An optimal choice Dai-Liao conjugate gradient algorithm for unconstrained optimization and portfolio selection

In this research, we propose an optimal choice for the non-negative constant in the Dai-Liao conjugate gradient formula based on the prominent Barzilai-Borwein approach by leveraging the nice features of the Frobenius matrix norm. The global convergence of the new modification is demonstrated using...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 9; číslo 1; s. 642 - 664
Hlavní autoři: Sabi'u, Jamilu, Sulaiman, Ibrahim Mohammed, Kaelo, P., Malik, Maulana, Kamaruddin, Saadi Ahmad
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2024
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this research, we propose an optimal choice for the non-negative constant in the Dai-Liao conjugate gradient formula based on the prominent Barzilai-Borwein approach by leveraging the nice features of the Frobenius matrix norm. The global convergence of the new modification is demonstrated using some basic assumptions. Numerical comparisons with similar algorithms show that the new approach is reliable in terms of the number of iterations, computing time, and function evaluations for unconstrained minimization, portfolio selection and image restoration problems.
AbstractList In this research, we propose an optimal choice for the non-negative constant in the Dai-Liao conjugate gradient formula based on the prominent Barzilai-Borwein approach by leveraging the nice features of the Frobenius matrix norm. The global convergence of the new modification is demonstrated using some basic assumptions. Numerical comparisons with similar algorithms show that the new approach is reliable in terms of the number of iterations, computing time, and function evaluations for unconstrained minimization, portfolio selection and image restoration problems.
Author Kamaruddin, Saadi Ahmad
Sulaiman, Ibrahim Mohammed
Kaelo, P.
Sabi'u, Jamilu
Malik, Maulana
Author_xml – sequence: 1
  givenname: Jamilu
  surname: Sabi'u
  fullname: Sabi'u, Jamilu
  organization: Department of Mathematics, Yusuf Maitama Sule University Kano, Nigeria
– sequence: 2
  givenname: Ibrahim Mohammed
  surname: Sulaiman
  fullname: Sulaiman, Ibrahim Mohammed
  organization: Institute of Strategic Industrial Decision Modelling, School of Quantitative Sciences, Universiti Utara Malaysia, Sintok 06010, Malaysia, Faculty of Education and Arts, Sohar University, Sohar 311, Oman
– sequence: 3
  givenname: P.
  surname: Kaelo
  fullname: Kaelo, P.
  organization: Department of Mathematics, University of Botswana, Private Bag UB00704, Gaborone, Botswana
– sequence: 4
  givenname: Maulana
  surname: Malik
  fullname: Malik, Maulana
  organization: Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
– sequence: 5
  givenname: Saadi Ahmad
  surname: Kamaruddin
  fullname: Kamaruddin, Saadi Ahmad
  organization: Institute of Strategic Industrial Decision Modelling, School of Quantitative Sciences, Universiti Utara Malaysia, Sintok 06010, Malaysia
BookMark eNptkMtOwzAQRS1UJAp0xwf4A0hxbCdOllV5VarEBtbR-JW6Su3KcRfw9SRthRBiYY01c-dIc67RxAdvELrLyZzVjD_sIG3mlFBOGL9AU8oFy8q6qia__ldo1vdbQgjNKaeCT5FfeBz2ye2gw2oTnDL4EVy2dhCwCn57aCEZ3EbQzviEoWtDdGmzwzZEfPBDpE8RnDf6hHFfkFzwGLzG-xCTDZ0LuDedUWP_Fl1a6HozO9cb9PH89L58zdZvL6vlYp0BEyxlkglDWAHDY1JJRqtcayEFL3VNQEgLRQ2FLRmjWg1zW0pbESGpKQDG1Ru0OnF1gG2zj8N98bMJ4JpjI8S2gZic6kxTlVayUgqtC-A8r2upiCwqK4u64jUvBtb9iaVi6Pto7A8vJ82ovhnVN2f1Q5z-iSuXjlJGUd3_S99Wpoyl
CitedBy_id crossref_primary_10_1371_journal_pone_0300547
crossref_primary_10_7717_peerj_cs_2783
crossref_primary_10_1016_j_rico_2025_100550
crossref_primary_10_1080_0305215X_2024_2420743
Cites_doi 10.1080/01630563.2018.1535506
10.1186/s13662-021-03638-9
10.1080/10556788.2013.833199
10.1016/j.cam.2022.114879
10.1007/s11075-021-01157-y
10.1016/j.cor.2023.106341
10.2307/2975974
10.1007/s002450010019
10.1137/030601880
10.1016/j.apnum.2020.02.017
10.1007/s40324-020-00228-9
10.1007/s40096-019-00310-y
10.1080/02331934.2014.938072
10.1371/journal.pone.0281250
10.3934/math.2023001
10.1007/s11075-019-00836-1
10.11591/ijeecs.v23.i2.pp1100-1109
10.1109/ACCESS.2021.3081570
10.1007/s101070100263
10.1080/10556780701223293
10.1137/100813026
10.1137/S10562349426844
10.1080/10556788.2023.2189718
10.1016/j.ejor.2013.11.012
10.1007/s40065-019-0264-6
10.17654/MS103121961
10.1142/S0219876220500437
10.6028/jres.049.044
10.1088/1742-6596/1366/1/012079
10.1080/00207160.2021.1910814
10.1093/imanum/8.1.141
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2024034
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 664
ExternalDocumentID oai_doaj_org_article_86fb36b7dd5a44199bc0b58fb5984945
10_3934_math_2024034
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a373t-b37e035a0353bcb3281dd7b746d90a7bfa59a5f6332dccb3f6bf807b2e5aa7e03
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001141943700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:39:21 EDT 2025
Sat Nov 29 06:04:38 EST 2025
Tue Nov 18 21:58:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a373t-b37e035a0353bcb3281dd7b746d90a7bfa59a5f6332dccb3f6bf807b2e5aa7e03
OpenAccessLink https://doaj.org/article/86fb36b7dd5a44199bc0b58fb5984945
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_86fb36b7dd5a44199bc0b58fb5984945
crossref_primary_10_3934_math_2024034
crossref_citationtrail_10_3934_math_2024034
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024034-28
key-10.3934/math.2024034-27
key-10.3934/math.2024034-29
key-10.3934/math.2024034-31
key-10.3934/math.2024034-30
key-10.3934/math.2024034-11
key-10.3934/math.2024034-33
key-10.3934/math.2024034-10
key-10.3934/math.2024034-32
key-10.3934/math.2024034-13
key-10.3934/math.2024034-35
key-10.3934/math.2024034-12
key-10.3934/math.2024034-34
key-10.3934/math.2024034-15
key-10.3934/math.2024034-37
key-10.3934/math.2024034-14
key-10.3934/math.2024034-36
key-10.3934/math.2024034-17
key-10.3934/math.2024034-16
key-10.3934/math.2024034-38
key-10.3934/math.2024034-2
key-10.3934/math.2024034-19
key-10.3934/math.2024034-1
key-10.3934/math.2024034-18
key-10.3934/math.2024034-8
key-10.3934/math.2024034-7
key-10.3934/math.2024034-9
key-10.3934/math.2024034-4
key-10.3934/math.2024034-3
key-10.3934/math.2024034-6
key-10.3934/math.2024034-5
key-10.3934/math.2024034-20
key-10.3934/math.2024034-22
key-10.3934/math.2024034-21
key-10.3934/math.2024034-24
key-10.3934/math.2024034-23
key-10.3934/math.2024034-26
key-10.3934/math.2024034-25
References_xml – ident: key-10.3934/math.2024034-23
  doi: 10.1080/01630563.2018.1535506
– ident: key-10.3934/math.2024034-18
– ident: key-10.3934/math.2024034-37
– ident: key-10.3934/math.2024034-10
  doi: 10.1186/s13662-021-03638-9
– ident: key-10.3934/math.2024034-12
– ident: key-10.3934/math.2024034-20
  doi: 10.1080/10556788.2013.833199
– ident: key-10.3934/math.2024034-38
  doi: 10.1016/j.cam.2022.114879
– ident: key-10.3934/math.2024034-6
  doi: 10.1007/s11075-021-01157-y
– ident: key-10.3934/math.2024034-8
– ident: key-10.3934/math.2024034-2
  doi: 10.1016/j.cor.2023.106341
– ident: key-10.3934/math.2024034-36
  doi: 10.2307/2975974
– ident: key-10.3934/math.2024034-15
  doi: 10.1007/s002450010019
– ident: key-10.3934/math.2024034-16
  doi: 10.1137/030601880
– ident: key-10.3934/math.2024034-28
  doi: 10.1016/j.apnum.2020.02.017
– ident: key-10.3934/math.2024034-25
  doi: 10.1007/s40324-020-00228-9
– ident: key-10.3934/math.2024034-13
  doi: 10.1007/s40096-019-00310-y
– ident: key-10.3934/math.2024034-22
  doi: 10.1080/02331934.2014.938072
– ident: key-10.3934/math.2024034-14
  doi: 10.1371/journal.pone.0281250
– ident: key-10.3934/math.2024034-7
  doi: 10.3934/math.2023001
– ident: key-10.3934/math.2024034-30
  doi: 10.1007/s11075-019-00836-1
– ident: key-10.3934/math.2024034-4
  doi: 10.11591/ijeecs.v23.i2.pp1100-1109
– ident: key-10.3934/math.2024034-3
  doi: 10.1109/ACCESS.2021.3081570
– ident: key-10.3934/math.2024034-34
– ident: key-10.3934/math.2024034-35
  doi: 10.1007/s101070100263
– ident: key-10.3934/math.2024034-32
– ident: key-10.3934/math.2024034-21
  doi: 10.1080/10556780701223293
– ident: key-10.3934/math.2024034-17
  doi: 10.1137/100813026
– ident: key-10.3934/math.2024034-33
  doi: 10.1137/S10562349426844
– ident: key-10.3934/math.2024034-1
  doi: 10.1080/10556788.2023.2189718
– ident: key-10.3934/math.2024034-5
– ident: key-10.3934/math.2024034-19
  doi: 10.1016/j.ejor.2013.11.012
– ident: key-10.3934/math.2024034-29
  doi: 10.1007/s40065-019-0264-6
– ident: key-10.3934/math.2024034-24
  doi: 10.17654/MS103121961
– ident: key-10.3934/math.2024034-27
  doi: 10.1142/S0219876220500437
– ident: key-10.3934/math.2024034-9
  doi: 10.6028/jres.049.044
– ident: key-10.3934/math.2024034-11
  doi: 10.1088/1742-6596/1366/1/012079
– ident: key-10.3934/math.2024034-26
  doi: 10.1080/00207160.2021.1910814
– ident: key-10.3934/math.2024034-31
  doi: 10.1093/imanum/8.1.141
SSID ssj0002124274
Score 2.2832391
Snippet In this research, we propose an optimal choice for the non-negative constant in the Dai-Liao conjugate gradient formula based on the prominent Barzilai-Borwein...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 642
SubjectTerms bb approach
descent property
global convergence
unconstrained optimization
Title An optimal choice Dai-Liao conjugate gradient algorithm for unconstrained optimization and portfolio selection
URI https://doaj.org/article/86fb36b7dd5a44199bc0b58fb5984945
Volume 9
WOSCitedRecordID wos001141943700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ine8gATiurGTmyPBVoxtBUDoG6RHdslqE1QmzLy2zknoSoDYmFIBucSOefz3XeO8x1CV4441RFaBkLoMGCWCPCDKQ9MaAFdK61VVQ7oZcBHIzEey8e1Ul9-T1hND1wrri1ip2msuTGRgtAtpU6JjoTTkRRMsoq9lHC5lkx5HwwOmUG-Ve90p5KyNuA__-3B08-xHzFojaq_iin9XbTTgEHcrTuxhzZsvo-2hysm1cUByrs5LmBaz0AOPBVMa3yvsmCQqQJDKvu29MtgeDKvdm6VWE0nBaT7rzMMYBRDzPLwz1eBsKZ-TPPbJVa5wR56u2KaFXhRVcOB9kP03O893T0ETY2EQFFOy0BTbgmNFBxUp5qGgD8N15zFRhLFtVORVJGLKQ1NCtddrJ0gXIc2UsrfeoRaeZHbY4QdNxD8Uxcz4dOYWNkOwEMCg2whxtP4BN18ay1JGwJx_wbTBBIJr-PE6zhpdHyCrlfS7zVxxi9yt34AVjKe7rpqACNIGiNI_jKC0_94yBna8n2q11fOUaucL-0F2kw_ymwxv6zsC87Dz94XO_HZmg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+choice+Dai-Liao+conjugate+gradient+algorithm+for+unconstrained+optimization+and+portfolio+selection&rft.jtitle=AIMS+mathematics&rft.au=Sabi%27u%2C+Jamilu&rft.au=Sulaiman%2C+Ibrahim+Mohammed&rft.au=Kaelo%2C+P.&rft.au=Malik%2C+Maulana&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=1&rft.spage=642&rft.epage=664&rft_id=info:doi/10.3934%2Fmath.2024034&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2024034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon