An interior-point trust-region algorithm to solve a nonlinear bilevel programming problem
In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem utilized slack variable with a Karush-Kuhn-Tucker (KKT) condition. To solve the equivalent smooth SONP problem effectively, an interior-point N...
Saved in:
| Published in: | AIMS mathematics Vol. 7; no. 4; pp. 5534 - 5562 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
2022
|
| Subjects: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem utilized slack variable with a Karush-Kuhn-Tucker (KKT) condition. To solve the equivalent smooth SONP problem effectively, an interior-point Newton's method with Das scaling matrix is used. This method is locally method and to guarantee convergence from any starting point, a trust-region strategy is used. The proposed algorithm is proved to be stable and capable of generating approximal optimal solution to the nonlinear bilevel programming problem.
A global convergence theory of the proposed algorithm is introduced and applications to mathematical programs with equilibrium constraints are given to clarify the effectiveness of the proposed approach. |
|---|---|
| AbstractList | In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem utilized slack variable with a Karush-Kuhn-Tucker (KKT) condition. To solve the equivalent smooth SONP problem effectively, an interior-point Newton's method with Das scaling matrix is used. This method is locally method and to guarantee convergence from any starting point, a trust-region strategy is used. The proposed algorithm is proved to be stable and capable of generating approximal optimal solution to the nonlinear bilevel programming problem.
A global convergence theory of the proposed algorithm is introduced and applications to mathematical programs with equilibrium constraints are given to clarify the effectiveness of the proposed approach. In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem utilized slack variable with a Karush-Kuhn-Tucker (KKT) condition. To solve the equivalent smooth SONP problem effectively, an interior-point Newton's method with Das scaling matrix is used. This method is locally method and to guarantee convergence from any starting point, a trust-region strategy is used. The proposed algorithm is proved to be stable and capable of generating approximal optimal solution to the nonlinear bilevel programming problem. A global convergence theory of the proposed algorithm is introduced and applications to mathematical programs with equilibrium constraints are given to clarify the effectiveness of the proposed approach. |
| Author | El-Sobky, B. Ashry, G. |
| Author_xml | – sequence: 1 givenname: B. surname: El-Sobky fullname: El-Sobky, B. – sequence: 2 givenname: G. surname: Ashry fullname: Ashry, G. |
| BookMark | eNptkF1LwzAUhoNMcM7d-QPyA-xM89Gsl2P4MRh4oxdehdM06TLSZqRx4L-3dUNEvDovh_c8B55rNOlCZxC6zcmClYzft5B2C0ooZUReoCnlkmVFuVxOfuUrNO_7PSGE5pRTyafofdVh1yUTXYjZIQwRp_jRpyyaxoUOg29CdGnX4hRwH_zRYMDDZ-86AxFXzpuj8fgQQxOhbV3XjLnypr1BlxZ8b-bnOUNvjw-v6-ds-_K0Wa-2GTDJUlYbIjlZ2tqUWlRM2pwSkWuopWC5LXghJFRFpYtS1wxKqznnhIoCxDiqnM3Q5sStA-zVIboW4qcK4NT3IsRGQUxOe6NoYeyAorLUgxIqSlnWsuK1Fqxmli4H1t2JpWPo-2jsDy8narSsRsvqbHmo0z917RKkwVuK4Pz_R1_vJoPY |
| CitedBy_id | crossref_primary_10_3390_fractalfract6080412 |
| Cites_doi | 10.1137/0720042 10.1155/2019/8095054 10.3390/a13100260 10.3969/j.issn.1004-4132.2010.05.008 10.1016/j.camwa.2007.09.010 10.1002/bit.10803 10.3390/sym12050767 10.1016/S0096-3003(02)00397-1 10.1007/s12190-014-0815-0 10.1016/j.cor.2012.08.013 10.1016/0167-6377(94)90086-8 10.1287/opre.38.3.556 10.1007/s40314-017-0468-3 10.1002/0471787779 10.1007/PL00011391 10.2991/ijcis.d.200411.001 10.1080/10556788.2014.940947 10.1016/j.joems.2016.04.003 10.1109/TSMCC.2004.841908 10.1016/j.epsr.2017.03.014 10.1137/090747634 10.4208/jcm.2009.09-m2924 10.1137/0724076 10.1137/S036012995279031 10.1109/21.101139 10.1137/120892362 10.4208/jcm.1705-m2016-0735 10.1007/BF01585928 10.1007/BF00927673 10.5267/j.dsl.2014.9.005 10.1016/j.aej.2021.04.098 10.1007/s10107-015-0893-2 10.1137/S1052623497325107 10.1007/s13042-013-0167-3 10.1016/j.amc.2012.06.072 10.1016/j.cam.2018.03.004 10.1080/10556788.2011.622378 10.13053/cys-19-1-1916 |
| ContentType | Journal Article |
| CorporateAuthor | Department of Mathematics and Computer Science, Alexandria University, Faculty of Science, Egypt |
| CorporateAuthor_xml | – name: Department of Mathematics and Computer Science, Alexandria University, Faculty of Science, Egypt |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2022307 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 5562 |
| ExternalDocumentID | oai_doaj_org_article_26ef6bc279c24725979d7b4dc53d3f28 10_3934_math_2022307 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a373t-de07408fde9c5b37f12051cad7531f64657ab6bc69cd3a9fc4440256a54025b13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744993900033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:50:35 EDT 2025 Tue Nov 18 22:25:31 EST 2025 Sat Nov 29 06:04:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a373t-de07408fde9c5b37f12051cad7531f64657ab6bc69cd3a9fc4440256a54025b13 |
| OpenAccessLink | https://doaj.org/article/26ef6bc279c24725979d7b4dc53d3f28 |
| PageCount | 29 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_26ef6bc279c24725979d7b4dc53d3f28 crossref_primary_10_3934_math_2022307 crossref_citationtrail_10_3934_math_2022307 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2022 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2022307-20 key-10.3934/math.2022307-42 key-10.3934/math.2022307-21 key-10.3934/math.2022307-43 key-10.3934/math.2022307-40 key-10.3934/math.2022307-41 key-10.3934/math.2022307-24 key-10.3934/math.2022307-46 key-10.3934/math.2022307-25 key-10.3934/math.2022307-22 key-10.3934/math.2022307-44 key-10.3934/math.2022307-23 key-10.3934/math.2022307-45 key-10.3934/math.2022307-28 key-10.3934/math.2022307-29 key-10.3934/math.2022307-26 key-10.3934/math.2022307-27 key-10.3934/math.2022307-31 key-10.3934/math.2022307-10 key-10.3934/math.2022307-32 key-10.3934/math.2022307-30 key-10.3934/math.2022307-4 key-10.3934/math.2022307-5 key-10.3934/math.2022307-6 key-10.3934/math.2022307-19 key-10.3934/math.2022307-7 key-10.3934/math.2022307-1 key-10.3934/math.2022307-2 key-10.3934/math.2022307-3 key-10.3934/math.2022307-13 key-10.3934/math.2022307-35 key-10.3934/math.2022307-14 key-10.3934/math.2022307-36 key-10.3934/math.2022307-11 key-10.3934/math.2022307-33 key-10.3934/math.2022307-12 key-10.3934/math.2022307-34 key-10.3934/math.2022307-8 key-10.3934/math.2022307-17 key-10.3934/math.2022307-39 key-10.3934/math.2022307-9 key-10.3934/math.2022307-18 key-10.3934/math.2022307-15 key-10.3934/math.2022307-37 key-10.3934/math.2022307-16 key-10.3934/math.2022307-38 |
| References_xml | – ident: key-10.3934/math.2022307-38 doi: 10.1137/0720042 – ident: key-10.3934/math.2022307-32 doi: 10.1155/2019/8095054 – ident: key-10.3934/math.2022307-35 doi: 10.3390/a13100260 – ident: key-10.3934/math.2022307-31 doi: 10.3969/j.issn.1004-4132.2010.05.008 – ident: key-10.3934/math.2022307-33 doi: 10.1016/j.camwa.2007.09.010 – ident: key-10.3934/math.2022307-7 doi: 10.1002/bit.10803 – ident: key-10.3934/math.2022307-46 – ident: key-10.3934/math.2022307-3 doi: 10.3390/sym12050767 – ident: key-10.3934/math.2022307-27 – ident: key-10.3934/math.2022307-16 doi: 10.1016/S0096-3003(02)00397-1 – ident: key-10.3934/math.2022307-15 doi: 10.1007/s12190-014-0815-0 – ident: key-10.3934/math.2022307-1 doi: 10.1016/j.cor.2012.08.013 – ident: key-10.3934/math.2022307-40 doi: 10.1016/0167-6377(94)90086-8 – ident: key-10.3934/math.2022307-8 doi: 10.1287/opre.38.3.556 – ident: key-10.3934/math.2022307-22 doi: 10.1007/s40314-017-0468-3 – ident: key-10.3934/math.2022307-5 doi: 10.1002/0471787779 – ident: key-10.3934/math.2022307-10 doi: 10.1007/PL00011391 – ident: key-10.3934/math.2022307-12 – ident: key-10.3934/math.2022307-2 doi: 10.2991/ijcis.d.200411.001 – ident: key-10.3934/math.2022307-14 – ident: key-10.3934/math.2022307-37 – ident: key-10.3934/math.2022307-43 doi: 10.1080/10556788.2014.940947 – ident: key-10.3934/math.2022307-18 doi: 10.1016/j.joems.2016.04.003 – ident: key-10.3934/math.2022307-44 doi: 10.1109/TSMCC.2004.841908 – ident: key-10.3934/math.2022307-20 doi: 10.1016/j.epsr.2017.03.014 – ident: key-10.3934/math.2022307-11 doi: 10.1137/090747634 – ident: key-10.3934/math.2022307-36 doi: 10.4208/jcm.2009.09-m2924 – ident: key-10.3934/math.2022307-6 doi: 10.1137/0724076 – ident: key-10.3934/math.2022307-13 doi: 10.1137/S036012995279031 – ident: key-10.3934/math.2022307-24 doi: 10.1109/21.101139 – ident: key-10.3934/math.2022307-30 doi: 10.1137/120892362 – ident: key-10.3934/math.2022307-23 doi: 10.4208/jcm.1705-m2016-0735 – ident: key-10.3934/math.2022307-25 doi: 10.1007/BF01585928 – ident: key-10.3934/math.2022307-26 doi: 10.1007/BF00927673 – ident: key-10.3934/math.2022307-39 doi: 10.5267/j.dsl.2014.9.005 – ident: key-10.3934/math.2022307-41 – ident: key-10.3934/math.2022307-4 doi: 10.1016/j.aej.2021.04.098 – ident: key-10.3934/math.2022307-29 – ident: key-10.3934/math.2022307-45 doi: 10.1007/s10107-015-0893-2 – ident: key-10.3934/math.2022307-9 doi: 10.1137/S1052623497325107 – ident: key-10.3934/math.2022307-34 doi: 10.1007/s13042-013-0167-3 – ident: key-10.3934/math.2022307-17 doi: 10.1016/j.amc.2012.06.072 – ident: key-10.3934/math.2022307-21 doi: 10.1016/j.cam.2018.03.004 – ident: key-10.3934/math.2022307-19 – ident: key-10.3934/math.2022307-42 doi: 10.1080/10556788.2011.622378 – ident: key-10.3934/math.2022307-28 doi: 10.13053/cys-19-1-1916 |
| SSID | ssj0002124274 |
| Score | 2.2103984 |
| Snippet | In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 5534 |
| SubjectTerms | das scaling matrix global convergence newton's method nonlinear bilevel programming problem trust-region technique |
| Title | An interior-point trust-region algorithm to solve a nonlinear bilevel programming problem |
| URI | https://doaj.org/article/26ef6bc279c24725979d7b4dc53d3f28 |
| Volume | 7 |
| WOSCitedRecordID | wos000744993900033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ine8gATitrEThyPBbVioBUDSGWK_IRKbVOlVUd-O3dxqMqAWFiSKLo41ne27y45f0fIjZVgZ8ANhrAESbVNnkZKeIh5UsOF18r7QOL6JIbDfDSSzxulvjAnLNADB-DaSeZ8pk0ipEm4AGddSCs0tyZllvmk3ubbEXIjmMI1GBZkDvFWyHRnkvE2-H_47yHBxOcfNmiDqr-2Kf19stc4g7QbOnFAttzskOwO1kyqiyPy1p1RpHSoxmUVzUu4pPU2iQgrKpQzqibvJcT3H1O6LCmMo5Wjis4C_4WqqIZJv3IT2qRhTcFQ0aaGzDF57fdeHh6jphxCpJhgy8g6MPed3FsnTaqZ8HECM8ooC1DHPuNZKpQGqDJpLFPSG845ejQqxZOO2QlpwfvdKaGZ4PAczEYPTerYSi9Sl8cucUyYjHXOyN03QIVpuMKxZMWkgJgB4SwQzqKB84zcrqXngSPjF7l7xHotg8zW9Q3Qd9Hou_hL3-f_0cgF2cE-hU8pl6QFinNXZNusluNFdV0PJTgOPntfv_zQXw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interior-point+trust-region+algorithm+to+solve+a+nonlinear+bilevel+programming+problem&rft.jtitle=AIMS+mathematics&rft.au=El-Sobky%2C+B.&rft.au=Ashry%2C+G.&rft.date=2022&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=4&rft.spage=5534&rft.epage=5562&rft_id=info:doi/10.3934%2Fmath.2022307&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022307 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |