Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system
This study aimed to investigate the existence, uniqueness, and Ulam-Hyers stability of solutions in a nonlinear coupled system of Hilfer-Hadamard sequential fractional integrodifferential equations, which were further enhanced by nonlocal coupled Hadamard fractional integrodifferential multipoint bo...
Uloženo v:
| Vydáno v: | AIMS mathematics Ročník 9; číslo 6; s. 16203 - 16233 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
AIMS Press
01.01.2024
|
| Témata: | |
| ISSN: | 2473-6988, 2473-6988 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study aimed to investigate the existence, uniqueness, and Ulam-Hyers stability of solutions in a nonlinear coupled system of Hilfer-Hadamard sequential fractional integrodifferential equations, which were further enhanced by nonlocal coupled Hadamard fractional integrodifferential multipoint boundary conditions. The desired conclusions were obtained by using well-known fixed-point theorems. It was emphasized that the fixed-point technique was useful in determining the existence and uniqueness of solutions to boundary value problems. In addition, we examined the solution's Ulam-Hyers stability for the suggested system. The resulting results were further demonstrated and validated using demonstration instances. |
|---|---|
| AbstractList | This study aimed to investigate the existence, uniqueness, and Ulam-Hyers stability of solutions in a nonlinear coupled system of Hilfer-Hadamard sequential fractional integrodifferential equations, which were further enhanced by nonlocal coupled Hadamard fractional integrodifferential multipoint boundary conditions. The desired conclusions were obtained by using well-known fixed-point theorems. It was emphasized that the fixed-point technique was useful in determining the existence and uniqueness of solutions to boundary value problems. In addition, we examined the solution's Ulam-Hyers stability for the suggested system. The resulting results were further demonstrated and validated using demonstration instances. |
| Author | Muthaiah, Subramanian Murugesan, Manigandan Awadalla, Muath Egami, Ria H. Unyong, Bundit |
| Author_xml | – sequence: 1 givenname: Subramanian surname: Muthaiah fullname: Muthaiah, Subramanian organization: Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore, 641407, Tamilnadu, India – sequence: 2 givenname: Manigandan surname: Murugesan fullname: Murugesan, Manigandan organization: Center for Computational Modeling, Chennai Institute of Technology, Chennai, 600069, Tamil Nadu, India – sequence: 3 givenname: Muath surname: Awadalla fullname: Awadalla, Muath organization: Department of Mathematics and Statistics, College of Science, King Faisal University, Hofuf 31982, Al Ahsa, Saudi Arabia – sequence: 4 givenname: Bundit surname: Unyong fullname: Unyong, Bundit organization: Department of Mathematics and Statistics, Center of Excellence for Ecoinformatics, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand – sequence: 5 givenname: Ria H. surname: Egami fullname: Egami, Ria H. organization: Department of Mathematics, College of Science and Humanities in Sulail, Prince Sattam Bin Abdulaziz University, Saudi Arabia |
| BookMark | eNptkctKBDEQRYMo-Nz5AfkAW_PqSfdSRB1BcKPrUEmqNZLpjEkG7L-31RFEXN2iqu6hintIdsc0IiGnnJ3LXqqLFdSXc8GE0p3aIQezymbRd93ur3qfnJTyyhgTXCih1QEpTxFWzXLCXGipYEMMdaIweorvoVQcHdKMZRNroUPKFKhLm3VETwu-bXCsASJdhjhgbpbgYQXZN3VaIw1jxeecfBjm2XaxTDNydUz2BogFT7Z6RJ5urh-vls39w-3d1eV9A1LL2sxPWT601nPBeivahRXciQ61tS30XLcarO7bheTYAXO8661yzPveS62dRHlE7r65PsGrWecwHzeZBMF8NVJ-NpBrcBENsxwFtFqC80oqhJkCzvIeB-WstjNLfLNcTqVkHIwLFWpIY80QouHMfKZgPlMw2xRm09kf088R_65_AM0yjxw |
| CitedBy_id | crossref_primary_10_32323_ujma_1653542 crossref_primary_10_3390_sym17030472 crossref_primary_10_3390_fractalfract8080443 |
| Cites_doi | 10.1007/s12346-022-00650-6 10.1155/2021/8031524 10.1142/3779 10.3934/math.2023177 10.1186/s13661-023-01744-z 10.1007/s12346-022-00710-x 10.2478/s13540-014-0185-1 10.3390/fractalfract5040194 10.7153/dea-2022-14-27 10.3390/fractalfract7020178 10.1186/s13662-017-1231-1 10.1016/j.cnsns.2010.05.027 10.1016/S0301-0104(02)00670-5 10.3390/sym13050896 10.1515/ijnsns-2022-0152 10.3390/foundations3020020 10.1080/09720502.2021.1968580 10.3390/sym15040789 10.1186/s13662-019-2459-8 10.3390/axioms12080793 10.3390/fractalfract7110816 10.2298/FIL2214751A 10.1080/27690911.2023.2232092 10.1186/s13662-021-03414-9 10.3390/fractalfract5040195 10.24193/fpt-ro.2022.1.02 10.3934/math.2022107 10.31197/atnaa.579701 10.3934/math.2022010 10.3390/sym14091948 10.22199/issn.0717-6279-2020-06-0093 10.3390/fractalfract6110629 10.3390/sym15010198 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2024784 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 16233 |
| ExternalDocumentID | oai_doaj_org_article_0b1e2a573acd434ead9dacb19ef4cb7b 10_3934_math_2024784 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a373t-934b1f5bd1209b256b21c28e7bb5a91757ab795631e8a0c189b4c0dd9d377c3e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001231076700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:46:16 EDT 2025 Tue Nov 18 22:28:01 EST 2025 Sat Nov 29 06:04:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a373t-934b1f5bd1209b256b21c28e7bb5a91757ab795631e8a0c189b4c0dd9d377c3e3 |
| OpenAccessLink | https://doaj.org/article/0b1e2a573acd434ead9dacb19ef4cb7b |
| PageCount | 31 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0b1e2a573acd434ead9dacb19ef4cb7b crossref_citationtrail_10_3934_math_2024784 crossref_primary_10_3934_math_2024784 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2024 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2024784-11 key-10.3934/math.2024784-33 key-10.3934/math.2024784-10 key-10.3934/math.2024784-32 key-10.3934/math.2024784-13 key-10.3934/math.2024784-35 key-10.3934/math.2024784-12 key-10.3934/math.2024784-34 key-10.3934/math.2024784-15 key-10.3934/math.2024784-37 key-10.3934/math.2024784-14 key-10.3934/math.2024784-36 key-10.3934/math.2024784-17 key-10.3934/math.2024784-16 key-10.3934/math.2024784-38 key-10.3934/math.2024784-31 key-10.3934/math.2024784-30 key-10.3934/math.2024784-29 key-10.3934/math.2024784-9 key-10.3934/math.2024784-3 key-10.3934/math.2024784-22 key-10.3934/math.2024784-4 key-10.3934/math.2024784-21 key-10.3934/math.2024784-1 key-10.3934/math.2024784-24 key-10.3934/math.2024784-2 key-10.3934/math.2024784-23 key-10.3934/math.2024784-7 key-10.3934/math.2024784-26 key-10.3934/math.2024784-8 key-10.3934/math.2024784-25 key-10.3934/math.2024784-5 key-10.3934/math.2024784-28 key-10.3934/math.2024784-6 key-10.3934/math.2024784-27 key-10.3934/math.2024784-20 key-10.3934/math.2024784-19 key-10.3934/math.2024784-18 |
| References_xml | – ident: key-10.3934/math.2024784-19 doi: 10.1007/s12346-022-00650-6 – ident: key-10.3934/math.2024784-11 – ident: key-10.3934/math.2024784-33 doi: 10.1155/2021/8031524 – ident: key-10.3934/math.2024784-5 doi: 10.1142/3779 – ident: key-10.3934/math.2024784-18 doi: 10.3934/math.2023177 – ident: key-10.3934/math.2024784-27 doi: 10.1186/s13661-023-01744-z – ident: key-10.3934/math.2024784-8 doi: 10.1007/s12346-022-00710-x – ident: key-10.3934/math.2024784-4 doi: 10.2478/s13540-014-0185-1 – ident: key-10.3934/math.2024784-9 doi: 10.3390/fractalfract5040194 – ident: key-10.3934/math.2024784-20 doi: 10.7153/dea-2022-14-27 – ident: key-10.3934/math.2024784-37 doi: 10.3390/fractalfract7020178 – ident: key-10.3934/math.2024784-32 doi: 10.1186/s13662-017-1231-1 – ident: key-10.3934/math.2024784-2 doi: 10.1016/j.cnsns.2010.05.027 – ident: key-10.3934/math.2024784-6 doi: 10.1016/S0301-0104(02)00670-5 – ident: key-10.3934/math.2024784-26 doi: 10.3390/sym13050896 – ident: key-10.3934/math.2024784-31 doi: 10.1515/ijnsns-2022-0152 – ident: key-10.3934/math.2024784-16 doi: 10.3390/foundations3020020 – ident: key-10.3934/math.2024784-13 doi: 10.1080/09720502.2021.1968580 – ident: key-10.3934/math.2024784-28 doi: 10.3390/sym15040789 – ident: key-10.3934/math.2024784-38 doi: 10.1186/s13662-019-2459-8 – ident: key-10.3934/math.2024784-25 doi: 10.3390/axioms12080793 – ident: key-10.3934/math.2024784-36 doi: 10.3390/fractalfract7110816 – ident: key-10.3934/math.2024784-7 – ident: key-10.3934/math.2024784-14 doi: 10.2298/FIL2214751A – ident: key-10.3934/math.2024784-12 doi: 10.1080/27690911.2023.2232092 – ident: key-10.3934/math.2024784-22 doi: 10.1186/s13662-021-03414-9 – ident: key-10.3934/math.2024784-34 doi: 10.3390/fractalfract5040195 – ident: key-10.3934/math.2024784-35 doi: 10.24193/fpt-ro.2022.1.02 – ident: key-10.3934/math.2024784-17 doi: 10.3934/math.2022107 – ident: key-10.3934/math.2024784-23 doi: 10.31197/atnaa.579701 – ident: key-10.3934/math.2024784-10 doi: 10.3934/math.2022010 – ident: key-10.3934/math.2024784-1 – ident: key-10.3934/math.2024784-15 doi: 10.3390/sym14091948 – ident: key-10.3934/math.2024784-24 doi: 10.22199/issn.0717-6279-2020-06-0093 – ident: key-10.3934/math.2024784-3 – ident: key-10.3934/math.2024784-30 doi: 10.3390/fractalfract6110629 – ident: key-10.3934/math.2024784-21 – ident: key-10.3934/math.2024784-29 doi: 10.3390/sym15010198 |
| SSID | ssj0002124274 |
| Score | 2.2635753 |
| Snippet | This study aimed to investigate the existence, uniqueness, and Ulam-Hyers stability of solutions in a nonlinear coupled system of Hilfer-Hadamard sequential... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 16203 |
| SubjectTerms | coupled integrodifferential system derivatives existence hadamard integrals hilfer-hadamard derivatives multi-points sequential derivatives ulam-hyers stability uniqueness |
| Title | Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system |
| URI | https://doaj.org/article/0b1e2a573acd434ead9dacb19ef4cb7b |
| Volume | 9 |
| WOSCitedRecordID | wos001231076700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBYldGiH0idNX2hop2JiW3IkjW1JyJLQoYFsRi9DwE1C4hS69Lf3znJCOpQuXTyYQ0in8-n77PN3hNyj6hXXWka8y4GgiFhFQCN8lDqXxcb6zLKibjYhRiM5majXnVZfWBMW5IGD4zqxSXyqM8G0dZxxWLhy2ppE-YJbIwxm31ioHTKFORgSMge-FSrdmWK8A_gPvz2kXEj-4wzakeqvz5T-MTlqwCB9CpM4IXt-dkoOh1sl1dUZWY1hy6IBAmMKQK4uZf2kQP8paljWgJcCY16X1YoC_qSa2vl6UXpHQ5E0PMAlHUzLwi8jyDL6HYtk8b0rDUIR802HlNow6Dqfk3G_9_YyiJpGCZFmglURrM8kRWYc_ghrAMSYNLGp9MKYTAMfy4Q2AogQS7zUsU2kMtzGDjzJhLDMswvSms1n_pLQxHmXxCqVFomZ0lJpB4MwI23aTZ1tk8eN63LbqIhjM4syBzaBjs7R0Xnj6DZ52FovgnrGL3bPuAtbG9S8rm9AJORNJOR_RcLVfwxyTQ5wTuElyw1pVcu1vyX79qOarpZ3dZDBdfjV-wbjHd5K |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ulam-Hyers+stability+and+existence+results+for+a+coupled+sequential+Hilfer-Hadamard-type+integrodifferential+system&rft.jtitle=AIMS+mathematics&rft.au=Muthaiah%2C+Subramanian&rft.au=Murugesan%2C+Manigandan&rft.au=Awadalla%2C+Muath&rft.au=Unyong%2C+Bundit&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=6&rft.spage=16203&rft.epage=16233&rft_id=info:doi/10.3934%2Fmath.2024784&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2024784 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |