Uncertain multi-objective dynamic weapon-target allocation problem based on uncertainty theory

The weapon-target allocation (WTA) problem is a fundamental subject of defense-related applications research, and previous studies assume that the parameters in the model are determinate. For the real battlefield, asymmetric information usually leads to the failure of the above assumption, and there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics Jg. 8; H. 3; S. 5639 - 5669
Hauptverfasser: Li, Guangjian, He, Guangjun, Zheng, Mingfa, Zheng, Aoyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: AIMS Press 01.01.2023
Schlagworte:
ISSN:2473-6988, 2473-6988
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The weapon-target allocation (WTA) problem is a fundamental subject of defense-related applications research, and previous studies assume that the parameters in the model are determinate. For the real battlefield, asymmetric information usually leads to the failure of the above assumption, and there are uncertain factors whose frequency is hard to pinpoint. Based on uncertainty theory, we study a WTA problem in indeterminate battlefield in this paper. First, we analyze the uncertain factors in indeterminate battlefield and their influence on WTA problem. Then, considering the target threat value, the protected asset value and the extra cost of interception as uncertain variables, the uncertain multi-objective dynamic WTA (UMDWTA) model is established, where three indices including the value of destruction of targets, the value of surviving assets and the cost of operation are regarded as objective functions, and on this basis, an equivalent transformation is presented to convert the UMDWTA model into a determinate multi-objective programming (MOP) problem by expected value and standard deviation principle. To solve the proposed model efficiently, an improved multi-objective evolutionary algorithm based on decomposition (MOEA/D) is designed, which employs three new evolutionary operators and the weight vectors adaptation mechanism to improve the convergence and uniformity of the Pareto front obtained. Finally, a case of the UMDWTA problem is carried out to be solved by the designed algorithm, and the results verify the feasibility of the proposed model.
AbstractList The weapon-target allocation (WTA) problem is a fundamental subject of defense-related applications research, and previous studies assume that the parameters in the model are determinate. For the real battlefield, asymmetric information usually leads to the failure of the above assumption, and there are uncertain factors whose frequency is hard to pinpoint. Based on uncertainty theory, we study a WTA problem in indeterminate battlefield in this paper. First, we analyze the uncertain factors in indeterminate battlefield and their influence on WTA problem. Then, considering the target threat value, the protected asset value and the extra cost of interception as uncertain variables, the uncertain multi-objective dynamic WTA (UMDWTA) model is established, where three indices including the value of destruction of targets, the value of surviving assets and the cost of operation are regarded as objective functions, and on this basis, an equivalent transformation is presented to convert the UMDWTA model into a determinate multi-objective programming (MOP) problem by expected value and standard deviation principle. To solve the proposed model efficiently, an improved multi-objective evolutionary algorithm based on decomposition (MOEA/D) is designed, which employs three new evolutionary operators and the weight vectors adaptation mechanism to improve the convergence and uniformity of the Pareto front obtained. Finally, a case of the UMDWTA problem is carried out to be solved by the designed algorithm, and the results verify the feasibility of the proposed model.
Author Zheng, Aoyu
Zheng, Mingfa
Li, Guangjian
He, Guangjun
Author_xml – sequence: 1
  givenname: Guangjian
  surname: Li
  fullname: Li, Guangjian
  organization: Air Defense and Anti-missile School, Air Force Engineering University, Xi'an 710051, China
– sequence: 2
  givenname: Guangjun
  surname: He
  fullname: He, Guangjun
  organization: Air Defense and Anti-missile School, Air Force Engineering University, Xi'an 710051, China
– sequence: 3
  givenname: Mingfa
  surname: Zheng
  fullname: Zheng, Mingfa
  organization: Fundamentals Department, Air Force Engineering University, Xi'an 710051, China
– sequence: 4
  givenname: Aoyu
  surname: Zheng
  fullname: Zheng, Aoyu
  organization: Equipment Management and Unmanned Aerial Vehicle Engineering School, Air Force Engineering University, Xi'an 710051, China
BookMark eNptkMtOwzAQRS1UJErpjg_IB5CS2E7sLFHFo1IlNnRLNHbGraskrhwXlL8nfYAQYjWj0Z0zmnNNRq1rkZDbNJmxgvH7BsJmRhPKqOQXZEy5YHFeSDn61V-RaddtkyShKeVU8DF5X7UafQDbRs2-DjZ2aos62A-Mqr6FxuroE2Hn2jiAX2OIoK6dhmBdG-28UzU2kYIOq2gY7L9ZoY_CBp3vb8ilgbrD6blOyOrp8W3-Ei9fnxfzh2UMTLAQo6BCp1pryIxUJjc8ZUiTKjcVGpYpxZVRShcKRMXSVAtOOQyPpnxIopBsQhYnbuVgW-68bcD3pQNbHgfOr0vwweoay6xQQiBjTOWMMy5lVhglGDe0ksNxMbDuTiztXdd5ND-8NCkPqsuD6vKseojTP3Ftw1FQ8GDr_5e-AFsAhxQ
CitedBy_id crossref_primary_10_32604_cmes_2024_052039
crossref_primary_10_1016_j_neucom_2023_126906
Cites_doi 10.5772/53606
10.1287/opre.6.3.346
10.3233/JIFS-202679
10.1109/TSMCA.2010.2089511
10.1109/CEC.2015.7257280
10.1109/CEC.2016.7744423
10.1287/opre.1070.0440
10.1007/s11042-020-10139-6
10.1007/s11590-014-0823-x
10.1109/TEVC.2017.2744674
10.1109/TEVC.2007.892759
10.1155/2011/873292
10.1016/j.asoc.2018.06.014
10.1080/01969722.2010.511552
10.1016/j.ejor.2014.09.012
10.1109/SMC.2019.8914005
10.1016/j.ejor.2005.09.032
10.1109/ACCESS.2021.3079152
10.1080/02533839.2002.9670703
10.1162/106365600568202
10.1287/opre.11.5.787
10.1109/TCYB.2015.2403849
10.1155/2017/9897153
10.1007/s00500-018-3281-z
10.1287/opre.7.3.322
10.1162/EVCO_a_00109
10.1007/s11432-009-0190-x
10.1007/s10700-010-9073-2
10.1016/j.eswa.2019.112844
10.1177/1729881420905922
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023284
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 5669
ExternalDocumentID oai_doaj_org_article_59b77e333b634348859fb734f2d8f8b7
10_3934_math_2023284
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a373t-e727c1ccca5f8bf6f413e20d6fdef35bb4bfbbc9ba7d311c7424a32814f41e783
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000904313500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:44:31 EDT 2025
Tue Nov 18 22:11:22 EST 2025
Sat Nov 29 06:04:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a373t-e727c1ccca5f8bf6f413e20d6fdef35bb4bfbbc9ba7d311c7424a32814f41e783
OpenAccessLink https://doaj.org/article/59b77e333b634348859fb734f2d8f8b7
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_59b77e333b634348859fb734f2d8f8b7
crossref_primary_10_3934_math_2023284
crossref_citationtrail_10_3934_math_2023284
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023284-9
key-10.3934/math.2023284-8
key-10.3934/math.2023284-7
key-10.3934/math.2023284-6
key-10.3934/math.2023284-5
key-10.3934/math.2023284-4
key-10.3934/math.2023284-28
key-10.3934/math.2023284-3
key-10.3934/math.2023284-27
key-10.3934/math.2023284-2
key-10.3934/math.2023284-26
key-10.3934/math.2023284-1
key-10.3934/math.2023284-25
key-10.3934/math.2023284-29
key-10.3934/math.2023284-31
key-10.3934/math.2023284-30
key-10.3934/math.2023284-13
key-10.3934/math.2023284-35
key-10.3934/math.2023284-12
key-10.3934/math.2023284-34
key-10.3934/math.2023284-11
key-10.3934/math.2023284-33
key-10.3934/math.2023284-10
key-10.3934/math.2023284-32
key-10.3934/math.2023284-17
key-10.3934/math.2023284-39
key-10.3934/math.2023284-16
key-10.3934/math.2023284-38
key-10.3934/math.2023284-15
key-10.3934/math.2023284-37
key-10.3934/math.2023284-14
key-10.3934/math.2023284-36
key-10.3934/math.2023284-19
key-10.3934/math.2023284-18
key-10.3934/math.2023284-20
key-10.3934/math.2023284-42
key-10.3934/math.2023284-41
key-10.3934/math.2023284-40
key-10.3934/math.2023284-24
key-10.3934/math.2023284-23
key-10.3934/math.2023284-22
key-10.3934/math.2023284-21
key-10.3934/math.2023284-43
References_xml – ident: key-10.3934/math.2023284-12
  doi: 10.5772/53606
– ident: key-10.3934/math.2023284-1
  doi: 10.1287/opre.6.3.346
– ident: key-10.3934/math.2023284-36
– ident: key-10.3934/math.2023284-8
  doi: 10.3233/JIFS-202679
– ident: key-10.3934/math.2023284-10
  doi: 10.1109/TSMCA.2010.2089511
– ident: key-10.3934/math.2023284-23
  doi: 10.1109/CEC.2015.7257280
– ident: key-10.3934/math.2023284-26
  doi: 10.1109/CEC.2016.7744423
– ident: key-10.3934/math.2023284-2
  doi: 10.1287/opre.1070.0440
– ident: key-10.3934/math.2023284-43
  doi: 10.1007/s11042-020-10139-6
– ident: key-10.3934/math.2023284-25
  doi: 10.1007/s11590-014-0823-x
– ident: key-10.3934/math.2023284-17
  doi: 10.1109/TEVC.2017.2744674
– ident: key-10.3934/math.2023284-30
– ident: key-10.3934/math.2023284-15
– ident: key-10.3934/math.2023284-32
– ident: key-10.3934/math.2023284-16
  doi: 10.1109/TEVC.2007.892759
– ident: key-10.3934/math.2023284-6
  doi: 10.1155/2011/873292
– ident: key-10.3934/math.2023284-9
  doi: 10.1016/j.asoc.2018.06.014
– ident: key-10.3934/math.2023284-35
  doi: 10.1080/01969722.2010.511552
– ident: key-10.3934/math.2023284-39
  doi: 10.1016/j.ejor.2014.09.012
– ident: key-10.3934/math.2023284-21
  doi: 10.1109/SMC.2019.8914005
– ident: key-10.3934/math.2023284-22
  doi: 10.3233/JIFS-202679
– ident: key-10.3934/math.2023284-40
  doi: 10.1016/j.ejor.2005.09.032
– ident: key-10.3934/math.2023284-28
– ident: key-10.3934/math.2023284-7
  doi: 10.1109/ACCESS.2021.3079152
– ident: key-10.3934/math.2023284-18
  doi: 10.1016/j.asoc.2018.06.014
– ident: key-10.3934/math.2023284-24
– ident: key-10.3934/math.2023284-4
  doi: 10.1080/02533839.2002.9670703
– ident: key-10.3934/math.2023284-42
  doi: 10.1162/106365600568202
– ident: key-10.3934/math.2023284-3
  doi: 10.1287/opre.11.5.787
– ident: key-10.3934/math.2023284-19
  doi: 10.1109/TCYB.2015.2403849
– ident: key-10.3934/math.2023284-13
  doi: 10.1155/2017/9897153
– ident: key-10.3934/math.2023284-34
  doi: 10.1007/s00500-018-3281-z
– ident: key-10.3934/math.2023284-37
– ident: key-10.3934/math.2023284-5
  doi: 10.1287/opre.7.3.322
– ident: key-10.3934/math.2023284-33
– ident: key-10.3934/math.2023284-14
– ident: key-10.3934/math.2023284-20
  doi: 10.1162/EVCO_a_00109
– ident: key-10.3934/math.2023284-11
  doi: 10.1007/s11432-009-0190-x
– ident: key-10.3934/math.2023284-31
  doi: 10.1007/s10700-010-9073-2
– ident: key-10.3934/math.2023284-41
  doi: 10.1016/j.eswa.2019.112844
– ident: key-10.3934/math.2023284-27
– ident: key-10.3934/math.2023284-29
– ident: key-10.3934/math.2023284-38
  doi: 10.1177/1729881420905922
SSID ssj0002124274
Score 2.2474587
Snippet The weapon-target allocation (WTA) problem is a fundamental subject of defense-related applications research, and previous studies assume that the parameters...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 5639
SubjectTerms evolutionary algorithm
multi-objective programming
uncertainty theory
weapon-target allocation
Title Uncertain multi-objective dynamic weapon-target allocation problem based on uncertainty theory
URI https://doaj.org/article/59b77e333b634348859fb734f2d8f8b7
Volume 8
WOSCitedRecordID wos000904313500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOhBfOKbHPQkoW4nm2SPKi1eWjxY6Mlls0lAkW1pt0ov_nYnybbUg3jxkkMYQvJNmEdmMkPIFToVeGutZdpKYFyAZKj0BDNKC2Ft4SNPodmEHAzUaJQ9rbX68jlhsTxwBK6dZlpKCwBaAAe8bmnmtATuOkY5pcM_crR61pwpL4NRIHP0t2KmO2TA22j_-dgDGhCK_9BBa6X6g07p7ZKdxhikd3ETe2TDVvtku7-qpDo7IC9D5EqI2tOQ-8fG-i3KKGpiM3n6aYvJuGIxp5v6QHp8hqNNsxjqNZWhODFfrlUvaPjBuDgkw173-eGRNT0RWAESambR3iiTEnFP8fROOFRCtnNrhDPWQao1107rMtOFNJAkJXq-vMAzJxwprVRwRFrVuLLHhCYo2ZTKrCoVcKFFlhpuLDgnU6kLU5yQmyVKedkUDPd9K95zdBw8prnHNG8wPSHXK-pJLJTxC929B3xF48tbhwlket4wPf-L6af_scgZ2fJ7iu8p56RVT-f2gmyWH_XrbHoZ7hOO_a_uNzgf050
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertain+multi-objective+dynamic+weapon-target+allocation+problem+based+on+uncertainty+theory&rft.jtitle=AIMS+mathematics&rft.au=Guangjian+Li&rft.au=Guangjun+He&rft.au=Mingfa+Zheng&rft.au=Aoyu+Zheng&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=3&rft.spage=5639&rft.epage=5669&rft_id=info:doi/10.3934%2Fmath.2023284&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_59b77e333b634348859fb734f2d8f8b7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon