Proximity Band Structure and Spin Textures on Both Sides of Topological-Insulator/Ferromagnetic-Metal Interface and Their Charge Transport Probes

The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green’s function techniques t...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 17; no. 9; pp. 5626 - 5633
Main Authors: Marmolejo-Tejada, Juan Manuel, Dolui, Kapildeb, Lazić, Predrag, Chang, Po-Hao, Smidstrup, Søren, Stradi, Daniele, Stokbro, Kurt, Nikolić, Branislav K
Format: Journal Article
Language:English
Published: United States American Chemical Society 13.09.2017
Subjects:
ISSN:1530-6984, 1530-6992, 1530-6992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green’s function techniques to obtain the spectral function at any plane passing through atoms of Bi2Se3 and Co or Cu layers comprising the interface. Instead of naively assumed Dirac cone gapped by the proximity exchange field spectral function, we find that the Rashba ferromagnetic model describes the spectral function on the surface of Bi2Se3 in contact with Co near the Fermi level E F 0, where circular and snowflake-like constant energy contours coexist around which spin locks to momentum. The remnant of the Dirac cone is hybridized with evanescent wave functions from metallic layers and pushed, due to charge transfer from Co or Cu layers, a few tenths of an electron-volt below E F 0 for both Bi2Se3/Co and Bi2Se3/Cu interfaces while hosting distorted helical spin texture wounding around a single circle. These features explain recent observation of sensitivity of spin-to-charge conversion signal at TI/Cu interface to tuning of E F 0. Crucially for spin–orbit torque in TI/FM heterostructures, few monolayers of Co adjacent to Bi2Se3 host spectral functions very different from the bulk metal, as well as in-plane spin textures (despite Co magnetization being out-of-plane) due to proximity spin–orbit coupling in Co induced by Bi2Se3. We predict that out-of-plane tunneling anisotropic magnetoresistance in Cu/Bi2Se3/Co vertical heterostructure can serve as a sensitive probe of the type of spin texture residing at E F 0.
AbstractList Not provided.
The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green's function techniques to obtain the spectral function at any plane passing through atoms of Bi2Se3 and Co or Cu layers comprising the interface. Instead of naively assumed Dirac cone gapped by the proximity exchange field spectral function, we find that the Rashba ferromagnetic model describes the spectral function on the surface of Bi2Se3 in contact with Co near the Fermi level EF0, where circular and snowflake-like constant energy contours coexist around which spin locks to momentum. The remnant of the Dirac cone is hybridized with evanescent wave functions from metallic layers and pushed, due to charge transfer from Co or Cu layers, a few tenths of an electron-volt below EF0 for both Bi2Se3/Co and Bi2Se3/Cu interfaces while hosting distorted helical spin texture wounding around a single circle. These features explain recent observation of sensitivity of spin-to-charge conversion signal at TI/Cu interface to tuning of EF0. Crucially for spin-orbit torque in TI/FM heterostructures, few monolayers of Co adjacent to Bi2Se3 host spectral functions very different from the bulk metal, as well as in-plane spin textures (despite Co magnetization being out-of-plane) due to proximity spin-orbit coupling in Co induced by Bi2Se3. We predict that out-of-plane tunneling anisotropic magnetoresistance in Cu/Bi2Se3/Co vertical heterostructure can serve as a sensitive probe of the type of spin texture residing at EF0.The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green's function techniques to obtain the spectral function at any plane passing through atoms of Bi2Se3 and Co or Cu layers comprising the interface. Instead of naively assumed Dirac cone gapped by the proximity exchange field spectral function, we find that the Rashba ferromagnetic model describes the spectral function on the surface of Bi2Se3 in contact with Co near the Fermi level EF0, where circular and snowflake-like constant energy contours coexist around which spin locks to momentum. The remnant of the Dirac cone is hybridized with evanescent wave functions from metallic layers and pushed, due to charge transfer from Co or Cu layers, a few tenths of an electron-volt below EF0 for both Bi2Se3/Co and Bi2Se3/Cu interfaces while hosting distorted helical spin texture wounding around a single circle. These features explain recent observation of sensitivity of spin-to-charge conversion signal at TI/Cu interface to tuning of EF0. Crucially for spin-orbit torque in TI/FM heterostructures, few monolayers of Co adjacent to Bi2Se3 host spectral functions very different from the bulk metal, as well as in-plane spin textures (despite Co magnetization being out-of-plane) due to proximity spin-orbit coupling in Co induced by Bi2Se3. We predict that out-of-plane tunneling anisotropic magnetoresistance in Cu/Bi2Se3/Co vertical heterostructure can serve as a sensitive probe of the type of spin texture residing at EF0.
The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green’s function techniques to obtain the spectral function at any plane passing through atoms of Bi2Se3 and Co or Cu layers comprising the interface. Instead of naively assumed Dirac cone gapped by the proximity exchange field spectral function, we find that the Rashba ferromagnetic model describes the spectral function on the surface of Bi2Se3 in contact with Co near the Fermi level E F 0, where circular and snowflake-like constant energy contours coexist around which spin locks to momentum. The remnant of the Dirac cone is hybridized with evanescent wave functions from metallic layers and pushed, due to charge transfer from Co or Cu layers, a few tenths of an electron-volt below E F 0 for both Bi2Se3/Co and Bi2Se3/Cu interfaces while hosting distorted helical spin texture wounding around a single circle. These features explain recent observation of sensitivity of spin-to-charge conversion signal at TI/Cu interface to tuning of E F 0. Crucially for spin–orbit torque in TI/FM heterostructures, few monolayers of Co adjacent to Bi2Se3 host spectral functions very different from the bulk metal, as well as in-plane spin textures (despite Co magnetization being out-of-plane) due to proximity spin–orbit coupling in Co induced by Bi2Se3. We predict that out-of-plane tunneling anisotropic magnetoresistance in Cu/Bi2Se3/Co vertical heterostructure can serve as a sensitive probe of the type of spin texture residing at E F 0.
The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green's function techniques to obtain the spectral function at any plane passing through atoms of Bi Se and Co or Cu layers comprising the interface. Instead of naively assumed Dirac cone gapped by the proximity exchange field spectral function, we find that the Rashba ferromagnetic model describes the spectral function on the surface of Bi Se in contact with Co near the Fermi level E , where circular and snowflake-like constant energy contours coexist around which spin locks to momentum. The remnant of the Dirac cone is hybridized with evanescent wave functions from metallic layers and pushed, due to charge transfer from Co or Cu layers, a few tenths of an electron-volt below E for both Bi Se /Co and Bi Se /Cu interfaces while hosting distorted helical spin texture wounding around a single circle. These features explain recent observation of sensitivity of spin-to-charge conversion signal at TI/Cu interface to tuning of E . Crucially for spin-orbit torque in TI/FM heterostructures, few monolayers of Co adjacent to Bi Se host spectral functions very different from the bulk metal, as well as in-plane spin textures (despite Co magnetization being out-of-plane) due to proximity spin-orbit coupling in Co induced by Bi Se . We predict that out-of-plane tunneling anisotropic magnetoresistance in Cu/Bi Se /Co vertical heterostructure can serve as a sensitive probe of the type of spin texture residing at E .
Author Smidstrup, Søren
Nikolić, Branislav K
Chang, Po-Hao
Marmolejo-Tejada, Juan Manuel
Lazić, Predrag
Stradi, Daniele
Stokbro, Kurt
Dolui, Kapildeb
AuthorAffiliation Department of Physics and Astronomy
Rudjer Bošković Institute
School of Electrical and Electronics Engineering
University of Delaware
University of Nebraska Lincoln
Universidad del Valle
AuthorAffiliation_xml – name: Rudjer Bošković Institute
– name: University of Delaware
– name: University of Nebraska Lincoln
– name: School of Electrical and Electronics Engineering
– name: Universidad del Valle
– name: Department of Physics and Astronomy
Author_xml – sequence: 1
  givenname: Juan Manuel
  surname: Marmolejo-Tejada
  fullname: Marmolejo-Tejada, Juan Manuel
  organization: Universidad del Valle
– sequence: 2
  givenname: Kapildeb
  surname: Dolui
  fullname: Dolui, Kapildeb
  organization: University of Delaware
– sequence: 3
  givenname: Predrag
  surname: Lazić
  fullname: Lazić, Predrag
  organization: Rudjer Bošković Institute
– sequence: 4
  givenname: Po-Hao
  surname: Chang
  fullname: Chang, Po-Hao
  organization: University of Nebraska Lincoln
– sequence: 5
  givenname: Søren
  surname: Smidstrup
  fullname: Smidstrup, Søren
– sequence: 6
  givenname: Daniele
  orcidid: 0000-0002-3916-2168
  surname: Stradi
  fullname: Stradi, Daniele
– sequence: 7
  givenname: Kurt
  surname: Stokbro
  fullname: Stokbro, Kurt
– sequence: 8
  givenname: Branislav K
  orcidid: 0000-0002-5793-7764
  surname: Nikolić
  fullname: Nikolić, Branislav K
  email: bnikolic@udel.edu
  organization: University of Delaware
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28795576$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1534803$$D View this record in Osti.gov
BookMark eNqFUU1v1DAQtVAR_YB_gJDFiUu2tuNsEm50RWGlIpAaztbEmey6SuzFdqT2Z_CPccguBw5wssfz3vPMe5fkzDqLhLzmbMWZ4Negw8qCdQPGuCpbJgrOn5ELXuQsW9e1OPtzr-Q5uQzhgTFW5wV7Qc5FVdZFUa4vyM9v3j2a0cQnegO2o_fRTzpOHunv6mAsbfBxfgjUWXrj4p7em26uetq4gxvczmgYsq0N0wDR-etb9N6NsLMYjc6-YISBbm1E34NeZJs9Gk83e_A7pI0HGw7OR5pGaTG8JM97GAK-Op5X5Pvtx2bzObv7-mm7-XCXQV4WMeOi5_ma8bQ4Z1qXXMuiqrXoQPSyrUAKjqLtEToJ2MmyrRAkoixSt67yOr8ibxddF6JRQZuIeq-dtaijSs7JiuUJ9G4BHbz7MWGIajRB4zCARTcFxWtRVnlZ1rPemyN0akfs1MGbEfyTOnmdAO8XgPYuBI-9Sn9CNM5GD2ZQnKk5WJWCVadg1THYRJZ_kU_6_6GxhTZ3H9zkbbL035RfuPS-ug
CitedBy_id crossref_primary_10_1039_D2NR05176A
crossref_primary_10_1063_5_0033259
crossref_primary_10_1002_adma_202108790
crossref_primary_10_1063_5_0149849
crossref_primary_10_1063_5_0049044
crossref_primary_10_1103_PhysRevApplied_14_034031
crossref_primary_10_1088_1361_6463_abcf72
crossref_primary_10_1016_j_physe_2023_115774
crossref_primary_10_1002_adfm_202008411
crossref_primary_10_1002_adma_202005909
crossref_primary_10_1088_2515_7639_aceaad
crossref_primary_10_1103_8dhn_dh55
crossref_primary_10_1002_adma_202007795
crossref_primary_10_1063_5_0054865
crossref_primary_10_1002_adom_202403577
crossref_primary_10_1002_advs_202400893
crossref_primary_10_1088_2053_1583_ab6ff7
crossref_primary_10_1557_mrs_2020_121
crossref_primary_10_1103_PhysRevB_104_134510
crossref_primary_10_1002_adma_202002032
crossref_primary_10_1016_j_apsusc_2022_156245
crossref_primary_10_1103_PhysRevApplied_23_014071
crossref_primary_10_1103_PhysRevResearch_2_043057
crossref_primary_10_1088_2515_7639_ac6ae6
crossref_primary_10_1016_j_jmmm_2025_173406
crossref_primary_10_1063_5_0046217
crossref_primary_10_1103_PhysRevB_111_L140415
crossref_primary_10_1038_s44306_025_00085_0
crossref_primary_10_1016_j_mattod_2018_05_003
crossref_primary_10_1063_5_0252146
crossref_primary_10_1016_j_jallcom_2020_158235
crossref_primary_10_1016_j_physb_2019_08_009
crossref_primary_10_3390_magnetochemistry8080089
crossref_primary_10_1103_PhysRevApplied_16_034007
crossref_primary_10_1021_acsami_5c05099
Cites_doi 10.1103/PhysRevB.94.014435
10.1103/PhysRevB.90.155103
10.1038/nphys1270
10.1021/acs.nanolett.5b03274
10.1103/PhysRevB.93.115419
10.1103/PhysRevB.86.201402
10.1038/nature13534
10.1063/1.2717165
10.1038/nature19820
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.98.046601
10.1103/PhysRevB.90.094403
10.1103/PhysRevLett.112.096802
10.1038/nmat3305
10.1103/PhysRevB.82.205331
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.79.155303
10.1103/PhysRevB.90.085115
10.1038/nphys2388
10.1103/PhysRevLett.113.196601
10.1038/nnano.2015.294
10.1103/PhysRevB.78.035407
10.1038/nphys3833
10.1103/RevModPhys.82.1539
10.1103/PhysRevB.87.174411
10.1103/PhysRevB.47.558
10.1103/PhysRevB.67.155108
10.1038/ncomms2162
10.1103/PhysRevLett.114.257202
10.1103/PhysRevB.92.201406
10.1103/PhysRevB.95.201402
10.1103/PhysRevB.84.085103
10.1088/0953-8984/16/21/R01
10.1103/RevModPhys.84.1419
10.1038/nature15768
10.1103/PhysRevLett.100.087204
10.1103/PhysRevB.59.1758
10.1038/ncomms7547
10.1103/PhysRevB.90.115432
10.1103/PhysRevB.87.085431
10.1103/PhysRevB.93.180402
10.1016/j.cpc.2015.08.038
10.1103/PhysRevB.77.155301
10.1103/RevModPhys.83.1057
10.1103/PhysRevLett.92.246401
10.1103/PhysRevB.84.201401
10.1103/PhysRevLett.116.096602
10.1103/RevModPhys.88.021004
10.1038/nmat3973
10.1103/PhysRevLett.117.076601
10.1038/nmat3522
10.1103/RevModPhys.82.3045
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Univ. of Delaware, Newark, DE (United States)
CorporateAuthor_xml – name: Univ. of Delaware, Newark, DE (United States)
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1021/acs.nanolett.7b02511
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1530-6992
EndPage 5633
ExternalDocumentID 1534803
28795576
10_1021_acs_nanolett_7b02511
b486557300
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ABFRP
OTOTI
ID FETCH-LOGICAL-a375t-12f13601b0210cc71c4589c2da2f4b8a421e2bfead4aed47b8ea4ee45f4b98393
IEDL.DBID ACS
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411043500066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-6984
1530-6992
IngestDate Fri May 19 02:14:44 EDT 2023
Fri Jul 11 15:21:09 EDT 2025
Thu Jan 02 23:11:25 EST 2025
Sat Nov 29 05:22:09 EST 2025
Tue Nov 18 22:20:44 EST 2025
Thu Aug 27 13:43:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords spintronics
first-principles calculations
tunneling anisotropic magnetoresistance
Topological insulators
spin−orbit proximity effect
ultrathin ferromagnetic layers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a375t-12f13601b0210cc71c4589c2da2f4b8a421e2bfead4aed47b8ea4ee45f4b98393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SC0016380
USDOE Office of Science (SC)
ORCID 0000-0002-5793-7764
0000-0002-3916-2168
0000000239162168
0000000257937764
PMID 28795576
PQID 1927837799
PQPubID 23479
PageCount 8
ParticipantIDs osti_scitechconnect_1534803
proquest_miscellaneous_1927837799
pubmed_primary_28795576
crossref_citationtrail_10_1021_acs_nanolett_7b02511
crossref_primary_10_1021_acs_nanolett_7b02511
acs_journals_10_1021_acs_nanolett_7b02511
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2017-09-13
PublicationDateYYYYMMDD 2017-09-13
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
Sheng X.-L. (ref25/cit25) 2017; 95
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1103/PhysRevB.94.014435
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.90.155103
– ident: ref19/cit19
  doi: 10.1038/nphys1270
– ident: ref7/cit7
  doi: 10.1021/acs.nanolett.5b03274
– ident: ref16/cit16
  doi: 10.1103/PhysRevB.93.115419
– ident: ref31/cit31
  doi: 10.1103/PhysRevB.86.201402
– ident: ref55/cit55
– ident: ref1/cit1
  doi: 10.1038/nature13534
– ident: ref54/cit54
  doi: 10.1063/1.2717165
– ident: ref18/cit18
  doi: 10.1038/nature19820
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.50.17953
– ident: ref41/cit41
  doi: 10.1103/PhysRevLett.98.046601
– ident: ref6/cit6
  doi: 10.1103/PhysRevB.90.094403
– ident: ref40/cit40
  doi: 10.1103/PhysRevLett.112.096802
– ident: ref13/cit13
  doi: 10.1038/nmat3305
– ident: ref22/cit22
  doi: 10.1103/PhysRevB.82.205331
– ident: ref50/cit50
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref45/cit45
  doi: 10.1103/PhysRevB.79.155303
– ident: ref28/cit28
  doi: 10.1103/PhysRevB.90.085115
– ident: ref39/cit39
  doi: 10.1038/nphys2388
– ident: ref5/cit5
  doi: 10.1103/PhysRevLett.113.196601
– ident: ref4/cit4
  doi: 10.1038/nnano.2015.294
– ident: ref34/cit34
  doi: 10.1103/PhysRevB.78.035407
– ident: ref10/cit10
  doi: 10.1038/nphys3833
– ident: ref37/cit37
  doi: 10.1103/RevModPhys.82.1539
– ident: ref38/cit38
  doi: 10.1103/PhysRevB.87.174411
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.47.558
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.67.155108
– ident: ref42/cit42
  doi: 10.1038/ncomms2162
– ident: ref48/cit48
– ident: ref3/cit3
  doi: 10.1103/PhysRevLett.114.257202
– ident: ref14/cit14
  doi: 10.1103/PhysRevB.92.201406
– volume: 95
  start-page: 201402
  year: 2017
  ident: ref25/cit25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.201402
– ident: ref23/cit23
  doi: 10.1103/PhysRevB.84.085103
– ident: ref33/cit33
  doi: 10.1088/0953-8984/16/21/R01
– ident: ref27/cit27
  doi: 10.1103/RevModPhys.84.1419
– ident: ref24/cit24
  doi: 10.1038/nature15768
– ident: ref56/cit56
– ident: ref46/cit46
– ident: ref44/cit44
  doi: 10.1103/PhysRevLett.100.087204
– ident: ref51/cit51
  doi: 10.1103/PhysRevB.59.1758
– ident: ref26/cit26
  doi: 10.1038/ncomms7547
– ident: ref15/cit15
  doi: 10.1103/PhysRevB.90.115432
– ident: ref20/cit20
  doi: 10.1103/PhysRevB.87.085431
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.93.180402
– ident: ref47/cit47
  doi: 10.1016/j.cpc.2015.08.038
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.77.155301
– ident: ref12/cit12
  doi: 10.1103/RevModPhys.83.1057
– ident: ref52/cit52
  doi: 10.1103/PhysRevLett.92.246401
– ident: ref53/cit53
  doi: 10.1103/PhysRevB.84.201401
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.116.096602
– ident: ref17/cit17
  doi: 10.1103/RevModPhys.88.021004
– ident: ref2/cit2
  doi: 10.1038/nmat3973
– ident: ref9/cit9
  doi: 10.1103/PhysRevLett.117.076601
– ident: ref36/cit36
  doi: 10.1038/nmat3522
– ident: ref11/cit11
  doi: 10.1103/RevModPhys.82.3045
SSID ssj0009350
Score 2.4855592
Snippet The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of...
Not provided.
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5626
