, relative humidity and surface runoff in Saghez watershed in Iran investigated. The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN) model under the Shared Socio-economic Pathway scenarios (SSPs) using the Linear Scaling Bias Correction (LSBC) for the future period (2021–2050) compared to the base period (1985–2014). Additionally, MAE, MSE, RMSE and R 2 indices used for model calibration and validation. The average projected precipitation was forecasted to decrease by 6.1%. In terms of the temperature, 1.4 Cº, and 1.6 Cº increases were predicted for minimum and maximum temperatures, respectively. Prediction of surface runoff using the SWAT model also illustrated that based on SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios, runoff will decrease in the future period, which based on three mentioned scenarios is equals to 17.5%, 23.7% and 26.3% decrease, respectively. Furthermore, the assessment using the artificial neural network (ANN) also showed that the parameters of precipitation in the previous two days, wind speed and maximum relative humidity have the greatest effect on the watershed runoff. These findings may be helpful to reduce the impacts of climate change, and make the suitable long-term plans for management of the watersheds and water resources in the region.
AbstractList Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature, wind speed, relative humidity and surface runoff in Saghez watershed in Iran investigated. The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN) model under the Shared Socio-economic Pathway scenarios (SSPs) using the Linear Scaling Bias Correction (LSBC) for the future period (2021–2050) compared to the base period (1985–2014). Additionally, MAE, MSE, RMSE and R² indices used for model calibration and validation. The average projected precipitation was forecasted to decrease by 6.1%. In terms of the temperature, 1.4 Cº, and 1.6 Cº increases were predicted for minimum and maximum temperatures, respectively. Prediction of surface runoff using the SWAT model also illustrated that based on SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios, runoff will decrease in the future period, which based on three mentioned scenarios is equals to 17.5%, 23.7% and 26.3% decrease, respectively. Furthermore, the assessment using the artificial neural network (ANN) also showed that the parameters of precipitation in the previous two days, wind speed and maximum relative humidity have the greatest effect on the watershed runoff. These findings may be helpful to reduce the impacts of climate change, and make the suitable long-term plans for management of the watersheds and water resources in the region.
Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature, wind speed, relative humidity and surface runoff in Saghez watershed in Iran investigated. The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN) model under the Shared Socio-economic Pathway scenarios (SSPs) using the Linear Scaling Bias Correction (LSBC) for the future period (2021–2050) compared to the base period (1985–2014). Additionally, MAE, MSE, RMSE and R2 indices used for model calibration and validation. The average projected precipitation was forecasted to decrease by 6.1%. In terms of the temperature, 1.4 Cº, and 1.6 Cº increases were predicted for minimum and maximum temperatures, respectively. Prediction of surface runoff using the SWAT model also illustrated that based on SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios, runoff will decrease in the future period, which based on three mentioned scenarios is equals to 17.5%, 23.7% and 26.3% decrease, respectively. Furthermore, the assessment using the artificial neural network (ANN) also showed that the parameters of precipitation in the previous two days, wind speed and maximum relative humidity have the greatest effect on the watershed runoff. These findings may be helpful to reduce the impacts of climate change, and make the suitable long-term plans for management of the watersheds and water resources in the region.
Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature, wind speed, relative humidity and surface runoff in Saghez watershed in Iran investigated. The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN) model under the Shared Socio-economic Pathway scenarios (SSPs) using the Linear Scaling Bias Correction (LSBC) for the future period (2021–2050) compared to the base period (1985–2014). Additionally, MAE, MSE, RMSE and R 2 indices used for model calibration and validation. The average projected precipitation was forecasted to decrease by 6.1%. In terms of the temperature, 1.4 Cº, and 1.6 Cº increases were predicted for minimum and maximum temperatures, respectively. Prediction of surface runoff using the SWAT model also illustrated that based on SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios, runoff will decrease in the future period, which based on three mentioned scenarios is equals to 17.5%, 23.7% and 26.3% decrease, respectively. Furthermore, the assessment using the artificial neural network (ANN) also showed that the parameters of precipitation in the previous two days, wind speed and maximum relative humidity have the greatest effect on the watershed runoff. These findings may be helpful to reduce the impacts of climate change, and make the suitable long-term plans for management of the watersheds and water resources in the region.
Author Karimizadeh, Keivan
Yi, Jaeeung
Author_xml – sequence: 1
  givenname: Keivan
  orcidid: 0009-0002-6325-5441
  surname: Karimizadeh
  fullname: Karimizadeh, Keivan
  email: keyvan.karimizade@gmail.com
  organization: Department of Civil Engineering, Ajou University
– sequence: 2
  givenname: Jaeeung
  surname: Yi
  fullname: Yi, Jaeeung
  organization: Department of Civil Engineering, Ajou University
BookMark eNp9kU1rGzEQhkVJoU7aP9CToJdeth197x6LaZuCQ6CN6VHI2pGtsJZcaX1Ifn3luhDIIScNw_OMhnkvyUXKCQl5z-ATAzCfK2NcDx1w0YHQILrHV2TBlBEd0wouyAIGDp00kr0hl7XeAzRtgAXZ3-QRp5i29PphLHnK2-jdRH9iPeRUsdIc6G83Y6k7HOk6jVjocor71qLLnUtbpL88JldirnRdT4NunN_FhHSFrqRT4w79LsU_R6xvyevgporv_r9XZP3t693yulvdfv-x_LLqnDBq7pQWAYdguIeNVzCEVm6cASf1GHovpVQboUdnxsCd0iMgMoYy9NIrZwSIK_LxPPdQ8unf2e5j9ThNLmE-ViuYEspwOYiGfniG3udjSW07y_uegdJc943qz5QvudaCwfo4uznmNBcXJ8vAnnKw5xxsy8H-y8E-NpU_Uw-l3a88vCyJs1Qb3I5cnrZ6wfoLNzOedQ
CitedBy_id crossref_primary_10_1007_s11269_024_03908_7
crossref_primary_10_1038_s41598_024_76232_0
crossref_primary_10_3390_su17083658
crossref_primary_10_1007_s11269_025_04226_2
crossref_primary_10_1016_j_jenvman_2024_122022
crossref_primary_10_3390_eng6060129
Cites_doi 10.1007/s40808-019-00681-0
10.1007/s11269-023-03474-4
10.1002/joc.1556
10.1080/02626660109492867
10.1016/j.jhydrol.2015.03.027
10.1007/s12517-022-10887-9
10.1007/s12665-015-5150-8
10.1007/s40710-023-00626-x
10.3390/w15030446
10.5194/esd-14-457-2023
10.1007/s00376-020-9289-1
10.1007/s11269-022-03372-1
10.1007/s00704-021-03916-2
10.1623/hysj.51.4.599
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-023-03603-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Science Database
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 5254
ExternalDocumentID 10_1007_s11269_023_03603_z
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-a375t-563fe9f72c0bc509ff72ba70a46df8c4445b36da7df2a56d0ee11e4f84c5a7303
IEDL.DBID M7P
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001063155500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-4741
IngestDate Thu Sep 04 20:17:40 EDT 2025
Wed Nov 05 02:22:04 EST 2025
Tue Nov 18 22:10:22 EST 2025
Sat Nov 29 01:46:00 EST 2025
Fri Feb 21 02:42:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Climate change
CMIP6
SSPs
SWAT and machine learning
Saghez watershed
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-563fe9f72c0bc509ff72ba70a46df8c4445b36da7df2a56d0ee11e4f84c5a7303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-6325-5441
PQID 2881056268
PQPubID 54174
PageCount 20
ParticipantIDs proquest_miscellaneous_3153572493
proquest_journals_2881056268
crossref_citationtrail_10_1007_s11269_023_03603_z
crossref_primary_10_1007_s11269_023_03603_z
springer_journals_10_1007_s11269_023_03603_z
PublicationCentury 2000
PublicationDate 20231000
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Abbaspour CK (2013) SWAT-CUP: SWAT calibration and uncertainty programs. A User Manual 103. https://www.scirp.org/(S(czeh2tfqw2orz553k1w0r45))/reference/referencespapers.aspx?referenceid=3037483
AsifZChenZSadiqRZhuYClimate change impacts on water resources and sustainable water management strategies in North AmericaWater Resour Manag2023376–72771278610.1007/s11269-023-03474-4
Malmir M, Mohammadrezapour O, Sharifazari S, Ghandhari GH (2016) The effect of climate change on stream flow used Statistical downscaling of HADCM3 model and Artificial Neural Networks. J Water Soil Protect 23(3):317–326. https://jwsc.gau.ac.ir/article_3201.html?lang=en
ShresthaSShresthaMBabelMSModelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, NepalEnviron Earth Sci2016754-10.1007/s12665-015-5150-8
HeydariShHosseiniSAHeydariAInvestigating the effects of climate change on stream flows of Urmia Lake basin in IranModel Earth Syst Environ2019632933910.1007/s40808-019-00681-0
HuTSLamKCNgSTRiver flow time series prediction with a range dependent neural networkHydrol Sci J200146572974510.1080/02626660109492867
FowlerHJBlenkinsopSTebaldiCLinking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelingInt J Climatol200727121547157810.1002/joc.1556
Majdi F, Hosseini SA, Karbalaee A, Kaseri M, Marjanian S (2022) Future projection of precipitation and temperature changes in the Middle East and North Africa (MENA) region based on CMIP6. Theor Appl Climatol 147(3–4):1249–1262. https://doi.org/10.1007/s00704-021-03916-2
MauryaSSrivastavaPKZhuoLYaduvanshiAMallRKFuture climate change impact on the streamflow of Mahi River Basin under different general circulation model scenariosWater Resour Manag2023376–72675269610.1007/s11269-022-03372-1
LiuLXiaoChLiuYProjected water scarcity and hydrological extremes in the yellow river basin in the 21st century under SSP-RCP scenariosWater20231531410.3390/w15030446
AbbaspourCKRouholahnejadEVaghefiSSrinivasanRYangHKolveBA continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT modelJ Hydrol201552473375210.1016/j.jhydrol.2015.03.027
Amjadi N (2002) Introduction to intelligent systems. Semnan University Press, 1st edition, Iran
GoudarziMHosseiniSAMesgariEClimate models2016Zanjan, IranAzarkelk Publications
Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool user’s manual. Blackland Research Center, Texas Agricultural Experiment Station 720 East Blackland Road, Temple, Texas 76502. https://swat.tamu.edu/media/99192/swat2009-theory.pdf
HejazizadehZHosseiniSAKarbalaeeABarabadiRPMousaviSMSpatiotemporal variations in precipitation extremes based on CMIP6 models and Shared Socioeconomic Pathway (SSP) scenarios over MENAArab J Geosci2022151601161410.1007/s12517-022-10887-9
Moghadam AA, Noorani V, Nadiri A (2008) Modeling of Tabriz plain rainfall using artificial neural networks. Tabriz Univ Agric Sci 18:1–15. https://www.magiran.com/paper/533779
Alehu BA, Bitana SG (2023) Assessment of climate change impact on water balance of Lake Hawassa Catchment. Environ Process 10(1). https://doi.org/10.1007/s40710-023-00626-x
Palmer TE, McSweeney CF, Booth BBB, Priestley MDK, Davini P, Brunner L, Borchert L, Menary MB (2023) Performance-based sub-selection of CMIP6 models for impact assessments in Europe. Earth Syst Dyn 14(2):457–483. https://esd.copernicus.org/articles/14/457/2023
Zahraei A, Hosseini SA (2020) Climate change and its effects on water resource. Hawar, ISBN: 978–600–8473–95–4. https://www.researchgate.net/publication/343904775_Climate_Change_and_Effects_on_Water_Resources
Karamooz M, Ramezani F, Razavi S (2006) Long-term forecasting of precipitation using meteorological signals: application of artificial neural networks. Int Congr Civil Eng, Tehran, p 11. https://civilica.com/doc/5943
LinJYChengCTChauKWUsing support vector machines for long-term discharge predictionHydrol Sci J200651459961210.1623/hysj.51.4.599
ZhuHJiangZhLiJLiWSunCLiLDoes CMIP6 inspire more confidence in simulating climate extremes over China?Adv Atmos Sci202037101119113210.1007/s00376-020-9289-1
Hosseini SA (2009) Analysis and estimation of maximum temperatures in Ardabil city using the artificial neural network theory model. Master's thesis in natural geography (climatology), supervisor: Broumand Salahi, Faculty of Literature and Human Sciences, Mohaghegh Ardabili University, p 95
Sedaghatkerdar A, Fatahi E (2008) Drought early warning methods over Iran. Geogr Dev Quart University of Sistan and Baluchistan 6:59–76. https://gdij.usb.ac.ir/article_1616.html?lang=en
3603_CR18
S Shrestha (3603_CR22) 2016; 75
3603_CR15
3603_CR4
3603_CR16
3603_CR3
L Liu (3603_CR14) 2023; 15
3603_CR1
Sh Heydari (3603_CR9) 2019; 6
TS Hu (3603_CR11) 2001; 46
3603_CR12
3603_CR23
3603_CR20
3603_CR10
3603_CR21
Z Asif (3603_CR5) 2023; 37
S Maurya (3603_CR17) 2023; 37
H Zhu (3603_CR24) 2020; 37
Z Hejazizadeh (3603_CR8) 2022; 15
CK Abbaspour (3603_CR2) 2015; 524
JY Lin (3603_CR13) 2006; 51
M Goudarzi (3603_CR7) 2016
HJ Fowler (3603_CR6) 2007; 27
3603_CR19
References_xml – reference: Abbaspour CK (2013) SWAT-CUP: SWAT calibration and uncertainty programs. A User Manual 103. https://www.scirp.org/(S(czeh2tfqw2orz553k1w0r45))/reference/referencespapers.aspx?referenceid=3037483
– reference: HeydariShHosseiniSAHeydariAInvestigating the effects of climate change on stream flows of Urmia Lake basin in IranModel Earth Syst Environ2019632933910.1007/s40808-019-00681-0
– reference: Moghadam AA, Noorani V, Nadiri A (2008) Modeling of Tabriz plain rainfall using artificial neural networks. Tabriz Univ Agric Sci 18:1–15. https://www.magiran.com/paper/533779/
– reference: Palmer TE, McSweeney CF, Booth BBB, Priestley MDK, Davini P, Brunner L, Borchert L, Menary MB (2023) Performance-based sub-selection of CMIP6 models for impact assessments in Europe. Earth Syst Dyn 14(2):457–483. https://esd.copernicus.org/articles/14/457/2023/
– reference: Zahraei A, Hosseini SA (2020) Climate change and its effects on water resource. Hawar, ISBN: 978–600–8473–95–4. https://www.researchgate.net/publication/343904775_Climate_Change_and_Effects_on_Water_Resources
– reference: MauryaSSrivastavaPKZhuoLYaduvanshiAMallRKFuture climate change impact on the streamflow of Mahi River Basin under different general circulation model scenariosWater Resour Manag2023376–72675269610.1007/s11269-022-03372-1
– reference: ZhuHJiangZhLiJLiWSunCLiLDoes CMIP6 inspire more confidence in simulating climate extremes over China?Adv Atmos Sci202037101119113210.1007/s00376-020-9289-1
– reference: Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool user’s manual. Blackland Research Center, Texas Agricultural Experiment Station 720 East Blackland Road, Temple, Texas 76502. https://swat.tamu.edu/media/99192/swat2009-theory.pdf
– reference: Malmir M, Mohammadrezapour O, Sharifazari S, Ghandhari GH (2016) The effect of climate change on stream flow used Statistical downscaling of HADCM3 model and Artificial Neural Networks. J Water Soil Protect 23(3):317–326. https://jwsc.gau.ac.ir/article_3201.html?lang=en
– reference: Majdi F, Hosseini SA, Karbalaee A, Kaseri M, Marjanian S (2022) Future projection of precipitation and temperature changes in the Middle East and North Africa (MENA) region based on CMIP6. Theor Appl Climatol 147(3–4):1249–1262. https://doi.org/10.1007/s00704-021-03916-2
– reference: Karamooz M, Ramezani F, Razavi S (2006) Long-term forecasting of precipitation using meteorological signals: application of artificial neural networks. Int Congr Civil Eng, Tehran, p 11. https://civilica.com/doc/5943/
– reference: HuTSLamKCNgSTRiver flow time series prediction with a range dependent neural networkHydrol Sci J200146572974510.1080/02626660109492867
– reference: HejazizadehZHosseiniSAKarbalaeeABarabadiRPMousaviSMSpatiotemporal variations in precipitation extremes based on CMIP6 models and Shared Socioeconomic Pathway (SSP) scenarios over MENAArab J Geosci2022151601161410.1007/s12517-022-10887-9
– reference: AbbaspourCKRouholahnejadEVaghefiSSrinivasanRYangHKolveBA continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT modelJ Hydrol201552473375210.1016/j.jhydrol.2015.03.027
– reference: Amjadi N (2002) Introduction to intelligent systems. Semnan University Press, 1st edition, Iran
– reference: FowlerHJBlenkinsopSTebaldiCLinking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelingInt J Climatol200727121547157810.1002/joc.1556
– reference: GoudarziMHosseiniSAMesgariEClimate models2016Zanjan, IranAzarkelk Publications
– reference: Alehu BA, Bitana SG (2023) Assessment of climate change impact on water balance of Lake Hawassa Catchment. Environ Process 10(1). https://doi.org/10.1007/s40710-023-00626-x
– reference: Hosseini SA (2009) Analysis and estimation of maximum temperatures in Ardabil city using the artificial neural network theory model. Master's thesis in natural geography (climatology), supervisor: Broumand Salahi, Faculty of Literature and Human Sciences, Mohaghegh Ardabili University, p 95
– reference: LinJYChengCTChauKWUsing support vector machines for long-term discharge predictionHydrol Sci J200651459961210.1623/hysj.51.4.599
– reference: LiuLXiaoChLiuYProjected water scarcity and hydrological extremes in the yellow river basin in the 21st century under SSP-RCP scenariosWater20231531410.3390/w15030446
– reference: AsifZChenZSadiqRZhuYClimate change impacts on water resources and sustainable water management strategies in North AmericaWater Resour Manag2023376–72771278610.1007/s11269-023-03474-4
– reference: ShresthaSShresthaMBabelMSModelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, NepalEnviron Earth Sci2016754-10.1007/s12665-015-5150-8
– reference: Sedaghatkerdar A, Fatahi E (2008) Drought early warning methods over Iran. Geogr Dev Quart University of Sistan and Baluchistan 6:59–76. https://gdij.usb.ac.ir/article_1616.html?lang=en
– ident: 3603_CR1
– volume: 6
  start-page: 329
  year: 2019
  ident: 3603_CR9
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-019-00681-0
– volume: 37
  start-page: 2771
  issue: 6–7
  year: 2023
  ident: 3603_CR5
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-023-03474-4
– volume: 27
  start-page: 1547
  issue: 12
  year: 2007
  ident: 3603_CR6
  publication-title: Int J Climatol
  doi: 10.1002/joc.1556
– volume: 46
  start-page: 729
  issue: 5
  year: 2001
  ident: 3603_CR11
  publication-title: Hydrol Sci J
  doi: 10.1080/02626660109492867
– volume: 524
  start-page: 733
  year: 2015
  ident: 3603_CR2
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.03.027
– ident: 3603_CR4
– ident: 3603_CR23
– ident: 3603_CR21
– volume: 15
  start-page: 1601
  year: 2022
  ident: 3603_CR8
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-10887-9
– ident: 3603_CR16
– volume: 75
  start-page: -
  issue: 4
  year: 2016
  ident: 3603_CR22
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-5150-8
– ident: 3603_CR3
  doi: 10.1007/s40710-023-00626-x
– volume: 15
  start-page: 14
  issue: 3
  year: 2023
  ident: 3603_CR14
  publication-title: Water
  doi: 10.3390/w15030446
– ident: 3603_CR20
  doi: 10.5194/esd-14-457-2023
– volume: 37
  start-page: 1119
  issue: 10
  year: 2020
  ident: 3603_CR24
  publication-title: Adv Atmos Sci
  doi: 10.1007/s00376-020-9289-1
– ident: 3603_CR12
– volume: 37
  start-page: 2675
  issue: 6–7
  year: 2023
  ident: 3603_CR17
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03372-1
– ident: 3603_CR10
– ident: 3603_CR15
  doi: 10.1007/s00704-021-03916-2
– ident: 3603_CR19
– volume: 51
  start-page: 599
  issue: 4
  year: 2006
  ident: 3603_CR13
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.51.4.599
– volume-title: Climate models
  year: 2016
  ident: 3603_CR7
– ident: 3603_CR18
SSID ssj0010090
Score 2.4374819
Snippet Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5235
SubjectTerms Artificial neural networks
Atmospheric Sciences
Civil Engineering
Climate change
Climate effects
Earth and Environmental Science
Earth Sciences
Environment
Environmental impact
Geotechnical Engineering & Applied Earth Sciences
Humidity
Hydrogeology
Hydrologic models
Hydrology/Water Resources
Intercomparison
Iran
Machine learning
Neural networks
Precipitation
prediction
Predictions
Relative humidity
Runoff
Scaling
Socioeconomic aspects
socioeconomics
Soil and Water Assessment Tool model
Soil water
Surface runoff
temperature
Water resources
Watersheds
Weather forecasting
Wind speed
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1xfRPCmgb6THkUUDyri-1bSdKKCdmW7CvrrnaTtrooKeis0ScskmW-SmfkGYItQDk2SSC5SVDxCiTxH4XPL9KIDX_nakelcHYmTE3lzk542SWFVG-3euiSdph4mu_lBknLCGE5a1wv52yiME9xJux3Pzq8GvgOyGtzNSkoHo4gAs0mV-X6Mz3A0tDG_uEUd2hzM_O8_Z2G6sS7Zbr0c5mAEy3mY-sA5uACPtvqZzUFnh69Fr1V97KyOlcWKdQ27VpZz8w4L5soisb2HezJskdWpCOxcY0lH7G7FXMABO3YBmcgartZbdtESw1aLcHmwf7F3yJuaC1yFIu7zOAkNpkYE2ss1SdfQY66Ep6KkMFJHURTnYVIoUZhAxUnhIfo-RkZGOlakLcIlGCu7JS4Ds6VjYimUyT0kNSGUFxS5of6pNp5QcQf8VvSZbgjJbV2Mh2xIpWxFmZEoMyfK7K0D24M-TzUdx6-t19oZzZqtWWWBlL61-hLZgc3Ba9pU1lOiSuw-V1lIOBALOpmGHdhpZ3k4xM9fXPlb81WYtOXr6-DANRjr955xHSb0S_--6m24Zf0OTczy8A
  priority: 102
  providerName: Springer Nature
Title Modeling Hydrological Responses of Watershed Under Climate Change Scenarios Using Machine Learning Techniques
URI https://link.springer.com/article/10.1007/s11269-023-03603-z
https://www.proquest.com/docview/2881056268
https://www.proquest.com/docview/3153572493
Volume 37
WOSCitedRecordID wos001063155500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V6KE9lD7VLXTlSr21VvO2c6pgBeJQVqtdCvQUOc6YItGEbhYk-PUdO85uiwSXXqxEieNIY8-MPTPfB_CRrByaLJNc5Kh4ghJ5iSLkFulFR6EKtQPTOf4mxmN5eppP_IFb69Mqe53oFHXVaHtG_iWS0pLER5n8evmbW9YoG131FBprsGFREmKXujdZRhHIf3BnLDltkRIynb5opiudC6Ms52SxOOnwIOa3_xqmlbd5J0Dq7M7-5v_-8XN45j1OttNNkRfwCOuX8PQvHMJX8Msyotm6dHZwU817dcimXf4stqwx7ERZHM6fWDFHlcRGF-fk7CLryhPYTGNN2-6mZS4JgR26JE1kHr_1jB31YLHta_i-v3c0OuCeh4GrWKQLnmaxwdyISAelJgfD0GWpRKCSrDJSJ0mSlnFWKVGZSKVZFSCGISZGJjpVpEHiN7BeNzW-BWbpZFIplCkDJNUhVBBVpaH-uTaBUOkAwl4IhfYg5ZYr46JYwStbwRUkuMIJrrgdwKdln8sOouPBt7d7aRV-ubbFSlQD-LB8TAvNRk9Ujc1VW8Q0v1JBu9V4AJ_7ObH6xP0jvnt4xC14YinsuwTBbVhfzK_wPTzW14vzdj6ENXHyYwgbu3vjyZTuDoORbaPJ0E11186onc6O_wB7ZwLR
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMWChgJTmCROE6cHBBCC9VW3a4QLNBb6jjjdqWSlM0W1P4ofiNjJ9kFJHrrgVukxI4Sz8ueme8DeEpeDm2SpFxlqLnEFHmBKuQO6cWIUIfGg-l8HqvJJN3dzd6vwc--F8aVVfY20RvqsjbujPylSFNHEi-S9PXRN-5Yo1x2tafQaMViG09-0JatebX1ltb3mRCb76bDEe9YBbiOVLzgcRJZzKwSJigMuUtLl4VWgZZJaVMjpYyLKCm1Kq3QcVIGiGGI0qbSxJr0IaJ5L8BFKUkdXKlgMFxmLShe8Wc6GW3JJLnqrkmnbdULRZJx8pCcfEYQ8dM_HeEquv0rIev93Ob1_-0P3YBrXUTN3rQqcBPWsLoFV3_DWbwNXx3jm-u7Z6OTct6be_ahrQ_GhtWWfdEOZ_QAS-apoNjwcEbBPLK2_YJ9NFjp-axumC-yYDu-CBVZh0-7z6Y9GG5zBz6dy_fehfWqrvAeMEeXE6dK2yJAMo1KB6IsLI3PjA2UjgcQ9ouemw6E3XGBHOYr-GgnKDkJSu4FJT8dwPPlmKMWguTMpzd66cg7c9TkK9EYwJPlbTIkLjukK6yPmzwi3xcr2o1HA3jRy-Bqin-_8f7Zb3wMl0fTnXE-3ppsP4ArwqmAL4bcgPXF_BgfwiXzfTFr5o-8MjHYO2_Z_AVjdVpr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAcyrdYWsBIcAKrifPh5FAh1LJq1bJaQYHeXMcZw0olKZstqP1p_XWMnWQXkOitB26REttK8jzP9sy8AXhOLIc2TTMuc9Q8xgx5gTLkTunFiFCHxovpfNqTo1F2cJCPl-C8z4VxYZW9TfSGuqyNOyNfF1nmisSLNFu3XVjEeGv4-vg7dxWknKe1L6fRQmQXT3_S9q3Z2Nmif_1CiOHb_c1t3lUY4DqSyYwnaWQxt1KYoDBEnZYuCy0DHaelzUwcx0kRpaWWpRU6ScsAMQwxtllsEk1zI6J-r8BV6UTLfdjgeO7BoLWLP9_JaXsWE213CTtt2l4o0pwTW3LijyDiZ3-S4mKl-5dz1nPe8Nb__LVuw0q30mZv2qlxB5awugs3f9NfvAffXCU4l4_Ptk_LaU8D7H0bN4wNqy37rJ3-6FcsmS8RxTaPJrTIR9amZbAPBis9ndQN88EX7J0PTkXW6dZ-Yfu9SG5zHz5eyvs-gOWqrvAhMFdGJ8mktkWAZDKlDkRZWGqfGxtInQwg7AGgTCfO7mqEHKmFrLQDjSLQKA8adTaAl_M2x600yYVPr_VIUZ2ZatQCJgN4Nr9NBsZ5jXSF9UmjIuLERNIuPRrAqx6Piy7-PeKji0d8CtcJkmpvZ7S7CjeEmw0-RnINlmfTE3wM18yP2aSZPvHzisHhZUPzF6ssY1c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Hydrological+Responses+of+Watershed+Under+Climate+Change+Scenarios+Using+Machine+Learning+Techniques&rft.jtitle=Water+resources+management&rft.au=Karimizadeh%2C+Keivan&rft.au=Yi%2C+Jaeeung&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=37&rft.issue=13&rft.spage=5235&rft.epage=5254&rft_id=info:doi/10.1007%2Fs11269-023-03603-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon