Solutions and anti-periodic solutions for impulsive differential equations and inclusions containing Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $ in infinite dimensional Banach spaces

In this paper, we improved recent results on the existence of solutions for nonlinear fractional boundary value problems containing the Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $. We also derived the exact relations between these fractional boundary value problems and the c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 9; číslo 4; s. 10386 - 10415
Hlavní autoři: Nuwairan, Muneerah Al, Ibrahim, Ahmed Gamal
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2024
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we improved recent results on the existence of solutions for nonlinear fractional boundary value problems containing the Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $. We also derived the exact relations between these fractional boundary value problems and the corresponding fractional integral equations in infinite dimensional Banach spaces. We showed that the continuity assumption on the nonlinear term of these equations is insufficient, give the derived expression for the solution, and present two results about the existence and uniqueness of the solution. We examined the case of impulsive impact and provide some sufficiency conditions for the existence and uniqueness of the solution in these cases. We also demonstrated the existence and uniqueness of anti-periodic solution for the studied problems and considered the problem when the right-hand side was a multivalued function. Examples were given to illustrate the obtained results.
AbstractList In this paper, we improved recent results on the existence of solutions for nonlinear fractional boundary value problems containing the Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $. We also derived the exact relations between these fractional boundary value problems and the corresponding fractional integral equations in infinite dimensional Banach spaces. We showed that the continuity assumption on the nonlinear term of these equations is insufficient, give the derived expression for the solution, and present two results about the existence and uniqueness of the solution. We examined the case of impulsive impact and provide some sufficiency conditions for the existence and uniqueness of the solution in these cases. We also demonstrated the existence and uniqueness of anti-periodic solution for the studied problems and considered the problem when the right-hand side was a multivalued function. Examples were given to illustrate the obtained results.
Author Ibrahim, Ahmed Gamal
Nuwairan, Muneerah Al
Author_xml – sequence: 1
  givenname: Muneerah Al
  surname: Nuwairan
  fullname: Nuwairan, Muneerah Al
  organization: Department of Mathematics, College of Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
– sequence: 2
  givenname: Ahmed Gamal
  surname: Ibrahim
  fullname: Ibrahim, Ahmed Gamal
  organization: Department of Mathematics, College of Sciences, Cairo University, Egypt
BookMark eNptkc9KXDEUxkOxUGvd9QGy6KIFr81NMrnJUqVaQehCuxMux_wZj9xJpkmuYF-yr9TMjNhSujjknC_n-yXwvSV7MUVPyPueHQsj5OcV1PtjzrhcMP2K7HM5iE4Zrff-6t-Qw1IeGGO855IPcp_8uk7TXDHFQiG6VhW7tc-YHFpaXu5CyhRX63kq-OipwxB89m0XJup_zPAHgNFOc9mONsUKGDEu6UmFuIQI3SlMHuJMQwa7MTW_a689NkLjpkBTbjP9QG9_-gr0FiP92B9R_qlJrccYGrBufrDysewApw1s72lZg_XlHXkdYCr-8Pk8IN_Pv9ycfe2uvl1cnp1cdSAGUTuttGBggrLSDhyEAalC0IMbgmXK3XHlFlwbx5W0GoIUUtyZvtVCSaN7JQ7I5Y7rEjyM64wryE9jAhy3QsrLEXJFO_lRSck5G7gyQkvrvQ6KCWODZrDwTWysox3L5lRK9uGF17Nxk-24yXZ8zrat83_WLdZtBDUDTv83_QaSWK1u
CitedBy_id crossref_primary_10_1038_s41598_025_01301_x
crossref_primary_10_1142_S0218348X25400985
crossref_primary_10_3390_fractalfract8080475
crossref_primary_10_3390_sym16080939
crossref_primary_10_3390_fractalfract8070376
crossref_primary_10_3390_axioms14040230
Cites_doi 10.1186/s13662-020-03196-6
10.1186/s13662-021-03551-1
10.1016/j.jfranklin.2017.02.002
10.3390/sym15010182
10.3390/sym15020380
10.1515/9783110870893
10.4236/jamp.2018.66105
10.3390/math11051219
10.1016/S0362-546X(03)00041-5
10.1007/s40840-018-0665-2
10.1016/j.nonrwa.2011.11.013
10.1016/j.aej.2023.03.076
10.1016/j.aej.2020.09.011
10.3390/fractalfract7020157
10.3390/fractalfract7050372
10.22436/jnsa.010.03.20
10.1186/s13661-017-0902-x
10.3934/math.2023595
10.1016/j.physa.2019.123516
10.1016/j.aej.2020.02.033
10.57262/die/1584756018
10.1155/2009/625347
10.1016/j.aej.2023.03.080
10.1515/9783110571905
10.1016/j.na.2011.09.023
10.1016/j.chaos.2018.10.006
10.1515/9783110571707
10.2298/TSCI160111018A
10.1007/s11071-021-07158-9
10.1007/978-1-4615-6359-4
10.1515/ijnsns-2019-0179
10.1186/s13661-023-01736-z
10.1002/mma.6638
10.1016/j.csfx.2019.100013
10.1007/BF02783044
10.1186/s13660-017-1400-5
10.1007/s12215-021-00622-w
10.1515/phys-2018-0049
10.1016/j.chaos.2020.110256
10.14232/ejqtde.2016.1.34
10.4064/ba57-2-5
10.14232/ejqtde.2014.1.65
10.3934/math.2022101
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2024508
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 10415
ExternalDocumentID oai_doaj_org_article_6442207269384cee8f6039cf80a5e693
10_3934_math_2024508
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a373t-86830a9f6c4c72a39a46ff87d7fc06db26d5289d264c8af4343b913b956498163
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001185554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:51:32 EDT 2025
Sat Nov 29 06:04:41 EST 2025
Tue Nov 18 20:59:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a373t-86830a9f6c4c72a39a46ff87d7fc06db26d5289d264c8af4343b913b956498163
OpenAccessLink https://doaj.org/article/6442207269384cee8f6039cf80a5e693
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_6442207269384cee8f6039cf80a5e693
crossref_primary_10_3934_math_2024508
crossref_citationtrail_10_3934_math_2024508
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024508-31
key-10.3934/math.2024508-30
key-10.3934/math.2024508-33
key-10.3934/math.2024508-32
key-10.3934/math.2024508-35
key-10.3934/math.2024508-34
key-10.3934/math.2024508-37
key-10.3934/math.2024508-36
key-10.3934/math.2024508-39
key-10.3934/math.2024508-38
key-10.3934/math.2024508-40
key-10.3934/math.2024508-42
key-10.3934/math.2024508-41
key-10.3934/math.2024508-44
key-10.3934/math.2024508-43
key-10.3934/math.2024508-46
key-10.3934/math.2024508-45
key-10.3934/math.2024508-48
key-10.3934/math.2024508-47
key-10.3934/math.2024508-49
key-10.3934/math.2024508-51
key-10.3934/math.2024508-50
key-10.3934/math.2024508-11
key-10.3934/math.2024508-10
key-10.3934/math.2024508-13
key-10.3934/math.2024508-12
key-10.3934/math.2024508-15
key-10.3934/math.2024508-14
key-10.3934/math.2024508-17
key-10.3934/math.2024508-16
key-10.3934/math.2024508-19
key-10.3934/math.2024508-18
key-10.3934/math.2024508-20
key-10.3934/math.2024508-22
key-10.3934/math.2024508-21
key-10.3934/math.2024508-9
key-10.3934/math.2024508-24
key-10.3934/math.2024508-23
key-10.3934/math.2024508-7
key-10.3934/math.2024508-26
key-10.3934/math.2024508-8
key-10.3934/math.2024508-25
key-10.3934/math.2024508-28
key-10.3934/math.2024508-27
key-10.3934/math.2024508-29
key-10.3934/math.2024508-1
key-10.3934/math.2024508-2
key-10.3934/math.2024508-5
key-10.3934/math.2024508-6
key-10.3934/math.2024508-3
key-10.3934/math.2024508-4
References_xml – ident: key-10.3934/math.2024508-21
  doi: 10.1186/s13662-020-03196-6
– ident: key-10.3934/math.2024508-23
  doi: 10.1186/s13662-021-03551-1
– ident: key-10.3934/math.2024508-32
  doi: 10.1016/j.jfranklin.2017.02.002
– ident: key-10.3934/math.2024508-7
– ident: key-10.3934/math.2024508-3
– ident: key-10.3934/math.2024508-35
  doi: 10.3390/sym15010182
– ident: key-10.3934/math.2024508-12
  doi: 10.3390/sym15020380
– ident: key-10.3934/math.2024508-48
  doi: 10.1515/9783110870893
– ident: key-10.3934/math.2024508-4
  doi: 10.4236/jamp.2018.66105
– ident: key-10.3934/math.2024508-8
  doi: 10.3390/math11051219
– ident: key-10.3934/math.2024508-26
  doi: 10.1016/S0362-546X(03)00041-5
– ident: key-10.3934/math.2024508-29
  doi: 10.1007/s40840-018-0665-2
– ident: key-10.3934/math.2024508-34
  doi: 10.1016/j.nonrwa.2011.11.013
– ident: key-10.3934/math.2024508-42
  doi: 10.1016/j.aej.2023.03.076
– ident: key-10.3934/math.2024508-10
  doi: 10.1016/j.aej.2020.09.011
– ident: key-10.3934/math.2024508-24
– ident: key-10.3934/math.2024508-6
  doi: 10.3390/fractalfract7020157
– ident: key-10.3934/math.2024508-9
  doi: 10.3390/fractalfract7050372
– ident: key-10.3934/math.2024508-19
  doi: 10.22436/jnsa.010.03.20
– ident: key-10.3934/math.2024508-36
  doi: 10.1186/s13661-017-0902-x
– ident: key-10.3934/math.2024508-28
– ident: key-10.3934/math.2024508-25
  doi: 10.3934/math.2023595
– ident: key-10.3934/math.2024508-16
  doi: 10.1016/j.physa.2019.123516
– ident: key-10.3934/math.2024508-30
– ident: key-10.3934/math.2024508-17
  doi: 10.1016/j.aej.2020.02.033
– ident: key-10.3934/math.2024508-37
  doi: 10.57262/die/1584756018
– ident: key-10.3934/math.2024508-38
  doi: 10.1155/2009/625347
– ident: key-10.3934/math.2024508-44
  doi: 10.1016/j.aej.2023.03.080
– ident: key-10.3934/math.2024508-2
  doi: 10.1515/9783110571905
– ident: key-10.3934/math.2024508-47
  doi: 10.1016/j.na.2011.09.023
– ident: key-10.3934/math.2024508-22
  doi: 10.1016/j.chaos.2018.10.006
– ident: key-10.3934/math.2024508-5
– ident: key-10.3934/math.2024508-13
– ident: key-10.3934/math.2024508-1
  doi: 10.1515/9783110571707
– ident: key-10.3934/math.2024508-14
  doi: 10.2298/TSCI160111018A
– ident: key-10.3934/math.2024508-27
– ident: key-10.3934/math.2024508-43
  doi: 10.1007/s11071-021-07158-9
– ident: key-10.3934/math.2024508-50
  doi: 10.1007/978-1-4615-6359-4
– ident: key-10.3934/math.2024508-31
  doi: 10.1515/ijnsns-2019-0179
– ident: key-10.3934/math.2024508-41
  doi: 10.1186/s13661-023-01736-z
– ident: key-10.3934/math.2024508-15
  doi: 10.1002/mma.6638
– ident: key-10.3934/math.2024508-45
  doi: 10.1016/j.csfx.2019.100013
– ident: key-10.3934/math.2024508-49
  doi: 10.1007/BF02783044
– ident: key-10.3934/math.2024508-20
  doi: 10.1186/s13660-017-1400-5
– ident: key-10.3934/math.2024508-46
  doi: 10.1007/s12215-021-00622-w
– ident: key-10.3934/math.2024508-18
  doi: 10.1515/phys-2018-0049
– ident: key-10.3934/math.2024508-11
  doi: 10.1016/j.chaos.2020.110256
– ident: key-10.3934/math.2024508-40
  doi: 10.14232/ejqtde.2016.1.34
– ident: key-10.3934/math.2024508-51
  doi: 10.4064/ba57-2-5
– ident: key-10.3934/math.2024508-39
  doi: 10.14232/ejqtde.2014.1.65
– ident: key-10.3934/math.2024508-33
  doi: 10.3934/math.2022101
SSID ssj0002124274
Score 2.2896276
Snippet In this paper, we improved recent results on the existence of solutions for nonlinear fractional boundary value problems containing the Atangana-Baleanu...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 10386
SubjectTerms ab fractional derivative
fractional differential inclusions
instantaneous impulses
solutions and anti-periodic solutions
Title Solutions and anti-periodic solutions for impulsive differential equations and inclusions containing Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $ in infinite dimensional Banach spaces
URI https://doaj.org/article/6442207269384cee8f6039cf80a5e693
Volume 9
WOSCitedRecordID wos001185554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals [open access]
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NAeSvoiSR_o0EJLImJbsh7HbEnooVl6aCE3I-uRGHa9230dc84v6j_otT-iv6QzltfspeRSsAwW0kh4xqMZefQNIe-8z0tfhppJGQITwHVWh8wwHQ13UTsVfYeu_0WNx_rqynzdSfWFMWEJHji9uFNYr4siU4U0XAvQ6DrKjBsgk9kyQCVqX7B6dpwp1MGgkAX4WynSnRsuTsH-w38PhSgxk-TOGrQD1d-tKRf75ElvDNKzNImn5EFon5HHlwOS6vI5-TXsW1Hw-aGsGobgxDPfODrIDQXTkzbT-XqC0eh0m_UEvt4JDT8Smnci0LRusl52jxilnvJD0DMwEa9ta9kI1gvbrmlcpAMP0N_DaJsOHpzOIu2gOunvn3_u7j7kJ8VHIAhXbNB0hXGnGA_fdRsBOXdDQWGBJnpBvl-cf_v0mfWpF5jliq-Ylppn1kTphFOF5cYKGaNWXkWXYQoq6Utw1TyYU07biMdTa5NDKaUwGmy8l2SvnbXhgFDrcqVCJupSWZHXpUb_F7yuGsECs6APyfGWGZXrcckxPcakAv8EWVch66qedYfk_dB6nvA4_tFuhHwd2iCKdlcBslX1slXdJ1tH_4PIK_II55S2bV6TvdViHd6Qh26zapaLt53Ywv3y9vwvB4v4Xg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solutions+and+anti-periodic+solutions+for+impulsive+differential+equations+and+inclusions+containing+Atangana-Baleanu+fractional+derivative+of+order+%24+%5Czeta+%5Cin+%281%2C+2%29+%24+in+infinite+dimensional+Banach+spaces&rft.jtitle=AIMS+mathematics&rft.au=Nuwairan%2C+Muneerah+Al&rft.au=Ibrahim%2C+Ahmed+Gamal&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=4&rft.spage=10386&rft.epage=10415&rft_id=info:doi/10.3934%2Fmath.2024508&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2024508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon