Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space

We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative ergodic theorem. Then, we use this theorem...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Lian, Zeng, Lu, Kening
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2010
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:0821846566, 9780821846568
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative ergodic theorem. Then, we use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random invariant sets.
Bibliografie:Volume 206, number 967 (first of 4 numbers).
Includes bibliographical references (p. 105-106)
ISBN:0821846566
9780821846568
ISSN:0065-9266
1947-6221
DOI:10.1090/S0065-9266-10-00574-0