SubjectTerms Chemistry
Materials Science
Physics
Science & Technology - Other Topics
Title Proximity Band Structure and Spin Textures on Both Sides of Topological-Insulator/Ferromagnetic-Metal Interface and Their Charge Transport Probes
URI http://dx.doi.org/10.1021/acs.nanolett.7b02511
https://www.ncbi.nlm.nih.gov/pubmed/28795576
https://www.proquest.com/docview/1927837799
https://www.osti.gov/biblio/1534803
Volume 17
WOSCitedRecordID wos000411043500066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RhQM98H4shcpIXDi4bRxnYx_bihUcqFbaRdpb5FeqlcCpkm0FP4N_zIyT3QJSVfWYhx3H_ib-JmN_A_BhkgVxlAfPkVsLEtV23FhnuJXCFkaFzBQuJZsoz87Ucqln147i_xF8kR0a1x1EExt8jfVBaRMn3oH7ApkuIfr4dH4tspunjKxoxOgSaSU3W-VuqIUmJNf9MyGNGjSsm8lmmnSmj-_a3CfwaKCX7LjHw1O4F-Iz2P1LdPA5_J61zU_a1vSLnZjo2TwpyF62gaWji1VkC_xi44mONZGd4FCy-crTUc0WfU4FGln-hZaxk89-OA1t2_ww55F2RPKvAQk9S78aa-P6ahcUj2AU2z8PbCuozma0Gal7Ad-mnxann_mQmIGbvCzWPBN1lqMnZ8lhdK7MnCyUdsIbUUurjBSIAFsjSKUJXpZWBSNDkAVe1cjI8pcwik0Mr4EJobCcd1ZpL2s10fXEB29N0hXTMh_DR-zRajCsrkoxc5FVdHLTzdXQzWPINyNZuUHhnBJtfL-lFN-WuugVPm65f49AUiFDIZldR-uR3LpC0El1hO19v8FOhYZK0RcTQ3OJLdeU1KQstR7Dqx5U2-cJSvmOnt-bO7ztHjwURDEonUX-FkYIlvAOHrir9apr92GnXKr9ZB5_AIjEEW0
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKggQ98IYu5WEkLhzSNo6zsY9txaoV7WqlDVJvll-pVgKnSrYIfgb_mBkn2dJDVZVjnNjx45t4JuP5hpBPk9Szvcy7BHRrhqTaNtHG6sRwZnItfKpzG5NNFLOZODuT8w2SD7Ew0IkWWmqjE_-KXSDdxbKgQw2jWe0UJqrG98j9HHZYhPf-4eKKazeLiVlBlsEykoIPEXM3tIL7km2v7UujGuTrZp0z7j3TJ__Z66fkca9s0v0OHc_Ihg_PyeY_FIQvyJ95U__CIKff9EAHRxeRT_ay8TReXSwDLeH7DQUtrQM9gIWli6XDq4qWXYYFXOfkGA-1owW_O_VNU__Q5wHjI5NTD-o9jT8eK227Zkv0TlD09J97uqZXp3MMTWpfkm_TL-XhUdKnaUh0VuSrJGVVmoFdZ9B8tLZILc-FtMxpVnEjNGeAB1MBZLn2jhdGeM295znclaCfZa_IKNTBbxHKmIB6zhohHa_ERFYT553RkWVM8mxMPsOMql7MWhU96CxVWDhMs-qneUyyYUGV7fnOMe3G91tqJetaFx3fxy3PbyNWFOgrSLpr8XSSXSnAHhd70N-PA4QUiC36YnTw9SX0XGKKk6KQckxed9hav49hAniwA9_cYbQfyMOj8vREnRzPvm6TRwyVD0x0kb0lIwCOf0ce2J-rZdu8j7LyF7Y1GOs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgQagcyrOwLQ8jceFg2jjOxj62hRUVsFppF6k3y69UK4GzSrYIfgb_mBknu20PVYU4xokdx_4mnsnE30fI21EW-EEePAPfmiOptmPGOsOs4LYwMmSmcElsopxM5Ompml6S-oJOtNBSm5L4aNVLX_UMA9k-lkcTa3ii1fvSJvf4NrlTwJqOED88nl3w7eZJnBXsGaIjJcV619w1reDa5Nora9OgBhu73u9M68_4wX_0_CHZ7p1Oetih5BG5FeJjcv8SFeET8mfa1L9ws9NvemSip7PEK3veBJqOlotI5_Aeh4KW1pEewQTT2cLjUUXnndICzjc7wZ_bMZLfH4emqX-Ys4j7JNnXAG4-TR8gK-O6ZueYpaCY8T8LdEOzTqe4Ral9Sr6NP86PP7FeroGZvCxWLONVlkN8ZzGMdK7MnCikctwbXgkrjeCAC1sBdIUJXpRWBiNCEAWcVeCn5TtkEOsYnhPKuYR63lmpvKjkSFUjH7w1iW1MiXxI3sGI6t7cWp0y6TzTWLgeZt0P85Dk60nVruc9R_mN7zfUYptay47344br9xAvGvwWJN91-JeSW2nAn5AH0N83axhpMF_MyZgY6nPouUKpk7JUakiedfja3I-jEDzEg7v_8LSvyb3ph7H-cjL5vEe2OPogqHeRvyADwE14Se66n6tF27xK5vIXfW0bZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximity+Band+Structure+and+Spin+Textures+on+Both+Sides+of+Topological-Insulator%2FFerromagnetic-Metal+Interface+and+Their+Charge+Transport+Probes&rft.jtitle=Nano+letters&rft.au=Marmolejo-Tejada%2C+Juan+Manuel&rft.au=Dolui%2C+Kapildeb&rft.au=Lazi%C4%87%2C+Predrag&rft.au=Chang%2C+Po-Hao&rft.date=2017-09-13&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=17&rft.issue=9&rft.spage=5626&rft.epage=5633&rft_id=info:doi/10.1021%2Facs.nanolett.7b02511&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_7b02511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon