Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system

This study aimed to investigate the existence, uniqueness, and Ulam-Hyers stability of solutions in a nonlinear coupled system of Hilfer-Hadamard sequential fractional integrodifferential equations, which were further enhanced by nonlocal coupled Hadamard fractional integrodifferential multipoint bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics Jg. 9; H. 6; S. 16203 - 16233
Hauptverfasser: Muthaiah, Subramanian, Murugesan, Manigandan, Awadalla, Muath, Unyong, Bundit, Egami, Ria H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: AIMS Press 01.01.2024
Schlagworte:
ISSN:2473-6988, 2473-6988
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study aimed to investigate the existence, uniqueness, and Ulam-Hyers stability of solutions in a nonlinear coupled system of Hilfer-Hadamard sequential fractional integrodifferential equations, which were further enhanced by nonlocal coupled Hadamard fractional integrodifferential multipoint boundary conditions. The desired conclusions were obtained by using well-known fixed-point theorems. It was emphasized that the fixed-point technique was useful in determining the existence and uniqueness of solutions to boundary value problems. In addition, we examined the solution's Ulam-Hyers stability for the suggested system. The resulting results were further demonstrated and validated using demonstration instances.
AbstractList This study aimed to investigate the existence, uniqueness, and Ulam-Hyers stability of solutions in a nonlinear coupled system of Hilfer-Hadamard sequential fractional integrodifferential equations, which were further enhanced by nonlocal coupled Hadamard fractional integrodifferential multipoint boundary conditions. The desired conclusions were obtained by using well-known fixed-point theorems. It was emphasized that the fixed-point technique was useful in determining the existence and uniqueness of solutions to boundary value problems. In addition, we examined the solution's Ulam-Hyers stability for the suggested system. The resulting results were further demonstrated and validated using demonstration instances.
Author Muthaiah, Subramanian
Murugesan, Manigandan
Awadalla, Muath
Egami, Ria H.
Unyong, Bundit
Author_xml – sequence: 1
  givenname: Subramanian
  surname: Muthaiah
  fullname: Muthaiah, Subramanian
  organization: Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore, 641407, Tamilnadu, India
– sequence: 2
  givenname: Manigandan
  surname: Murugesan
  fullname: Murugesan, Manigandan
  organization: Center for Computational Modeling, Chennai Institute of Technology, Chennai, 600069, Tamil Nadu, India
– sequence: 3
  givenname: Muath
  surname: Awadalla
  fullname: Awadalla, Muath
  organization: Department of Mathematics and Statistics, College of Science, King Faisal University, Hofuf 31982, Al Ahsa, Saudi Arabia
– sequence: 4
  givenname: Bundit
  surname: Unyong
  fullname: Unyong, Bundit
  organization: Department of Mathematics and Statistics, Center of Excellence for Ecoinformatics, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
– sequence: 5
  givenname: Ria H.
  surname: Egami
  fullname: Egami, Ria H.
  organization: Department of Mathematics, College of Science and Humanities in Sulail, Prince Sattam Bin Abdulaziz University, Saudi Arabia
BookMark eNptkctKBDEQRYMo-Nz5AfkAW_PqSfdSRB1BcKPrUEmqNZLpjEkG7L-31RFEXN2iqu6hintIdsc0IiGnnJ3LXqqLFdSXc8GE0p3aIQezymbRd93ur3qfnJTyyhgTXCih1QEpTxFWzXLCXGipYEMMdaIweorvoVQcHdKMZRNroUPKFKhLm3VETwu-bXCsASJdhjhgbpbgYQXZN3VaIw1jxeecfBjm2XaxTDNydUz2BogFT7Z6RJ5urh-vls39w-3d1eV9A1LL2sxPWT601nPBeivahRXciQ61tS30XLcarO7bheTYAXO8661yzPveS62dRHlE7r65PsGrWecwHzeZBMF8NVJ-NpBrcBENsxwFtFqC80oqhJkCzvIeB-WstjNLfLNcTqVkHIwLFWpIY80QouHMfKZgPlMw2xRm09kf088R_65_AM0yjxw
CitedBy_id crossref_primary_10_32323_ujma_1653542
crossref_primary_10_3390_sym17030472
crossref_primary_10_3390_fractalfract8080443
Cites_doi 10.1007/s12346-022-00650-6
10.1155/2021/8031524
10.1142/3779
10.3934/math.2023177
10.1186/s13661-023-01744-z
10.1007/s12346-022-00710-x
10.2478/s13540-014-0185-1
10.3390/fractalfract5040194
10.7153/dea-2022-14-27
10.3390/fractalfract7020178
10.1186/s13662-017-1231-1
10.1016/j.cnsns.2010.05.027
10.1016/S0301-0104(02)00670-5
10.3390/sym13050896
10.1515/ijnsns-2022-0152
10.3390/foundations3020020
10.1080/09720502.2021.1968580
10.3390/sym15040789
10.1186/s13662-019-2459-8
10.3390/axioms12080793
10.3390/fractalfract7110816
10.2298/FIL2214751A
10.1080/27690911.2023.2232092
10.1186/s13662-021-03414-9
10.3390/fractalfract5040195
10.24193/fpt-ro.2022.1.02
10.3934/math.2022107
10.31197/atnaa.579701
10.3934/math.2022010
10.3390/sym14091948
10.22199/issn.0717-6279-2020-06-0093
10.3390/fractalfract6110629
10.3390/sym15010198
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2024784
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 16233
ExternalDocumentID oai_doaj_org_article_0b1e2a573acd434ead9dacb19ef4cb7b
10_3934_math_2024784
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a373t-934b1f5bd1209b256b21c28e7bb5a91757ab795631e8a0c189b4c0dd9d377c3e3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001231076700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:46:16 EDT 2025
Tue Nov 18 22:28:01 EST 2025
Sat Nov 29 06:04:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a373t-934b1f5bd1209b256b21c28e7bb5a91757ab795631e8a0c189b4c0dd9d377c3e3
OpenAccessLink https://doaj.org/article/0b1e2a573acd434ead9dacb19ef4cb7b
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_0b1e2a573acd434ead9dacb19ef4cb7b
crossref_citationtrail_10_3934_math_2024784
crossref_primary_10_3934_math_2024784
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024784-11
key-10.3934/math.2024784-33
key-10.3934/math.2024784-10
key-10.3934/math.2024784-32
key-10.3934/math.2024784-13
key-10.3934/math.2024784-35
key-10.3934/math.2024784-12
key-10.3934/math.2024784-34
key-10.3934/math.2024784-15
key-10.3934/math.2024784-37
key-10.3934/math.2024784-14
key-10.3934/math.2024784-36
key-10.3934/math.2024784-17
key-10.3934/math.2024784-16
key-10.3934/math.2024784-38
key-10.3934/math.2024784-31
key-10.3934/math.2024784-30
key-10.3934/math.2024784-29
key-10.3934/math.2024784-9
key-10.3934/math.2024784-3
key-10.3934/math.2024784-22
key-10.3934/math.2024784-4
key-10.3934/math.2024784-21
key-10.3934/math.2024784-1
key-10.3934/math.2024784-24
key-10.3934/math.2024784-2
key-10.3934/math.2024784-23
key-10.3934/math.2024784-7
key-10.3934/math.2024784-26
key-10.3934/math.2024784-8
key-10.3934/math.2024784-25
key-10.3934/math.2024784-5
key-10.3934/math.2024784-28
key-10.3934/math.2024784-6
key-10.3934/math.2024784-27
key-10.3934/math.2024784-20
key-10.3934/math.2024784-19
key-10.3934/math.2024784-18
References_xml – ident: key-10.3934/math.2024784-19
  doi: 10.1007/s12346-022-00650-6
– ident: key-10.3934/math.2024784-11
– ident: key-10.3934/math.2024784-33
  doi: 10.1155/2021/8031524
– ident: key-10.3934/math.2024784-5
  doi: 10.1142/3779
– ident: key-10.3934/math.2024784-18
  doi: 10.3934/math.2023177
– ident: key-10.3934/math.2024784-27
  doi: 10.1186/s13661-023-01744-z
– ident: key-10.3934/math.2024784-8
  doi: 10.1007/s12346-022-00710-x
– ident: key-10.3934/math.2024784-4
  doi: 10.2478/s13540-014-0185-1
– ident: key-10.3934/math.2024784-9
  doi: 10.3390/fractalfract5040194
– ident: key-10.3934/math.2024784-20
  doi: 10.7153/dea-2022-14-27
– ident: key-10.3934/math.2024784-37
  doi: 10.3390/fractalfract7020178
– ident: key-10.3934/math.2024784-32
  doi: 10.1186/s13662-017-1231-1
– ident: key-10.3934/math.2024784-2
  doi: 10.1016/j.cnsns.2010.05.027
– ident: key-10.3934/math.2024784-6
  doi: 10.1016/S0301-0104(02)00670-5
– ident: key-10.3934/math.2024784-26
  doi: 10.3390/sym13050896
– ident: key-10.3934/math.2024784-31
  doi: 10.1515/ijnsns-2022-0152
– ident: key-10.3934/math.2024784-16
  doi: 10.3390/foundations3020020
– ident: key-10.3934/math.2024784-13
  doi: 10.1080/09720502.2021.1968580
– ident: key-10.3934/math.2024784-28
  doi: 10.3390/sym15040789
– ident: key-10.3934/math.2024784-38
  doi: 10.1186/s13662-019-2459-8
– ident: key-10.3934/math.2024784-25
  doi: 10.3390/axioms12080793
– ident: key-10.3934/math.2024784-36
  doi: 10.3390/fractalfract7110816
– ident: key-10.3934/math.2024784-7
– ident: key-10.3934/math.2024784-14
  doi: 10.2298/FIL2214751A
– ident: key-10.3934/math.2024784-12
  doi: 10.1080/27690911.2023.2232092
– ident: key-10.3934/math.2024784-22
  doi: 10.1186/s13662-021-03414-9
– ident: key-10.3934/math.2024784-34
  doi: 10.3390/fractalfract5040195
– ident: key-10.3934/math.2024784-35
  doi: 10.24193/fpt-ro.2022.1.02
– ident: key-10.3934/math.2024784-17
  doi: 10.3934/math.2022107
– ident: key-10.3934/math.2024784-23
  doi: 10.31197/atnaa.579701
– ident: key-10.3934/math.2024784-10
  doi: 10.3934/math.2022010
– ident: key-10.3934/math.2024784-1
– ident: key-10.3934/math.2024784-15
  doi: 10.3390/sym14091948
– ident: key-10.3934/math.2024784-24
  doi: 10.22199/issn.0717-6279-2020-06-0093
– ident: key-10.3934/math.2024784-3
– ident: key-10.3934/math.2024784-30
  doi: 10.3390/fractalfract6110629
– ident: key-10.3934/math.2024784-21
– ident: key-10.3934/math.2024784-29
  doi: 10.3390/sym15010198
SSID ssj0002124274
Score 2.2635753
Snippet This study aimed to investigate the existence, uniqueness, and Ulam-Hyers stability of solutions in a nonlinear coupled system of Hilfer-Hadamard sequential...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 16203
SubjectTerms coupled integrodifferential system
derivatives
existence
hadamard integrals
hilfer-hadamard derivatives
multi-points
sequential derivatives
ulam-hyers stability
uniqueness
Title Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system
URI https://doaj.org/article/0b1e2a573acd434ead9dacb19ef4cb7b
Volume 9
WOSCitedRecordID wos001231076700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a8MwEBUldGiH0k-afqGhnYqIbUmRNbYlIUtChwaymZMsQ8BNQuIUuvS392Q5IR1Kly4ejDDS0_nunXx-R8g9hm3DeRExK5VmwlnJIC66jKeJAeGEjnOom02o0SidTPTrTqsvXxMW5IEDcJ3IxC4BqTjYXHCBC9c5WBNrVwhrlPHeN1J6J5nyPhgdssB8K1S6c81FB_mf__aQCJWKHzFoR6q_jin9Y3LUkEH6FCZxQvbc7JQcDrdKqqszshrjlrGBJ8YUiVxdyvpJMf2nXsOyJrwUM-Z1Wa0o8k8K1M7Xi9LlNBRJ4wtc0sG0LNySoZeBd18k689daRCKmG86pNQDg67zORn3e28vA9Y0SmDAFa8Yrs_EhTS5_xHWIIkxSWyT1CljJGA-JhUYhYkQj10KkY1TbYSNckSSK2W54xekNZvP3CWhXQG5wqAWcYdcpSjSXIJMAJQExDRJ2uRxA11mGxVx38yizDCb8EBnHuisAbpNHrajF0E945dxz34XtmO85nV9Ay0haywh-8sSrv7jIdfkwM8pHLLckFa1XLtbsm8_qulqeVcbGV6HX71vR3jeBg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ulam-Hyers+stability+and+existence+results+for+a+coupled+sequential+Hilfer-Hadamard-type+integrodifferential+system&rft.jtitle=AIMS+mathematics&rft.au=Subramanian+Muthaiah&rft.au=Manigandan+Murugesan&rft.au=Muath+Awadalla&rft.au=Bundit+Unyong&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=6&rft.spage=16203&rft.epage=16233&rft_id=info:doi/10.3934%2Fmath.2024784&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0b1e2a573acd434ead9dacb19ef4cb7b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon