An optimal choice Dai-Liao conjugate gradient algorithm for unconstrained optimization and portfolio selection

In this research, we propose an optimal choice for the non-negative constant in the Dai-Liao conjugate gradient formula based on the prominent Barzilai-Borwein approach by leveraging the nice features of the Frobenius matrix norm. The global convergence of the new modification is demonstrated using...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 9; číslo 1; s. 642 - 664
Hlavní autoři: Sabi'u, Jamilu, Sulaiman, Ibrahim Mohammed, Kaelo, P., Malik, Maulana, Kamaruddin, Saadi Ahmad
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2024
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this research, we propose an optimal choice for the non-negative constant in the Dai-Liao conjugate gradient formula based on the prominent Barzilai-Borwein approach by leveraging the nice features of the Frobenius matrix norm. The global convergence of the new modification is demonstrated using some basic assumptions. Numerical comparisons with similar algorithms show that the new approach is reliable in terms of the number of iterations, computing time, and function evaluations for unconstrained minimization, portfolio selection and image restoration problems.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2024034