Solutions and anti-periodic solutions for impulsive differential equations and inclusions containing Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $ in infinite dimensional Banach spaces
In this paper, we improved recent results on the existence of solutions for nonlinear fractional boundary value problems containing the Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $. We also derived the exact relations between these fractional boundary value problems and the c...
Uloženo v:
| Vydáno v: | AIMS mathematics Ročník 9; číslo 4; s. 10386 - 10415 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
AIMS Press
01.01.2024
|
| Témata: | |
| ISSN: | 2473-6988, 2473-6988 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we improved recent results on the existence of solutions for nonlinear fractional boundary value problems containing the Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $. We also derived the exact relations between these fractional boundary value problems and the corresponding fractional integral equations in infinite dimensional Banach spaces. We showed that the continuity assumption on the nonlinear term of these equations is insufficient, give the derived expression for the solution, and present two results about the existence and uniqueness of the solution. We examined the case of impulsive impact and provide some sufficiency conditions for the existence and uniqueness of the solution in these cases. We also demonstrated the existence and uniqueness of anti-periodic solution for the studied problems and considered the problem when the right-hand side was a multivalued function. Examples were given to illustrate the obtained results. |
|---|---|
| AbstractList | In this paper, we improved recent results on the existence of solutions for nonlinear fractional boundary value problems containing the Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $. We also derived the exact relations between these fractional boundary value problems and the corresponding fractional integral equations in infinite dimensional Banach spaces. We showed that the continuity assumption on the nonlinear term of these equations is insufficient, give the derived expression for the solution, and present two results about the existence and uniqueness of the solution. We examined the case of impulsive impact and provide some sufficiency conditions for the existence and uniqueness of the solution in these cases. We also demonstrated the existence and uniqueness of anti-periodic solution for the studied problems and considered the problem when the right-hand side was a multivalued function. Examples were given to illustrate the obtained results. |
| Author | Ibrahim, Ahmed Gamal Nuwairan, Muneerah Al |
| Author_xml | – sequence: 1 givenname: Muneerah Al surname: Nuwairan fullname: Nuwairan, Muneerah Al organization: Department of Mathematics, College of Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia – sequence: 2 givenname: Ahmed Gamal surname: Ibrahim fullname: Ibrahim, Ahmed Gamal organization: Department of Mathematics, College of Sciences, Cairo University, Egypt |
| BookMark | eNptkc9KXDEUxkOxUGvd9QGy6KIFr81NMrnJUqVaQehCuxMux_wZj9xJpkmuYF-yr9TMjNhSujjknC_n-yXwvSV7MUVPyPueHQsj5OcV1PtjzrhcMP2K7HM5iE4Zrff-6t-Qw1IeGGO855IPcp_8uk7TXDHFQiG6VhW7tc-YHFpaXu5CyhRX63kq-OipwxB89m0XJup_zPAHgNFOc9mONsUKGDEu6UmFuIQI3SlMHuJMQwa7MTW_a689NkLjpkBTbjP9QG9_-gr0FiP92B9R_qlJrccYGrBufrDysewApw1s72lZg_XlHXkdYCr-8Pk8IN_Pv9ycfe2uvl1cnp1cdSAGUTuttGBggrLSDhyEAalC0IMbgmXK3XHlFlwbx5W0GoIUUtyZvtVCSaN7JQ7I5Y7rEjyM64wryE9jAhy3QsrLEXJFO_lRSck5G7gyQkvrvQ6KCWODZrDwTWysox3L5lRK9uGF17Nxk-24yXZ8zrat83_WLdZtBDUDTv83_QaSWK1u |
| CitedBy_id | crossref_primary_10_1038_s41598_025_01301_x crossref_primary_10_1142_S0218348X25400985 crossref_primary_10_3390_fractalfract8080475 crossref_primary_10_3390_sym16080939 crossref_primary_10_3390_fractalfract8070376 crossref_primary_10_3390_axioms14040230 |
| Cites_doi | 10.1186/s13662-020-03196-6 10.1186/s13662-021-03551-1 10.1016/j.jfranklin.2017.02.002 10.3390/sym15010182 10.3390/sym15020380 10.1515/9783110870893 10.4236/jamp.2018.66105 10.3390/math11051219 10.1016/S0362-546X(03)00041-5 10.1007/s40840-018-0665-2 10.1016/j.nonrwa.2011.11.013 10.1016/j.aej.2023.03.076 10.1016/j.aej.2020.09.011 10.3390/fractalfract7020157 10.3390/fractalfract7050372 10.22436/jnsa.010.03.20 10.1186/s13661-017-0902-x 10.3934/math.2023595 10.1016/j.physa.2019.123516 10.1016/j.aej.2020.02.033 10.57262/die/1584756018 10.1155/2009/625347 10.1016/j.aej.2023.03.080 10.1515/9783110571905 10.1016/j.na.2011.09.023 10.1016/j.chaos.2018.10.006 10.1515/9783110571707 10.2298/TSCI160111018A 10.1007/s11071-021-07158-9 10.1007/978-1-4615-6359-4 10.1515/ijnsns-2019-0179 10.1186/s13661-023-01736-z 10.1002/mma.6638 10.1016/j.csfx.2019.100013 10.1007/BF02783044 10.1186/s13660-017-1400-5 10.1007/s12215-021-00622-w 10.1515/phys-2018-0049 10.1016/j.chaos.2020.110256 10.14232/ejqtde.2016.1.34 10.4064/ba57-2-5 10.14232/ejqtde.2014.1.65 10.3934/math.2022101 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2024508 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 10415 |
| ExternalDocumentID | oai_doaj_org_article_6442207269384cee8f6039cf80a5e693 10_3934_math_2024508 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a373t-86830a9f6c4c72a39a46ff87d7fc06db26d5289d264c8af4343b913b956498163 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001185554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:51:32 EDT 2025 Sat Nov 29 06:04:41 EST 2025 Tue Nov 18 20:59:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a373t-86830a9f6c4c72a39a46ff87d7fc06db26d5289d264c8af4343b913b956498163 |
| OpenAccessLink | https://doaj.org/article/6442207269384cee8f6039cf80a5e693 |
| PageCount | 30 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6442207269384cee8f6039cf80a5e693 crossref_primary_10_3934_math_2024508 crossref_citationtrail_10_3934_math_2024508 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2024 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2024508-31 key-10.3934/math.2024508-30 key-10.3934/math.2024508-33 key-10.3934/math.2024508-32 key-10.3934/math.2024508-35 key-10.3934/math.2024508-34 key-10.3934/math.2024508-37 key-10.3934/math.2024508-36 key-10.3934/math.2024508-39 key-10.3934/math.2024508-38 key-10.3934/math.2024508-40 key-10.3934/math.2024508-42 key-10.3934/math.2024508-41 key-10.3934/math.2024508-44 key-10.3934/math.2024508-43 key-10.3934/math.2024508-46 key-10.3934/math.2024508-45 key-10.3934/math.2024508-48 key-10.3934/math.2024508-47 key-10.3934/math.2024508-49 key-10.3934/math.2024508-51 key-10.3934/math.2024508-50 key-10.3934/math.2024508-11 key-10.3934/math.2024508-10 key-10.3934/math.2024508-13 key-10.3934/math.2024508-12 key-10.3934/math.2024508-15 key-10.3934/math.2024508-14 key-10.3934/math.2024508-17 key-10.3934/math.2024508-16 key-10.3934/math.2024508-19 key-10.3934/math.2024508-18 key-10.3934/math.2024508-20 key-10.3934/math.2024508-22 key-10.3934/math.2024508-21 key-10.3934/math.2024508-9 key-10.3934/math.2024508-24 key-10.3934/math.2024508-23 key-10.3934/math.2024508-7 key-10.3934/math.2024508-26 key-10.3934/math.2024508-8 key-10.3934/math.2024508-25 key-10.3934/math.2024508-28 key-10.3934/math.2024508-27 key-10.3934/math.2024508-29 key-10.3934/math.2024508-1 key-10.3934/math.2024508-2 key-10.3934/math.2024508-5 key-10.3934/math.2024508-6 key-10.3934/math.2024508-3 key-10.3934/math.2024508-4 |
| References_xml | – ident: key-10.3934/math.2024508-21 doi: 10.1186/s13662-020-03196-6 – ident: key-10.3934/math.2024508-23 doi: 10.1186/s13662-021-03551-1 – ident: key-10.3934/math.2024508-32 doi: 10.1016/j.jfranklin.2017.02.002 – ident: key-10.3934/math.2024508-7 – ident: key-10.3934/math.2024508-3 – ident: key-10.3934/math.2024508-35 doi: 10.3390/sym15010182 – ident: key-10.3934/math.2024508-12 doi: 10.3390/sym15020380 – ident: key-10.3934/math.2024508-48 doi: 10.1515/9783110870893 – ident: key-10.3934/math.2024508-4 doi: 10.4236/jamp.2018.66105 – ident: key-10.3934/math.2024508-8 doi: 10.3390/math11051219 – ident: key-10.3934/math.2024508-26 doi: 10.1016/S0362-546X(03)00041-5 – ident: key-10.3934/math.2024508-29 doi: 10.1007/s40840-018-0665-2 – ident: key-10.3934/math.2024508-34 doi: 10.1016/j.nonrwa.2011.11.013 – ident: key-10.3934/math.2024508-42 doi: 10.1016/j.aej.2023.03.076 – ident: key-10.3934/math.2024508-10 doi: 10.1016/j.aej.2020.09.011 – ident: key-10.3934/math.2024508-24 – ident: key-10.3934/math.2024508-6 doi: 10.3390/fractalfract7020157 – ident: key-10.3934/math.2024508-9 doi: 10.3390/fractalfract7050372 – ident: key-10.3934/math.2024508-19 doi: 10.22436/jnsa.010.03.20 – ident: key-10.3934/math.2024508-36 doi: 10.1186/s13661-017-0902-x – ident: key-10.3934/math.2024508-28 – ident: key-10.3934/math.2024508-25 doi: 10.3934/math.2023595 – ident: key-10.3934/math.2024508-16 doi: 10.1016/j.physa.2019.123516 – ident: key-10.3934/math.2024508-30 – ident: key-10.3934/math.2024508-17 doi: 10.1016/j.aej.2020.02.033 – ident: key-10.3934/math.2024508-37 doi: 10.57262/die/1584756018 – ident: key-10.3934/math.2024508-38 doi: 10.1155/2009/625347 – ident: key-10.3934/math.2024508-44 doi: 10.1016/j.aej.2023.03.080 – ident: key-10.3934/math.2024508-2 doi: 10.1515/9783110571905 – ident: key-10.3934/math.2024508-47 doi: 10.1016/j.na.2011.09.023 – ident: key-10.3934/math.2024508-22 doi: 10.1016/j.chaos.2018.10.006 – ident: key-10.3934/math.2024508-5 – ident: key-10.3934/math.2024508-13 – ident: key-10.3934/math.2024508-1 doi: 10.1515/9783110571707 – ident: key-10.3934/math.2024508-14 doi: 10.2298/TSCI160111018A – ident: key-10.3934/math.2024508-27 – ident: key-10.3934/math.2024508-43 doi: 10.1007/s11071-021-07158-9 – ident: key-10.3934/math.2024508-50 doi: 10.1007/978-1-4615-6359-4 – ident: key-10.3934/math.2024508-31 doi: 10.1515/ijnsns-2019-0179 – ident: key-10.3934/math.2024508-41 doi: 10.1186/s13661-023-01736-z – ident: key-10.3934/math.2024508-15 doi: 10.1002/mma.6638 – ident: key-10.3934/math.2024508-45 doi: 10.1016/j.csfx.2019.100013 – ident: key-10.3934/math.2024508-49 doi: 10.1007/BF02783044 – ident: key-10.3934/math.2024508-20 doi: 10.1186/s13660-017-1400-5 – ident: key-10.3934/math.2024508-46 doi: 10.1007/s12215-021-00622-w – ident: key-10.3934/math.2024508-18 doi: 10.1515/phys-2018-0049 – ident: key-10.3934/math.2024508-11 doi: 10.1016/j.chaos.2020.110256 – ident: key-10.3934/math.2024508-40 doi: 10.14232/ejqtde.2016.1.34 – ident: key-10.3934/math.2024508-51 doi: 10.4064/ba57-2-5 – ident: key-10.3934/math.2024508-39 doi: 10.14232/ejqtde.2014.1.65 – ident: key-10.3934/math.2024508-33 doi: 10.3934/math.2022101 |
| SSID | ssj0002124274 |
| Score | 2.2896276 |
| Snippet | In this paper, we improved recent results on the existence of solutions for nonlinear fractional boundary value problems containing the Atangana-Baleanu... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 10386 |
| SubjectTerms | ab fractional derivative fractional differential inclusions instantaneous impulses solutions and anti-periodic solutions |
| Title | Solutions and anti-periodic solutions for impulsive differential equations and inclusions containing Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $ in infinite dimensional Banach spaces |
| URI | https://doaj.org/article/6442207269384cee8f6039cf80a5e693 |
| Volume | 9 |
| WOSCitedRecordID | wos001185554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NAeSvoiSR_o0EJLImJbsh7HbEnooVl6aCE3I-uRGHa9230dc84v6j_otT-iv6QzltfspeRSsAwW0kh4xqMZefQNIe-8z0tfhppJGQITwHVWh8wwHQ13UTsVfYeu_0WNx_rqynzdSfWFMWEJHji9uFNYr4siU4U0XAvQ6DrKjBsgk9kyQCVqX7B6dpwp1MGgkAX4WynSnRsuTsH-w38PhSgxk-TOGrQD1d-tKRf75ElvDNKzNImn5EFon5HHlwOS6vI5-TXsW1Hw-aGsGobgxDPfODrIDQXTkzbT-XqC0eh0m_UEvt4JDT8Smnci0LRusl52jxilnvJD0DMwEa9ta9kI1gvbrmlcpAMP0N_DaJsOHpzOIu2gOunvn3_u7j7kJ8VHIAhXbNB0hXGnGA_fdRsBOXdDQWGBJnpBvl-cf_v0mfWpF5jliq-Ylppn1kTphFOF5cYKGaNWXkWXYQoq6Utw1TyYU07biMdTa5NDKaUwGmy8l2SvnbXhgFDrcqVCJupSWZHXpUb_F7yuGsECs6APyfGWGZXrcckxPcakAv8EWVch66qedYfk_dB6nvA4_tFuhHwd2iCKdlcBslX1slXdJ1tH_4PIK_II55S2bV6TvdViHd6Qh26zapaLt53Ywv3y9vwvB4v4Xg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solutions+and+anti-periodic+solutions+for+impulsive+differential+equations+and+inclusions+containing+Atangana-Baleanu+fractional+derivative+of+order+%24+%5Czeta+%5Cin+%281%2C+2%29+%24+in+infinite+dimensional+Banach+spaces&rft.jtitle=AIMS+mathematics&rft.au=Nuwairan%2C+Muneerah+Al&rft.au=Ibrahim%2C+Ahmed+Gamal&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=4&rft.spage=10386&rft.epage=10415&rft_id=info:doi/10.3934%2Fmath.2024508&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2024508 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |