An optimal choice Dai-Liao conjugate gradient algorithm for unconstrained optimization and portfolio selection

In this research, we propose an optimal choice for the non-negative constant in the Dai-Liao conjugate gradient formula based on the prominent Barzilai-Borwein approach by leveraging the nice features of the Frobenius matrix norm. The global convergence of the new modification is demonstrated using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics Jg. 9; H. 1; S. 642 - 664
Hauptverfasser: Sabi'u, Jamilu, Sulaiman, Ibrahim Mohammed, Kaelo, P., Malik, Maulana, Kamaruddin, Saadi Ahmad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: AIMS Press 01.01.2024
Schlagworte:
ISSN:2473-6988, 2473-6988
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research, we propose an optimal choice for the non-negative constant in the Dai-Liao conjugate gradient formula based on the prominent Barzilai-Borwein approach by leveraging the nice features of the Frobenius matrix norm. The global convergence of the new modification is demonstrated using some basic assumptions. Numerical comparisons with similar algorithms show that the new approach is reliable in terms of the number of iterations, computing time, and function evaluations for unconstrained minimization, portfolio selection and image restoration problems.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2024034