An interior-point trust-region algorithm to solve a nonlinear bilevel programming problem

In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem utilized slack variable with a Karush-Kuhn-Tucker (KKT) condition. To solve the equivalent smooth SONP problem effectively, an interior-point N...

Full description

Saved in:
Bibliographic Details
Published in:AIMS mathematics Vol. 7; no. 4; pp. 5534 - 5562
Main Authors: El-Sobky, B., Ashry, G.
Format: Journal Article
Language:English
Published: AIMS Press 2022
Subjects:
ISSN:2473-6988, 2473-6988
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem utilized slack variable with a Karush-Kuhn-Tucker (KKT) condition. To solve the equivalent smooth SONP problem effectively, an interior-point Newton's method with Das scaling matrix is used. This method is locally method and to guarantee convergence from any starting point, a trust-region strategy is used. The proposed algorithm is proved to be stable and capable of generating approximal optimal solution to the nonlinear bilevel programming problem. A global convergence theory of the proposed algorithm is introduced and applications to mathematical programs with equilibrium constraints are given to clarify the effectiveness of the proposed approach.
AbstractList In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem utilized slack variable with a Karush-Kuhn-Tucker (KKT) condition. To solve the equivalent smooth SONP problem effectively, an interior-point Newton's method with Das scaling matrix is used. This method is locally method and to guarantee convergence from any starting point, a trust-region strategy is used. The proposed algorithm is proved to be stable and capable of generating approximal optimal solution to the nonlinear bilevel programming problem. A global convergence theory of the proposed algorithm is introduced and applications to mathematical programs with equilibrium constraints are given to clarify the effectiveness of the proposed approach.
In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem utilized slack variable with a Karush-Kuhn-Tucker (KKT) condition. To solve the equivalent smooth SONP problem effectively, an interior-point Newton's method with Das scaling matrix is used. This method is locally method and to guarantee convergence from any starting point, a trust-region strategy is used. The proposed algorithm is proved to be stable and capable of generating approximal optimal solution to the nonlinear bilevel programming problem. A global convergence theory of the proposed algorithm is introduced and applications to mathematical programs with equilibrium constraints are given to clarify the effectiveness of the proposed approach.
Author El-Sobky, B.
Ashry, G.
Author_xml – sequence: 1
  givenname: B.
  surname: El-Sobky
  fullname: El-Sobky, B.
– sequence: 2
  givenname: G.
  surname: Ashry
  fullname: Ashry, G.
BookMark eNptkF1LwzAUhoNMcM7d-QPyA-xM89Gsl2P4MRh4oxdehdM06TLSZqRx4L-3dUNEvDovh_c8B55rNOlCZxC6zcmClYzft5B2C0ooZUReoCnlkmVFuVxOfuUrNO_7PSGE5pRTyafofdVh1yUTXYjZIQwRp_jRpyyaxoUOg29CdGnX4hRwH_zRYMDDZ-86AxFXzpuj8fgQQxOhbV3XjLnypr1BlxZ8b-bnOUNvjw-v6-ds-_K0Wa-2GTDJUlYbIjlZ2tqUWlRM2pwSkWuopWC5LXghJFRFpYtS1wxKqznnhIoCxDiqnM3Q5sStA-zVIboW4qcK4NT3IsRGQUxOe6NoYeyAorLUgxIqSlnWsuK1Fqxmli4H1t2JpWPo-2jsDy8narSsRsvqbHmo0z917RKkwVuK4Pz_R1_vJoPY
CitedBy_id crossref_primary_10_3390_fractalfract6080412
Cites_doi 10.1137/0720042
10.1155/2019/8095054
10.3390/a13100260
10.3969/j.issn.1004-4132.2010.05.008
10.1016/j.camwa.2007.09.010
10.1002/bit.10803
10.3390/sym12050767
10.1016/S0096-3003(02)00397-1
10.1007/s12190-014-0815-0
10.1016/j.cor.2012.08.013
10.1016/0167-6377(94)90086-8
10.1287/opre.38.3.556
10.1007/s40314-017-0468-3
10.1002/0471787779
10.1007/PL00011391
10.2991/ijcis.d.200411.001
10.1080/10556788.2014.940947
10.1016/j.joems.2016.04.003
10.1109/TSMCC.2004.841908
10.1016/j.epsr.2017.03.014
10.1137/090747634
10.4208/jcm.2009.09-m2924
10.1137/0724076
10.1137/S036012995279031
10.1109/21.101139
10.1137/120892362
10.4208/jcm.1705-m2016-0735
10.1007/BF01585928
10.1007/BF00927673
10.5267/j.dsl.2014.9.005
10.1016/j.aej.2021.04.098
10.1007/s10107-015-0893-2
10.1137/S1052623497325107
10.1007/s13042-013-0167-3
10.1016/j.amc.2012.06.072
10.1016/j.cam.2018.03.004
10.1080/10556788.2011.622378
10.13053/cys-19-1-1916
ContentType Journal Article
CorporateAuthor Department of Mathematics and Computer Science, Alexandria University, Faculty of Science, Egypt
CorporateAuthor_xml – name: Department of Mathematics and Computer Science, Alexandria University, Faculty of Science, Egypt
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022307
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 5562
ExternalDocumentID oai_doaj_org_article_26ef6bc279c24725979d7b4dc53d3f28
10_3934_math_2022307
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a373t-de07408fde9c5b37f12051cad7531f64657ab6bc69cd3a9fc4440256a54025b13
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744993900033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:50:35 EDT 2025
Tue Nov 18 22:25:31 EST 2025
Sat Nov 29 06:04:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a373t-de07408fde9c5b37f12051cad7531f64657ab6bc69cd3a9fc4440256a54025b13
OpenAccessLink https://doaj.org/article/26ef6bc279c24725979d7b4dc53d3f28
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_26ef6bc279c24725979d7b4dc53d3f28
crossref_primary_10_3934_math_2022307
crossref_citationtrail_10_3934_math_2022307
PublicationCentury 2000
PublicationDate 2022-00-00
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022307-20
key-10.3934/math.2022307-42
key-10.3934/math.2022307-21
key-10.3934/math.2022307-43
key-10.3934/math.2022307-40
key-10.3934/math.2022307-41
key-10.3934/math.2022307-24
key-10.3934/math.2022307-46
key-10.3934/math.2022307-25
key-10.3934/math.2022307-22
key-10.3934/math.2022307-44
key-10.3934/math.2022307-23
key-10.3934/math.2022307-45
key-10.3934/math.2022307-28
key-10.3934/math.2022307-29
key-10.3934/math.2022307-26
key-10.3934/math.2022307-27
key-10.3934/math.2022307-31
key-10.3934/math.2022307-10
key-10.3934/math.2022307-32
key-10.3934/math.2022307-30
key-10.3934/math.2022307-4
key-10.3934/math.2022307-5
key-10.3934/math.2022307-6
key-10.3934/math.2022307-19
key-10.3934/math.2022307-7
key-10.3934/math.2022307-1
key-10.3934/math.2022307-2
key-10.3934/math.2022307-3
key-10.3934/math.2022307-13
key-10.3934/math.2022307-35
key-10.3934/math.2022307-14
key-10.3934/math.2022307-36
key-10.3934/math.2022307-11
key-10.3934/math.2022307-33
key-10.3934/math.2022307-12
key-10.3934/math.2022307-34
key-10.3934/math.2022307-8
key-10.3934/math.2022307-17
key-10.3934/math.2022307-39
key-10.3934/math.2022307-9
key-10.3934/math.2022307-18
key-10.3934/math.2022307-15
key-10.3934/math.2022307-37
key-10.3934/math.2022307-16
key-10.3934/math.2022307-38
References_xml – ident: key-10.3934/math.2022307-38
  doi: 10.1137/0720042
– ident: key-10.3934/math.2022307-32
  doi: 10.1155/2019/8095054
– ident: key-10.3934/math.2022307-35
  doi: 10.3390/a13100260
– ident: key-10.3934/math.2022307-31
  doi: 10.3969/j.issn.1004-4132.2010.05.008
– ident: key-10.3934/math.2022307-33
  doi: 10.1016/j.camwa.2007.09.010
– ident: key-10.3934/math.2022307-7
  doi: 10.1002/bit.10803
– ident: key-10.3934/math.2022307-46
– ident: key-10.3934/math.2022307-3
  doi: 10.3390/sym12050767
– ident: key-10.3934/math.2022307-27
– ident: key-10.3934/math.2022307-16
  doi: 10.1016/S0096-3003(02)00397-1
– ident: key-10.3934/math.2022307-15
  doi: 10.1007/s12190-014-0815-0
– ident: key-10.3934/math.2022307-1
  doi: 10.1016/j.cor.2012.08.013
– ident: key-10.3934/math.2022307-40
  doi: 10.1016/0167-6377(94)90086-8
– ident: key-10.3934/math.2022307-8
  doi: 10.1287/opre.38.3.556
– ident: key-10.3934/math.2022307-22
  doi: 10.1007/s40314-017-0468-3
– ident: key-10.3934/math.2022307-5
  doi: 10.1002/0471787779
– ident: key-10.3934/math.2022307-10
  doi: 10.1007/PL00011391
– ident: key-10.3934/math.2022307-12
– ident: key-10.3934/math.2022307-2
  doi: 10.2991/ijcis.d.200411.001
– ident: key-10.3934/math.2022307-14
– ident: key-10.3934/math.2022307-37
– ident: key-10.3934/math.2022307-43
  doi: 10.1080/10556788.2014.940947
– ident: key-10.3934/math.2022307-18
  doi: 10.1016/j.joems.2016.04.003
– ident: key-10.3934/math.2022307-44
  doi: 10.1109/TSMCC.2004.841908
– ident: key-10.3934/math.2022307-20
  doi: 10.1016/j.epsr.2017.03.014
– ident: key-10.3934/math.2022307-11
  doi: 10.1137/090747634
– ident: key-10.3934/math.2022307-36
  doi: 10.4208/jcm.2009.09-m2924
– ident: key-10.3934/math.2022307-6
  doi: 10.1137/0724076
– ident: key-10.3934/math.2022307-13
  doi: 10.1137/S036012995279031
– ident: key-10.3934/math.2022307-24
  doi: 10.1109/21.101139
– ident: key-10.3934/math.2022307-30
  doi: 10.1137/120892362
– ident: key-10.3934/math.2022307-23
  doi: 10.4208/jcm.1705-m2016-0735
– ident: key-10.3934/math.2022307-25
  doi: 10.1007/BF01585928
– ident: key-10.3934/math.2022307-26
  doi: 10.1007/BF00927673
– ident: key-10.3934/math.2022307-39
  doi: 10.5267/j.dsl.2014.9.005
– ident: key-10.3934/math.2022307-41
– ident: key-10.3934/math.2022307-4
  doi: 10.1016/j.aej.2021.04.098
– ident: key-10.3934/math.2022307-29
– ident: key-10.3934/math.2022307-45
  doi: 10.1007/s10107-015-0893-2
– ident: key-10.3934/math.2022307-9
  doi: 10.1137/S1052623497325107
– ident: key-10.3934/math.2022307-34
  doi: 10.1007/s13042-013-0167-3
– ident: key-10.3934/math.2022307-17
  doi: 10.1016/j.amc.2012.06.072
– ident: key-10.3934/math.2022307-21
  doi: 10.1016/j.cam.2018.03.004
– ident: key-10.3934/math.2022307-19
– ident: key-10.3934/math.2022307-42
  doi: 10.1080/10556788.2011.622378
– ident: key-10.3934/math.2022307-28
  doi: 10.13053/cys-19-1-1916
SSID ssj0002124274
Score 2.2103984
Snippet In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 5534
SubjectTerms das scaling matrix
global convergence
newton's method
nonlinear bilevel programming problem
trust-region technique
Title An interior-point trust-region algorithm to solve a nonlinear bilevel programming problem
URI https://doaj.org/article/26ef6bc279c24725979d7b4dc53d3f28
Volume 7
WOSCitedRecordID wos000744993900033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ine8gATitrEThyPBbVioBUDSGWK_IRKbVOlVUd-O3dxqMqAWFiSKLo41ne27y45f0fIjZVgZ8ANhrAESbVNnkZKeIh5UsOF18r7QOL6JIbDfDSSzxulvjAnLNADB-DaSeZ8pk0ipEm4AGddSCs0tyZllvmk3ubbEXIjmMI1GBZkDvFWyHRnkvE2-H_47yHBxOcfNmiDqr-2Kf19stc4g7QbOnFAttzskOwO1kyqiyPy1p1RpHSoxmUVzUu4pPU2iQgrKpQzqibvJcT3H1O6LCmMo5Wjis4C_4WqqIZJv3IT2qRhTcFQ0aaGzDF57fdeHh6jphxCpJhgy8g6MPed3FsnTaqZ8HECM8ooC1DHPuNZKpQGqDJpLFPSG845ejQqxZOO2QlpwfvdKaGZ4PAczEYPTerYSi9Sl8cucUyYjHXOyN03QIVpuMKxZMWkgJgB4SwQzqKB84zcrqXngSPjF7l7xHotg8zW9Q3Qd9Hou_hL3-f_0cgF2cE-hU8pl6QFinNXZNusluNFdV0PJTgOPntfv_zQXw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interior-point+trust-region+algorithm+to+solve+a+nonlinear+bilevel+programming+problem&rft.jtitle=AIMS+mathematics&rft.au=El-Sobky%2C+B.&rft.au=Ashry%2C+G.&rft.date=2022&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=4&rft.spage=5534&rft.epage=5562&rft_id=info:doi/10.3934%2Fmath.2022307&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon