Modeling Hydrological Responses of Watershed Under Climate Change Scenarios Using Machine Learning Techniques
Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature, wind speed, relative humidity and surface runoff in Saghez watershed in Iran investigated. The main methods were using the Coupled Model Inter...
Uložené v:
| Vydané v: | Water resources management Ročník 37; číslo 13; s. 5235 - 5254 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.10.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0920-4741, 1573-1650 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature, wind speed, relative humidity and surface runoff in Saghez watershed in Iran investigated. The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN) model under the Shared Socio-economic Pathway scenarios (SSPs) using the Linear Scaling Bias Correction (LSBC) for the future period (2021–2050) compared to the base period (1985–2014). Additionally, MAE, MSE, RMSE and R
2
indices used for model calibration and validation. The average projected precipitation was forecasted to decrease by 6.1%. In terms of the temperature, 1.4 Cº, and 1.6 Cº increases were predicted for minimum and maximum temperatures, respectively. Prediction of surface runoff using the SWAT model also illustrated that based on SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios, runoff will decrease in the future period, which based on three mentioned scenarios is equals to 17.5%, 23.7% and 26.3% decrease, respectively. Furthermore, the assessment using the artificial neural network (ANN) also showed that the parameters of precipitation in the previous two days, wind speed and maximum relative humidity have the greatest effect on the watershed runoff. These findings may be helpful to reduce the impacts of climate change, and make the suitable long-term plans for management of the watersheds and water resources in the region. |
|---|---|
| AbstractList | Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature, wind speed, relative humidity and surface runoff in Saghez watershed in Iran investigated. The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN) model under the Shared Socio-economic Pathway scenarios (SSPs) using the Linear Scaling Bias Correction (LSBC) for the future period (2021–2050) compared to the base period (1985–2014). Additionally, MAE, MSE, RMSE and R² indices used for model calibration and validation. The average projected precipitation was forecasted to decrease by 6.1%. In terms of the temperature, 1.4 Cº, and 1.6 Cº increases were predicted for minimum and maximum temperatures, respectively. Prediction of surface runoff using the SWAT model also illustrated that based on SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios, runoff will decrease in the future period, which based on three mentioned scenarios is equals to 17.5%, 23.7% and 26.3% decrease, respectively. Furthermore, the assessment using the artificial neural network (ANN) also showed that the parameters of precipitation in the previous two days, wind speed and maximum relative humidity have the greatest effect on the watershed runoff. These findings may be helpful to reduce the impacts of climate change, and make the suitable long-term plans for management of the watersheds and water resources in the region. Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature, wind speed, relative humidity and surface runoff in Saghez watershed in Iran investigated. The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN) model under the Shared Socio-economic Pathway scenarios (SSPs) using the Linear Scaling Bias Correction (LSBC) for the future period (2021–2050) compared to the base period (1985–2014). Additionally, MAE, MSE, RMSE and R2 indices used for model calibration and validation. The average projected precipitation was forecasted to decrease by 6.1%. In terms of the temperature, 1.4 Cº, and 1.6 Cº increases were predicted for minimum and maximum temperatures, respectively. Prediction of surface runoff using the SWAT model also illustrated that based on SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios, runoff will decrease in the future period, which based on three mentioned scenarios is equals to 17.5%, 23.7% and 26.3% decrease, respectively. Furthermore, the assessment using the artificial neural network (ANN) also showed that the parameters of precipitation in the previous two days, wind speed and maximum relative humidity have the greatest effect on the watershed runoff. These findings may be helpful to reduce the impacts of climate change, and make the suitable long-term plans for management of the watersheds and water resources in the region. Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature, wind speed, relative humidity and surface runoff in Saghez watershed in Iran investigated. The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN) model under the Shared Socio-economic Pathway scenarios (SSPs) using the Linear Scaling Bias Correction (LSBC) for the future period (2021–2050) compared to the base period (1985–2014). Additionally, MAE, MSE, RMSE and R 2 indices used for model calibration and validation. The average projected precipitation was forecasted to decrease by 6.1%. In terms of the temperature, 1.4 Cº, and 1.6 Cº increases were predicted for minimum and maximum temperatures, respectively. Prediction of surface runoff using the SWAT model also illustrated that based on SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios, runoff will decrease in the future period, which based on three mentioned scenarios is equals to 17.5%, 23.7% and 26.3% decrease, respectively. Furthermore, the assessment using the artificial neural network (ANN) also showed that the parameters of precipitation in the previous two days, wind speed and maximum relative humidity have the greatest effect on the watershed runoff. These findings may be helpful to reduce the impacts of climate change, and make the suitable long-term plans for management of the watersheds and water resources in the region. |
| Author | Karimizadeh, Keivan Yi, Jaeeung |
| Author_xml | – sequence: 1 givenname: Keivan orcidid: 0009-0002-6325-5441 surname: Karimizadeh fullname: Karimizadeh, Keivan email: keyvan.karimizade@gmail.com organization: Department of Civil Engineering, Ajou University – sequence: 2 givenname: Jaeeung surname: Yi fullname: Yi, Jaeeung organization: Department of Civil Engineering, Ajou University |
| BookMark | eNp9kU1rGzEQhkVJoU7aP9CToJdeth197x6LaZuCQ6CN6VHI2pGtsJZcaX1Ifn3luhDIIScNw_OMhnkvyUXKCQl5z-ATAzCfK2NcDx1w0YHQILrHV2TBlBEd0wouyAIGDp00kr0hl7XeAzRtgAXZ3-QRp5i29PphLHnK2-jdRH9iPeRUsdIc6G83Y6k7HOk6jVjocor71qLLnUtbpL88JldirnRdT4NunN_FhHSFrqRT4w79LsU_R6xvyevgporv_r9XZP3t693yulvdfv-x_LLqnDBq7pQWAYdguIeNVzCEVm6cASf1GHovpVQboUdnxsCd0iMgMoYy9NIrZwSIK_LxPPdQ8unf2e5j9ThNLmE-ViuYEspwOYiGfniG3udjSW07y_uegdJc943qz5QvudaCwfo4uznmNBcXJ8vAnnKw5xxsy8H-y8E-NpU_Uw-l3a88vCyJs1Qb3I5cnrZ6wfoLNzOedQ |
| CitedBy_id | crossref_primary_10_1007_s11269_024_03908_7 crossref_primary_10_1038_s41598_024_76232_0 crossref_primary_10_3390_su17083658 crossref_primary_10_1007_s11269_025_04226_2 crossref_primary_10_1016_j_jenvman_2024_122022 crossref_primary_10_3390_eng6060129 |
| Cites_doi | 10.1007/s40808-019-00681-0 10.1007/s11269-023-03474-4 10.1002/joc.1556 10.1080/02626660109492867 10.1016/j.jhydrol.2015.03.027 10.1007/s12517-022-10887-9 10.1007/s12665-015-5150-8 10.1007/s40710-023-00626-x 10.3390/w15030446 10.5194/esd-14-457-2023 10.1007/s00376-020-9289-1 10.1007/s11269-022-03372-1 10.1007/s00704-021-03916-2 10.1623/hysj.51.4.599 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-023-03603-z |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 5254 |
| ExternalDocumentID | 10_1007_s11269_023_03603_z |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-a375t-563fe9f72c0bc509ff72ba70a46df8c4445b36da7df2a56d0ee11e4f84c5a7303 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001063155500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-4741 |
| IngestDate | Thu Sep 04 20:17:40 EDT 2025 Wed Nov 05 02:22:04 EST 2025 Tue Nov 18 22:10:22 EST 2025 Sat Nov 29 01:46:00 EST 2025 Fri Feb 21 02:42:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | Climate change CMIP6 SSPs SWAT and machine learning Saghez watershed |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a375t-563fe9f72c0bc509ff72ba70a46df8c4445b36da7df2a56d0ee11e4f84c5a7303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0002-6325-5441 |
| PQID | 2881056268 |
| PQPubID | 54174 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_3153572493 proquest_journals_2881056268 crossref_citationtrail_10_1007_s11269_023_03603_z crossref_primary_10_1007_s11269_023_03603_z springer_journals_10_1007_s11269_023_03603_z |
| PublicationCentury | 2000 |
| PublicationDate | 20231000 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Abbaspour CK (2013) SWAT-CUP: SWAT calibration and uncertainty programs. A User Manual 103. https://www.scirp.org/(S(czeh2tfqw2orz553k1w0r45))/reference/referencespapers.aspx?referenceid=3037483 AsifZChenZSadiqRZhuYClimate change impacts on water resources and sustainable water management strategies in North AmericaWater Resour Manag2023376–72771278610.1007/s11269-023-03474-4 Malmir M, Mohammadrezapour O, Sharifazari S, Ghandhari GH (2016) The effect of climate change on stream flow used Statistical downscaling of HADCM3 model and Artificial Neural Networks. J Water Soil Protect 23(3):317–326. https://jwsc.gau.ac.ir/article_3201.html?lang=en ShresthaSShresthaMBabelMSModelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, NepalEnviron Earth Sci2016754-10.1007/s12665-015-5150-8 HeydariShHosseiniSAHeydariAInvestigating the effects of climate change on stream flows of Urmia Lake basin in IranModel Earth Syst Environ2019632933910.1007/s40808-019-00681-0 HuTSLamKCNgSTRiver flow time series prediction with a range dependent neural networkHydrol Sci J200146572974510.1080/02626660109492867 FowlerHJBlenkinsopSTebaldiCLinking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelingInt J Climatol200727121547157810.1002/joc.1556 Majdi F, Hosseini SA, Karbalaee A, Kaseri M, Marjanian S (2022) Future projection of precipitation and temperature changes in the Middle East and North Africa (MENA) region based on CMIP6. Theor Appl Climatol 147(3–4):1249–1262. https://doi.org/10.1007/s00704-021-03916-2 MauryaSSrivastavaPKZhuoLYaduvanshiAMallRKFuture climate change impact on the streamflow of Mahi River Basin under different general circulation model scenariosWater Resour Manag2023376–72675269610.1007/s11269-022-03372-1 LiuLXiaoChLiuYProjected water scarcity and hydrological extremes in the yellow river basin in the 21st century under SSP-RCP scenariosWater20231531410.3390/w15030446 AbbaspourCKRouholahnejadEVaghefiSSrinivasanRYangHKolveBA continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT modelJ Hydrol201552473375210.1016/j.jhydrol.2015.03.027 Amjadi N (2002) Introduction to intelligent systems. Semnan University Press, 1st edition, Iran GoudarziMHosseiniSAMesgariEClimate models2016Zanjan, IranAzarkelk Publications Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool user’s manual. Blackland Research Center, Texas Agricultural Experiment Station 720 East Blackland Road, Temple, Texas 76502. https://swat.tamu.edu/media/99192/swat2009-theory.pdf HejazizadehZHosseiniSAKarbalaeeABarabadiRPMousaviSMSpatiotemporal variations in precipitation extremes based on CMIP6 models and Shared Socioeconomic Pathway (SSP) scenarios over MENAArab J Geosci2022151601161410.1007/s12517-022-10887-9 Moghadam AA, Noorani V, Nadiri A (2008) Modeling of Tabriz plain rainfall using artificial neural networks. Tabriz Univ Agric Sci 18:1–15. https://www.magiran.com/paper/533779 Alehu BA, Bitana SG (2023) Assessment of climate change impact on water balance of Lake Hawassa Catchment. Environ Process 10(1). https://doi.org/10.1007/s40710-023-00626-x Palmer TE, McSweeney CF, Booth BBB, Priestley MDK, Davini P, Brunner L, Borchert L, Menary MB (2023) Performance-based sub-selection of CMIP6 models for impact assessments in Europe. Earth Syst Dyn 14(2):457–483. https://esd.copernicus.org/articles/14/457/2023 Zahraei A, Hosseini SA (2020) Climate change and its effects on water resource. Hawar, ISBN: 978–600–8473–95–4. https://www.researchgate.net/publication/343904775_Climate_Change_and_Effects_on_Water_Resources Karamooz M, Ramezani F, Razavi S (2006) Long-term forecasting of precipitation using meteorological signals: application of artificial neural networks. Int Congr Civil Eng, Tehran, p 11. https://civilica.com/doc/5943 LinJYChengCTChauKWUsing support vector machines for long-term discharge predictionHydrol Sci J200651459961210.1623/hysj.51.4.599 ZhuHJiangZhLiJLiWSunCLiLDoes CMIP6 inspire more confidence in simulating climate extremes over China?Adv Atmos Sci202037101119113210.1007/s00376-020-9289-1 Hosseini SA (2009) Analysis and estimation of maximum temperatures in Ardabil city using the artificial neural network theory model. Master's thesis in natural geography (climatology), supervisor: Broumand Salahi, Faculty of Literature and Human Sciences, Mohaghegh Ardabili University, p 95 Sedaghatkerdar A, Fatahi E (2008) Drought early warning methods over Iran. Geogr Dev Quart University of Sistan and Baluchistan 6:59–76. https://gdij.usb.ac.ir/article_1616.html?lang=en 3603_CR18 S Shrestha (3603_CR22) 2016; 75 3603_CR15 3603_CR4 3603_CR16 3603_CR3 L Liu (3603_CR14) 2023; 15 3603_CR1 Sh Heydari (3603_CR9) 2019; 6 TS Hu (3603_CR11) 2001; 46 3603_CR12 3603_CR23 3603_CR20 3603_CR10 3603_CR21 Z Asif (3603_CR5) 2023; 37 S Maurya (3603_CR17) 2023; 37 H Zhu (3603_CR24) 2020; 37 Z Hejazizadeh (3603_CR8) 2022; 15 CK Abbaspour (3603_CR2) 2015; 524 JY Lin (3603_CR13) 2006; 51 M Goudarzi (3603_CR7) 2016 HJ Fowler (3603_CR6) 2007; 27 3603_CR19 |
| References_xml | – reference: Abbaspour CK (2013) SWAT-CUP: SWAT calibration and uncertainty programs. A User Manual 103. https://www.scirp.org/(S(czeh2tfqw2orz553k1w0r45))/reference/referencespapers.aspx?referenceid=3037483 – reference: HeydariShHosseiniSAHeydariAInvestigating the effects of climate change on stream flows of Urmia Lake basin in IranModel Earth Syst Environ2019632933910.1007/s40808-019-00681-0 – reference: Moghadam AA, Noorani V, Nadiri A (2008) Modeling of Tabriz plain rainfall using artificial neural networks. Tabriz Univ Agric Sci 18:1–15. https://www.magiran.com/paper/533779/ – reference: Palmer TE, McSweeney CF, Booth BBB, Priestley MDK, Davini P, Brunner L, Borchert L, Menary MB (2023) Performance-based sub-selection of CMIP6 models for impact assessments in Europe. Earth Syst Dyn 14(2):457–483. https://esd.copernicus.org/articles/14/457/2023/ – reference: Zahraei A, Hosseini SA (2020) Climate change and its effects on water resource. Hawar, ISBN: 978–600–8473–95–4. https://www.researchgate.net/publication/343904775_Climate_Change_and_Effects_on_Water_Resources – reference: MauryaSSrivastavaPKZhuoLYaduvanshiAMallRKFuture climate change impact on the streamflow of Mahi River Basin under different general circulation model scenariosWater Resour Manag2023376–72675269610.1007/s11269-022-03372-1 – reference: ZhuHJiangZhLiJLiWSunCLiLDoes CMIP6 inspire more confidence in simulating climate extremes over China?Adv Atmos Sci202037101119113210.1007/s00376-020-9289-1 – reference: Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool user’s manual. Blackland Research Center, Texas Agricultural Experiment Station 720 East Blackland Road, Temple, Texas 76502. https://swat.tamu.edu/media/99192/swat2009-theory.pdf – reference: Malmir M, Mohammadrezapour O, Sharifazari S, Ghandhari GH (2016) The effect of climate change on stream flow used Statistical downscaling of HADCM3 model and Artificial Neural Networks. J Water Soil Protect 23(3):317–326. https://jwsc.gau.ac.ir/article_3201.html?lang=en – reference: Majdi F, Hosseini SA, Karbalaee A, Kaseri M, Marjanian S (2022) Future projection of precipitation and temperature changes in the Middle East and North Africa (MENA) region based on CMIP6. Theor Appl Climatol 147(3–4):1249–1262. https://doi.org/10.1007/s00704-021-03916-2 – reference: Karamooz M, Ramezani F, Razavi S (2006) Long-term forecasting of precipitation using meteorological signals: application of artificial neural networks. Int Congr Civil Eng, Tehran, p 11. https://civilica.com/doc/5943/ – reference: HuTSLamKCNgSTRiver flow time series prediction with a range dependent neural networkHydrol Sci J200146572974510.1080/02626660109492867 – reference: HejazizadehZHosseiniSAKarbalaeeABarabadiRPMousaviSMSpatiotemporal variations in precipitation extremes based on CMIP6 models and Shared Socioeconomic Pathway (SSP) scenarios over MENAArab J Geosci2022151601161410.1007/s12517-022-10887-9 – reference: AbbaspourCKRouholahnejadEVaghefiSSrinivasanRYangHKolveBA continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT modelJ Hydrol201552473375210.1016/j.jhydrol.2015.03.027 – reference: Amjadi N (2002) Introduction to intelligent systems. Semnan University Press, 1st edition, Iran – reference: FowlerHJBlenkinsopSTebaldiCLinking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelingInt J Climatol200727121547157810.1002/joc.1556 – reference: GoudarziMHosseiniSAMesgariEClimate models2016Zanjan, IranAzarkelk Publications – reference: Alehu BA, Bitana SG (2023) Assessment of climate change impact on water balance of Lake Hawassa Catchment. Environ Process 10(1). https://doi.org/10.1007/s40710-023-00626-x – reference: Hosseini SA (2009) Analysis and estimation of maximum temperatures in Ardabil city using the artificial neural network theory model. Master's thesis in natural geography (climatology), supervisor: Broumand Salahi, Faculty of Literature and Human Sciences, Mohaghegh Ardabili University, p 95 – reference: LinJYChengCTChauKWUsing support vector machines for long-term discharge predictionHydrol Sci J200651459961210.1623/hysj.51.4.599 – reference: LiuLXiaoChLiuYProjected water scarcity and hydrological extremes in the yellow river basin in the 21st century under SSP-RCP scenariosWater20231531410.3390/w15030446 – reference: AsifZChenZSadiqRZhuYClimate change impacts on water resources and sustainable water management strategies in North AmericaWater Resour Manag2023376–72771278610.1007/s11269-023-03474-4 – reference: ShresthaSShresthaMBabelMSModelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, NepalEnviron Earth Sci2016754-10.1007/s12665-015-5150-8 – reference: Sedaghatkerdar A, Fatahi E (2008) Drought early warning methods over Iran. Geogr Dev Quart University of Sistan and Baluchistan 6:59–76. https://gdij.usb.ac.ir/article_1616.html?lang=en – ident: 3603_CR1 – volume: 6 start-page: 329 year: 2019 ident: 3603_CR9 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-019-00681-0 – volume: 37 start-page: 2771 issue: 6–7 year: 2023 ident: 3603_CR5 publication-title: Water Resour Manag doi: 10.1007/s11269-023-03474-4 – volume: 27 start-page: 1547 issue: 12 year: 2007 ident: 3603_CR6 publication-title: Int J Climatol doi: 10.1002/joc.1556 – volume: 46 start-page: 729 issue: 5 year: 2001 ident: 3603_CR11 publication-title: Hydrol Sci J doi: 10.1080/02626660109492867 – volume: 524 start-page: 733 year: 2015 ident: 3603_CR2 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.03.027 – ident: 3603_CR4 – ident: 3603_CR23 – ident: 3603_CR21 – volume: 15 start-page: 1601 year: 2022 ident: 3603_CR8 publication-title: Arab J Geosci doi: 10.1007/s12517-022-10887-9 – ident: 3603_CR16 – volume: 75 start-page: - issue: 4 year: 2016 ident: 3603_CR22 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-5150-8 – ident: 3603_CR3 doi: 10.1007/s40710-023-00626-x – volume: 15 start-page: 14 issue: 3 year: 2023 ident: 3603_CR14 publication-title: Water doi: 10.3390/w15030446 – ident: 3603_CR20 doi: 10.5194/esd-14-457-2023 – volume: 37 start-page: 1119 issue: 10 year: 2020 ident: 3603_CR24 publication-title: Adv Atmos Sci doi: 10.1007/s00376-020-9289-1 – ident: 3603_CR12 – volume: 37 start-page: 2675 issue: 6–7 year: 2023 ident: 3603_CR17 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03372-1 – ident: 3603_CR10 – ident: 3603_CR15 doi: 10.1007/s00704-021-03916-2 – ident: 3603_CR19 – volume: 51 start-page: 599 issue: 4 year: 2006 ident: 3603_CR13 publication-title: Hydrol Sci J doi: 10.1623/hysj.51.4.599 – volume-title: Climate models year: 2016 ident: 3603_CR7 – ident: 3603_CR18 |
| SSID | ssj0010090 |
| Score | 2.4374819 |
| Snippet | Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5235 |
| SubjectTerms | Artificial neural networks Atmospheric Sciences Civil Engineering Climate change Climate effects Earth and Environmental Science Earth Sciences Environment Environmental impact Geotechnical Engineering & Applied Earth Sciences Humidity Hydrogeology Hydrologic models Hydrology/Water Resources Intercomparison Iran Machine learning Neural networks Precipitation prediction Predictions Relative humidity Runoff Scaling Socioeconomic aspects socioeconomics Soil and Water Assessment Tool model Soil water Surface runoff temperature Water resources Watersheds Weather forecasting Wind speed |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1xfRPCmgb6THkUUDyri-1bSdKKCdmW7CvrrnaTtrooKeis0ScskmW-SmfkGYItQDk2SSC5SVDxCiTxH4XPL9KIDX_nakelcHYmTE3lzk542SWFVG-3euiSdph4mu_lBknLCGE5a1wv52yiME9xJux3Pzq8GvgOyGtzNSkoHo4gAs0mV-X6Mz3A0tDG_uEUd2hzM_O8_Z2G6sS7Zbr0c5mAEy3mY-sA5uACPtvqZzUFnh69Fr1V97KyOlcWKdQ27VpZz8w4L5soisb2HezJskdWpCOxcY0lH7G7FXMABO3YBmcgartZbdtESw1aLcHmwf7F3yJuaC1yFIu7zOAkNpkYE2ss1SdfQY66Ep6KkMFJHURTnYVIoUZhAxUnhIfo-RkZGOlakLcIlGCu7JS4Ds6VjYimUyT0kNSGUFxS5of6pNp5QcQf8VvSZbgjJbV2Mh2xIpWxFmZEoMyfK7K0D24M-TzUdx6-t19oZzZqtWWWBlL61-hLZgc3Ba9pU1lOiSuw-V1lIOBALOpmGHdhpZ3k4xM9fXPlb81WYtOXr6-DANRjr955xHSb0S_--6m24Zf0OTczy8A priority: 102 providerName: Springer Nature |
| Title | Modeling Hydrological Responses of Watershed Under Climate Change Scenarios Using Machine Learning Techniques |
| URI | https://link.springer.com/article/10.1007/s11269-023-03603-z https://www.proquest.com/docview/2881056268 https://www.proquest.com/docview/3153572493 |
| Volume | 37 |
| WOSCitedRecordID | wos001063155500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V6KE9lD7VLXTlSr21VvO2c6pgBeJQVqtdCvQUOc6YItGEbhYk-PUdO85uiwSXXqxEieNIY8-MPTPfB_CRrByaLJNc5Kh4ghJ5iSLkFulFR6EKtQPTOf4mxmN5eppP_IFb69Mqe53oFHXVaHtG_iWS0pLER5n8evmbW9YoG131FBprsGFREmKXujdZRhHIf3BnLDltkRIynb5opiudC6Ms52SxOOnwIOa3_xqmlbd5J0Dq7M7-5v_-8XN45j1OttNNkRfwCOuX8PQvHMJX8Msyotm6dHZwU817dcimXf4stqwx7ERZHM6fWDFHlcRGF-fk7CLryhPYTGNN2-6mZS4JgR26JE1kHr_1jB31YLHta_i-v3c0OuCeh4GrWKQLnmaxwdyISAelJgfD0GWpRKCSrDJSJ0mSlnFWKVGZSKVZFSCGISZGJjpVpEHiN7BeNzW-BWbpZFIplCkDJNUhVBBVpaH-uTaBUOkAwl4IhfYg5ZYr46JYwStbwRUkuMIJrrgdwKdln8sOouPBt7d7aRV-ubbFSlQD-LB8TAvNRk9Ujc1VW8Q0v1JBu9V4AJ_7ObH6xP0jvnt4xC14YinsuwTBbVhfzK_wPTzW14vzdj6ENXHyYwgbu3vjyZTuDoORbaPJ0E11186onc6O_wB7ZwLR |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMWChgJTmCROE6cHBBCC9VW3a4QLNBb6jjjdqWSlM0W1P4ofiNjJ9kFJHrrgVukxI4Sz8ueme8DeEpeDm2SpFxlqLnEFHmBKuQO6cWIUIfGg-l8HqvJJN3dzd6vwc--F8aVVfY20RvqsjbujPylSFNHEi-S9PXRN-5Yo1x2tafQaMViG09-0JatebX1ltb3mRCb76bDEe9YBbiOVLzgcRJZzKwSJigMuUtLl4VWgZZJaVMjpYyLKCm1Kq3QcVIGiGGI0qbSxJr0IaJ5L8BFKUkdXKlgMFxmLShe8Wc6GW3JJLnqrkmnbdULRZJx8pCcfEYQ8dM_HeEquv0rIev93Ob1_-0P3YBrXUTN3rQqcBPWsLoFV3_DWbwNXx3jm-u7Z6OTct6be_ahrQ_GhtWWfdEOZ_QAS-apoNjwcEbBPLK2_YJ9NFjp-axumC-yYDu-CBVZh0-7z6Y9GG5zBz6dy_fehfWqrvAeMEeXE6dK2yJAMo1KB6IsLI3PjA2UjgcQ9ouemw6E3XGBHOYr-GgnKDkJSu4FJT8dwPPlmKMWguTMpzd66cg7c9TkK9EYwJPlbTIkLjukK6yPmzwi3xcr2o1HA3jRy-Bqin-_8f7Zb3wMl0fTnXE-3ppsP4ArwqmAL4bcgPXF_BgfwiXzfTFr5o-8MjHYO2_Z_AVjdVpr |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAcyrdYWsBIcAKrifPh5FAh1LJq1bJaQYHeXMcZw0olKZstqP1p_XWMnWQXkOitB26REttK8jzP9sy8AXhOLIc2TTMuc9Q8xgx5gTLkTunFiFCHxovpfNqTo1F2cJCPl-C8z4VxYZW9TfSGuqyNOyNfF1nmisSLNFu3XVjEeGv4-vg7dxWknKe1L6fRQmQXT3_S9q3Z2Nmif_1CiOHb_c1t3lUY4DqSyYwnaWQxt1KYoDBEnZYuCy0DHaelzUwcx0kRpaWWpRU6ScsAMQwxtllsEk1zI6J-r8BV6UTLfdjgeO7BoLWLP9_JaXsWE213CTtt2l4o0pwTW3LijyDiZ3-S4mKl-5dz1nPe8Nb__LVuw0q30mZv2qlxB5awugs3f9NfvAffXCU4l4_Ptk_LaU8D7H0bN4wNqy37rJ3-6FcsmS8RxTaPJrTIR9amZbAPBis9ndQN88EX7J0PTkXW6dZ-Yfu9SG5zHz5eyvs-gOWqrvAhMFdGJ8mktkWAZDKlDkRZWGqfGxtInQwg7AGgTCfO7mqEHKmFrLQDjSLQKA8adTaAl_M2x600yYVPr_VIUZ2ZatQCJgN4Nr9NBsZ5jXSF9UmjIuLERNIuPRrAqx6Piy7-PeKji0d8CtcJkmpvZ7S7CjeEmw0-RnINlmfTE3wM18yP2aSZPvHzisHhZUPzF6ssY1c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Hydrological+Responses+of+Watershed+Under+Climate+Change+Scenarios+Using+Machine+Learning+Techniques&rft.jtitle=Water+resources+management&rft.au=Karimizadeh%2C+Keivan&rft.au=Yi%2C+Jaeeung&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=37&rft.issue=13&rft.spage=5235&rft.epage=5254&rft_id=info:doi/10.1007%2Fs11269-023-03603-z&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |