Hybrid Materials Based on Keggin Phosphotungstate and Bipyridine with Valuable Hydrophobic and Redox Properties

A thorough investigation of two novel hybrid materials, namely, (2,2'-Hbpy)3[PW12O40] and (4,4'-H2bpy)1.5[PW12O40]·1.5H2O built from Keggin phosphotungstic acid (PTA) and bipyridine, describes the impact of bipyridine isomers in their formation and physicochemical properties. The hybrids&#...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Inorganic chemistry Ročník 61; číslo 32; s. 12494
Hlavní autori: Hidalgo, Gabriel, Devillers, Michel, Gaigneaux, Eric M
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 15.08.2022
ISSN:1520-510X, 1520-510X
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A thorough investigation of two novel hybrid materials, namely, (2,2'-Hbpy)3[PW12O40] and (4,4'-H2bpy)1.5[PW12O40]·1.5H2O built from Keggin phosphotungstic acid (PTA) and bipyridine, describes the impact of bipyridine isomers in their formation and physicochemical properties. The hybrids' formation was confirmed by powder X-ray diffraction, while infrared spectroscopy (IR) proved the polyoxometalate (POM) structural preservation. The stoichiometric composition and thermal stability of the hybrids were solved by thermogravimetric analysis-mass spectrometry, which also revealed newly acquired hydrophobic properties. Raman and IR spectroscopies demonstrated that the POM skeleton units in both hybrids were distorted compared to the POM in PTA, which induced a decrease of their reduction potentials as observed by diffuse reflectance ultraviolet-visible spectroscopy (DR-UV-vis). The hybrids' acidity was assessed by ammonia temperature-programmed desorption, which showed no remaining acid sites compared to the strong acidic character of the pristine PTA. The properties of the hybrids were tested in the epoxidation of cyclooctene in the presence of H2O2. The reaction was boosted when the hybrids were pre-activated with H2O2.A thorough investigation of two novel hybrid materials, namely, (2,2'-Hbpy)3[PW12O40] and (4,4'-H2bpy)1.5[PW12O40]·1.5H2O built from Keggin phosphotungstic acid (PTA) and bipyridine, describes the impact of bipyridine isomers in their formation and physicochemical properties. The hybrids' formation was confirmed by powder X-ray diffraction, while infrared spectroscopy (IR) proved the polyoxometalate (POM) structural preservation. The stoichiometric composition and thermal stability of the hybrids were solved by thermogravimetric analysis-mass spectrometry, which also revealed newly acquired hydrophobic properties. Raman and IR spectroscopies demonstrated that the POM skeleton units in both hybrids were distorted compared to the POM in PTA, which induced a decrease of their reduction potentials as observed by diffuse reflectance ultraviolet-visible spectroscopy (DR-UV-vis). The hybrids' acidity was assessed by ammonia temperature-programmed desorption, which showed no remaining acid sites compared to the strong acidic character of the pristine PTA. The properties of the hybrids were tested in the epoxidation of cyclooctene in the presence of H2O2. The reaction was boosted when the hybrids were pre-activated with H2O2.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-510X
1520-510X
DOI:10.1021/acs.inorgchem.2c00342