Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space

We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative ergodic theorem. Then, we use this theorem...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Lian, Zeng, Lu, Kening
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2010
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:0821846566, 9780821846568
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative ergodic theorem. Then, we use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random invariant sets.
AbstractList We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative ergodic theorem. Then, we use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random invariant sets.
Examines the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. The authors prove a multiplicative ergodic theorem and then use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random invariant sets.
Author Lu, Kening
Lian, Zeng
Author_xml – sequence: 1
  fullname: Lian, Zeng
– sequence: 2
  fullname: Lu, Kening
BackLink https://cir.nii.ac.jp/crid/1130282270035372544$$DView record in CiNii
BookMark eNo9kctq3DAUhtU2KZ1J8wgFLQqlCydHd2nZDOkFBrpIKXQljm2ZuLGlqeVMMm9fzYVooQO_vnPR-ZfkLKYYCPnA4IqBg-s7AK0qx7WuGFQAysgKXpElkwYkKMvka7JgTppKc87ekCVYzqzUSuszsnhJPidLDgyAcWn0W7JwnDvLjLHvyGXOf6Ecax1IuyB_1jvcPMa0peF5U4aJc6YYW9rHLU49xpmOGPsuDW2mXZroVB7TSNtdxLFvcKB5l-cw5pJAkd5gxOae5g024T0573DI4fIUL8jvr7e_Vt-r9c9vP1Zf1hUKI7WpAoou1C1XXGDT1QKCKdEgq7u6dsJh27i2dhKLbLA10gXTGVUWIJxy2ogL8vlYGPNDeMr3aZiz3w6hTukhe2fsy_Z0YT8d2c2U_j2GPPsD1pR_Tzj425uVYEwyxwv58UjGvvdNv78ZE8At5wZAKGG4krJg16fmY_anlgz83k1_cNPvDdlLBzc9iP8vYYgD
CitedBy_id crossref_primary_10_1007_s10884_020_09888_7
crossref_primary_10_1017_etds_2016_55
crossref_primary_10_1155_2017_6707649
crossref_primary_10_1088_1402_4896_aca3d9
crossref_primary_10_1007_s10884_021_09969_1
crossref_primary_10_1007_s10884_015_9436_z
crossref_primary_10_1080_10236198_2016_1263622
crossref_primary_10_1007_s10883_020_09481_7
crossref_primary_10_1002_cpa_21698
crossref_primary_10_1007_s00023_011_0100_9
crossref_primary_10_1080_00036811_2024_2426232
crossref_primary_10_1017_etds_2018_85
crossref_primary_10_1007_s00028_019_00479_8
crossref_primary_10_1007_s00440_012_0475_7
crossref_primary_10_1007_s00028_022_00848_w
crossref_primary_10_1080_14689367_2016_1159663
crossref_primary_10_1007_s10884_022_10219_1
crossref_primary_10_1007_s10884_015_9493_3
crossref_primary_10_1007_s00222_016_0678_0
crossref_primary_10_1090_proc_17403
crossref_primary_10_1088_1361_6544_ad353f
ContentType eBook
Book
Copyright Copyright 2010 American Mathematical Society
Copyright_xml – notice: Copyright 2010 American Mathematical Society
DBID RYH
DEWEY 515/.39
DOI 10.1090/S0065-9266-10-00574-0
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 1470405814
9781470405816
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470405816
EBC3114192
BB02400565
10_1090_S0065_9266_10_00574_0
GroupedDBID --Z
-~X
123
4.4
6TJ
85S
AAFVP
ABPPZ
ACNCT
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
XOL
YNT
YQT
38.
50G
AABBV
AAWPO
ABARN
ABQPQ
ACLGV
ADVEM
AEKGI
AERYV
AFOJC
AHWGJ
AJFER
AZZ
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a37467-ea3febd2523acfb30e7acf7a1bfbb939adc9db94a7ac7ad749e7f756223959673
ISBN 0821846566
9780821846568
ISSN 0065-9266
IngestDate Fri Nov 08 05:38:03 EST 2024
Wed Dec 10 11:44:14 EST 2025
Thu Jun 26 23:42:04 EDT 2025
Thu Aug 14 15:25:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multiplicative Ergodic Theorem
invariant manifolds
infinite dimensional random dynamical systems
Lyapunov exponents
LCCN 2010012476
LCCallNum_Ident QA614.835 .L536 2010
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a37467-ea3febd2523acfb30e7acf7a1bfbb939adc9db94a7ac7ad749e7f756223959673
Notes Volume 206, number 967 (first of 4 numbers).
Includes bibliographical references (p. 105-106)
OCLC 922981778
PQID EBC3114192
PageCount 119
ParticipantIDs askewsholts_vlebooks_9781470405816
proquest_ebookcentral_EBC3114192
nii_cinii_1130282270035372544
ams_ebooks_10_1090_S0065_9266_10_00574_0
PublicationCentury 2000
PublicationDate 2010.
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010.
PublicationDecade 2010
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, R.I
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2010
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssj0000889048
ssj0008047
Score 2.5942776
Snippet We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are...
Examines the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are...
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Banach spaces
Ergodic theory
Invariant manifolds
Lyapunov exponents
Random dynamical systems
TableOfContents Introduction -- Random Dynamical Systems and Measures of Noncompactness -- Main Results -- Volume Function in Banach Spaces -- Gap and Distance Between Closed Linear Subspaces -- Lyapunov Exponents and Oseledets Spaces -- Measurable Random Invariant Complementary Subspaces -- Proof of Multiplicative Ergodic Theorem -- Stable and Unstable Manifolds -- Subadditive Ergodic Theorem -- Non-ergodic Case
Intro -- Contents -- Abstract -- Chapter 1. Introduction -- Acknowledgement -- Chapter 2. Random Dynamical Systems and Measures of Noncompactness -- Chapter 3. Main Results -- Chapter 4. Volume Function in Banach Spaces -- Chapter 5. Gap and Distance Between Closed Linear Subspaces -- Chapter 6. Lyapunov Exponents and Oseledets Spaces -- Chapter 7. Measurable Random Invariant Complementary Subspaces -- Chapter 8. Proof of Multiplicative Ergodic Theorem -- Chapter 9. Stable and Unstable Manifolds -- Appendix A. Subadditive Ergodic Theorem -- Appendix B. Non-ergodic Case -- Bibliography
Title Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space
URI https://www.ams.org/memo/0967/
https://cir.nii.ac.jp/crid/1130282270035372544
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3114192
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470405816&uid=none
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVo4UBPfIrCLrIQB6QqIqmTOL52VUACLRwWtHCJnDiWol3S1aatln-_bxzX5WMlxIGL21hKHM2LPDOemTeMvRRSWoWdP9LWEKk2NXKXoobXmhmowzoTunDNJuTxcXF6qj75Pp-9aycgu664ulIX_xVqzAFsKp39B7jDQzGB_wAdI2DH-JtFHC59OfMPfbHpVlti7V91rnJtoFbawh-GAClTtbWrc-MoGGZQUmb1fWaGlvRUNjKQl9MJiJ4tdEeVVthv9tB_aIfT0m-NV3c0t_HVPTsV6E8QXCLaL9kYITQUiGKJiGQVmEiCuwlzAQ4hLMDixs03VvEQ_s2zSEHxu5w32INpFO-1TcgBXCyIXg32VzZiI5nDcb79dvnx8_twQkYJWNhfHGmnXzf3lEnhPXY1WSp-feO6jj-3n7CJ7s-gNKBQ1rgadW37h-51BsXJPTamIpP77FbTPWCTvUj6h-zrDkcecOSAigccecCRA0c-4MgDjtzjiBu45gOO3OH4iH15szw5ehf5BhiRFtQGJmq0sE1l5tlc6NpWIm4kfqVOKltVSihtamUqlWpMS21kqhppJUzauVCZyqV4zMYd3vQJ44UwibDSZnWep3lttMBubtOmyZJ6Xmg9Za8gqdKF6PtySE2ISyfUkoRKU06oZTxlL34SZ7k99zc5-jQJrZAVST5lh5ByWbc0JhQehykqKXAtJNHiTRnfyX9Y1Ccjl8vFkYCTDs_j6V8e8Yzd3X_OB2y8vtw0h-xOvV23_eVz_zldA_cCXiM
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Lyapunov+exponents+and+invariant+manifolds+for+random+dynamical+systems+in+a+Banach+space&rft.au=Lian%2C+Zeng&rft.au=Lu%2C+Kening&rft.date=2010-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9780821846568&rft_id=info:doi/10.1090%2FS0065-9266-10-00574-0&rft.externalDocID=BB02400565
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470405816.jpg