Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space
We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative ergodic theorem. Then, we use this theorem...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Format: | E-Book Buch |
| Sprache: | Englisch |
| Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
2010
|
| Ausgabe: | 1 |
| Schriftenreihe: | Memoirs of the American Mathematical Society |
| Schlagworte: | |
| ISBN: | 0821846566, 9780821846568 |
| ISSN: | 0065-9266, 1947-6221 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Inhaltsangabe:
- Introduction -- Random Dynamical Systems and Measures of Noncompactness -- Main Results -- Volume Function in Banach Spaces -- Gap and Distance Between Closed Linear Subspaces -- Lyapunov Exponents and Oseledets Spaces -- Measurable Random Invariant Complementary Subspaces -- Proof of Multiplicative Ergodic Theorem -- Stable and Unstable Manifolds -- Subadditive Ergodic Theorem -- Non-ergodic Case
- Intro -- Contents -- Abstract -- Chapter 1. Introduction -- Acknowledgement -- Chapter 2. Random Dynamical Systems and Measures of Noncompactness -- Chapter 3. Main Results -- Chapter 4. Volume Function in Banach Spaces -- Chapter 5. Gap and Distance Between Closed Linear Subspaces -- Chapter 6. Lyapunov Exponents and Oseledets Spaces -- Chapter 7. Measurable Random Invariant Complementary Subspaces -- Chapter 8. Proof of Multiplicative Ergodic Theorem -- Chapter 9. Stable and Unstable Manifolds -- Appendix A. Subadditive Ergodic Theorem -- Appendix B. Non-ergodic Case -- Bibliography

