Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space
We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative ergodic theorem. Then, we use this theorem...
Uloženo v:
| Hlavní autoři: | , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence, Rhode Island
American Mathematical Society
2010
|
| Vydání: | 1 |
| Edice: | Memoirs of the American Mathematical Society |
| Témata: | |
| ISBN: | 0821846566, 9780821846568 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a
Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative
ergodic theorem. Then, we use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random
invariant sets. |
|---|---|
| AbstractList | We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a
Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative
ergodic theorem. Then, we use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random
invariant sets. Examines the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. The authors prove a multiplicative ergodic theorem and then use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random invariant sets. |
| Author | Lu, Kening Lian, Zeng |
| Author_xml | – sequence: 1 fullname: Lian, Zeng – sequence: 2 fullname: Lu, Kening |
| BackLink | https://cir.nii.ac.jp/crid/1130282270035372544$$DView record in CiNii |
| BookMark | eNo9kctq3DAUhtU2KZ1J8wgFLQqlCydHd2nZDOkFBrpIKXQljm2ZuLGlqeVMMm9fzYVooQO_vnPR-ZfkLKYYCPnA4IqBg-s7AK0qx7WuGFQAysgKXpElkwYkKMvka7JgTppKc87ekCVYzqzUSuszsnhJPidLDgyAcWn0W7JwnDvLjLHvyGXOf6Ecax1IuyB_1jvcPMa0peF5U4aJc6YYW9rHLU49xpmOGPsuDW2mXZroVB7TSNtdxLFvcKB5l-cw5pJAkd5gxOae5g024T0573DI4fIUL8jvr7e_Vt-r9c9vP1Zf1hUKI7WpAoou1C1XXGDT1QKCKdEgq7u6dsJh27i2dhKLbLA10gXTGVUWIJxy2ogL8vlYGPNDeMr3aZiz3w6hTukhe2fsy_Z0YT8d2c2U_j2GPPsD1pR_Tzj425uVYEwyxwv58UjGvvdNv78ZE8At5wZAKGG4krJg16fmY_anlgz83k1_cNPvDdlLBzc9iP8vYYgD |
| CitedBy_id | crossref_primary_10_1007_s10884_020_09888_7 crossref_primary_10_1017_etds_2016_55 crossref_primary_10_1155_2017_6707649 crossref_primary_10_1088_1402_4896_aca3d9 crossref_primary_10_1007_s10884_021_09969_1 crossref_primary_10_1007_s10884_015_9436_z crossref_primary_10_1080_10236198_2016_1263622 crossref_primary_10_1007_s10883_020_09481_7 crossref_primary_10_1002_cpa_21698 crossref_primary_10_1007_s00023_011_0100_9 crossref_primary_10_1080_00036811_2024_2426232 crossref_primary_10_1017_etds_2018_85 crossref_primary_10_1007_s00028_019_00479_8 crossref_primary_10_1007_s00440_012_0475_7 crossref_primary_10_1007_s00028_022_00848_w crossref_primary_10_1080_14689367_2016_1159663 crossref_primary_10_1007_s10884_022_10219_1 crossref_primary_10_1007_s10884_015_9493_3 crossref_primary_10_1007_s00222_016_0678_0 crossref_primary_10_1090_proc_17403 crossref_primary_10_1088_1361_6544_ad353f |
| ContentType | eBook Book |
| Copyright | Copyright 2010 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2010 American Mathematical Society |
| DBID | RYH |
| DEWEY | 515/.39 |
| DOI | 10.1090/S0065-9266-10-00574-0 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 1470405814 9781470405816 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470405816 EBC3114192 BB02400565 10_1090_S0065_9266_10_00574_0 |
| GroupedDBID | --Z -~X 123 4.4 6TJ 85S AAFVP ABPPZ ACNCT AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 XOL YNT YQT 38. 50G AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AEKGI AERYV AFOJC AHWGJ AJFER AZZ BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a37467-ea3febd2523acfb30e7acf7a1bfbb939adc9db94a7ac7ad749e7f756223959673 |
| ISBN | 0821846566 9780821846568 |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 05:38:03 EST 2024 Wed Dec 10 11:44:14 EST 2025 Thu Jun 26 23:42:04 EDT 2025 Thu Aug 14 15:25:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiplicative Ergodic Theorem invariant manifolds infinite dimensional random dynamical systems Lyapunov exponents |
| LCCN | 2010012476 |
| LCCallNum_Ident | QA614.835 .L536 2010 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a37467-ea3febd2523acfb30e7acf7a1bfbb939adc9db94a7ac7ad749e7f756223959673 |
| Notes | Volume 206, number 967 (first of 4 numbers). Includes bibliographical references (p. 105-106) |
| OCLC | 922981778 |
| PQID | EBC3114192 |
| PageCount | 119 |
| ParticipantIDs | askewsholts_vlebooks_9781470405816 proquest_ebookcentral_EBC3114192 nii_cinii_1130282270035372544 ams_ebooks_10_1090_S0065_9266_10_00574_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2010. |
| PublicationDateYYYYMMDD | 2010-01-01 |
| PublicationDate_xml | – year: 2010 text: 2010. |
| PublicationDecade | 2010 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, R.I – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2010 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0000889048 ssj0008047 |
| Score | 2.5942776 |
| Snippet | We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a
Banach space, which are... Examines the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are... |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Banach spaces Ergodic theory Invariant manifolds Lyapunov exponents Random dynamical systems |
| TableOfContents | Introduction
--
Random Dynamical Systems and Measures of Noncompactness
--
Main Results
--
Volume Function in Banach Spaces
--
Gap and Distance Between Closed Linear Subspaces
--
Lyapunov Exponents and Oseledets Spaces
--
Measurable Random Invariant Complementary Subspaces
--
Proof of Multiplicative Ergodic Theorem
--
Stable and Unstable Manifolds
--
Subadditive Ergodic Theorem
--
Non-ergodic Case Intro -- Contents -- Abstract -- Chapter 1. Introduction -- Acknowledgement -- Chapter 2. Random Dynamical Systems and Measures of Noncompactness -- Chapter 3. Main Results -- Chapter 4. Volume Function in Banach Spaces -- Chapter 5. Gap and Distance Between Closed Linear Subspaces -- Chapter 6. Lyapunov Exponents and Oseledets Spaces -- Chapter 7. Measurable Random Invariant Complementary Subspaces -- Chapter 8. Proof of Multiplicative Ergodic Theorem -- Chapter 9. Stable and Unstable Manifolds -- Appendix A. Subadditive Ergodic Theorem -- Appendix B. Non-ergodic Case -- Bibliography |
| Title | Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space |
| URI | https://www.ams.org/memo/0967/ https://cir.nii.ac.jp/crid/1130282270035372544 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3114192 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470405816&uid=none |
| Volume | 206 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVo4UBPfIrCLrIQB6QqIqmTOL52VUACLRwWtHCJnDiWol3S1aatln-_bxzX5WMlxIGL21hKHM2LPDOemTeMvRRSWoWdP9LWEKk2NXKXoobXmhmowzoTunDNJuTxcXF6qj75Pp-9aycgu664ulIX_xVqzAFsKp39B7jDQzGB_wAdI2DH-JtFHC59OfMPfbHpVlti7V91rnJtoFbawh-GAClTtbWrc-MoGGZQUmb1fWaGlvRUNjKQl9MJiJ4tdEeVVthv9tB_aIfT0m-NV3c0t_HVPTsV6E8QXCLaL9kYITQUiGKJiGQVmEiCuwlzAQ4hLMDixs03VvEQ_s2zSEHxu5w32INpFO-1TcgBXCyIXg32VzZiI5nDcb79dvnx8_twQkYJWNhfHGmnXzf3lEnhPXY1WSp-feO6jj-3n7CJ7s-gNKBQ1rgadW37h-51BsXJPTamIpP77FbTPWCTvUj6h-zrDkcecOSAigccecCRA0c-4MgDjtzjiBu45gOO3OH4iH15szw5ehf5BhiRFtQGJmq0sE1l5tlc6NpWIm4kfqVOKltVSihtamUqlWpMS21kqhppJUzauVCZyqV4zMYd3vQJ44UwibDSZnWep3lttMBubtOmyZJ6Xmg9Za8gqdKF6PtySE2ISyfUkoRKU06oZTxlL34SZ7k99zc5-jQJrZAVST5lh5ByWbc0JhQehykqKXAtJNHiTRnfyX9Y1Ccjl8vFkYCTDs_j6V8e8Yzd3X_OB2y8vtw0h-xOvV23_eVz_zldA_cCXiM |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Lyapunov+exponents+and+invariant+manifolds+for+random+dynamical+systems+in+a+Banach+space&rft.au=Lian%2C+Zeng&rft.au=Lu%2C+Kening&rft.date=2010-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9780821846568&rft_id=info:doi/10.1090%2FS0065-9266-10-00574-0&rft.externalDocID=BB02400565 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470405816.jpg |

