Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces

The aim of this paper is to derive conditions under which the solution set of a non-local impulsive differential inclusions involving Atangana-Baleanu fractional derivative is a nonempty compact set in an infinite dimensional Banach spaces. Existence results for solutions in the presence of instanta...

Full description

Saved in:
Bibliographic Details
Published in:AIMS mathematics Vol. 8; no. 5; pp. 11752 - 11780
Main Authors: Nuwairan, Muneerah Al, Ibrahim, Ahmed Gamal
Format: Journal Article
Language:English
Published: AIMS Press 01.01.2023
Subjects:
ISSN:2473-6988, 2473-6988
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The aim of this paper is to derive conditions under which the solution set of a non-local impulsive differential inclusions involving Atangana-Baleanu fractional derivative is a nonempty compact set in an infinite dimensional Banach spaces. Existence results for solutions in the presence of instantaneous or non-instantaneous impulsive effect are given. We considered the case where the right hand side is either a single valued function, or a multifunction. This generalizes recent results to the case when there are impulses, the right hand side is a multifunction, and where the dimension of the space is infinite. Examples are given to illustrate the effectiveness of the established results.
AbstractList The aim of this paper is to derive conditions under which the solution set of a non-local impulsive differential inclusions involving Atangana-Baleanu fractional derivative is a nonempty compact set in an infinite dimensional Banach spaces. Existence results for solutions in the presence of instantaneous or non-instantaneous impulsive effect are given. We considered the case where the right hand side is either a single valued function, or a multifunction. This generalizes recent results to the case when there are impulses, the right hand side is a multifunction, and where the dimension of the space is infinite. Examples are given to illustrate the effectiveness of the established results.
Author Ibrahim, Ahmed Gamal
Nuwairan, Muneerah Al
Author_xml – sequence: 1
  givenname: Muneerah Al
  surname: Nuwairan
  fullname: Nuwairan, Muneerah Al
  organization: Department of Mathematics, College of Sciences, King Faisal University, P. O. Box 400, Al-Ahsa 31982, Saudi Arabia
– sequence: 2
  givenname: Ahmed Gamal
  surname: Ibrahim
  fullname: Ibrahim, Ahmed Gamal
  organization: Department of Mathematics, College of Sciences, Cairo University, Egypt
BookMark eNptkd1q3DAQhUVJIGmSuzyAH6BOZUm25cs09CcQ2pv22sxKM9sJWmkraRf6Bn3sendDKaUgkOZwzjeg81qcxRRRiNtO3ulJm7cbqN_vlFS6n_pX4lKZUbfDZO3ZX-8LcVPKs5RSdcqo0VyKX59TDMlBaHiz3YXCe2w8E2HGWHmR8ccOKqdYGoi-4ejCrhxHjvsU9hzXzX2FuIYI7TsICHHXUAZ3yCxxj5n3C2DBclwOceR6WLHBWE6WsgWH5VqcE4SCNy_3lfj24f3Xh0_t05ePjw_3Ty3oUddWaxodjKT02JP0NEFP_WrsyCogVLZDOaCXZvDGQe8705sJOztoWpH1o9ZX4vHE9Qme523mDeSfcwKej0LK6xlyZRdwRo2D8RNaayZj9GDtioaOEI201uNqYb05sVxOpWSkP7xOzodS5kMp80spi139Y3dcj59bM3D4f-g3qFiXXw
CitedBy_id crossref_primary_10_3390_fractalfract8050289
crossref_primary_10_3390_math12172755
crossref_primary_10_1515_math_2023_0143
crossref_primary_10_1371_journal_pone_0301338
crossref_primary_10_3390_fractalfract8030144
crossref_primary_10_3390_fractalfract8080475
Cites_doi 10.1515/ijnsns-2019-0179
10.12785/pfda/010201
10.1016/j.physa.2019.123516
10.1155/9789775945501
10.2118/104009-PA
10.1186/s13660-017-1400-5
10.1016/j.jfranklin.2017.02.002
10.1515/jmbm-2017-0012
10.1142/2574
10.1142/8072
10.1073/pnas.90.24.11698
10.1155/2021/5675789
10.1186/s13662-020-03196-6
10.1016/j.chaos.2018.10.006
10.1515/9783110870893
10.2298/TSCI160111018A
10.1186/s13662-016-0949-5
10.30495/JME.SI.2021.2128
10.1016/j.jmaa.2006.05.061
10.1007/BF02783044
10.3934/math.2022101
10.1007/978-3-319-66384-5
10.1016/S0362-546X(03)00041-5
10.1007/978-3-642-14574-2
10.1186/s13662-021-03551-1
10.1016/j.aej.2020.02.033
10.1515/ms-2017-0207
10.3390/math10142420
10.22436/jnsa.010.03.20
10.1115/1.3167616
10.1006/jmaa.1993.1373
10.1016/j.csfx.2019.100013
10.1007/s12215-021-00622-w
10.1007/978-3-319-67944-0
10.1155/2022/1812445
10.1007/s40840-018-0665-2
10.1002/mma.6638
10.1002/rnc.5273
10.1088/978-0-7503-1704-7ch2
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023595
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 11780
ExternalDocumentID oai_doaj_org_article_e3e64d9e8849443688bf61fee4088deb
10_3934_math_2023595
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a373t-33f7ca7f2375f0df9a5f5b71f82afe281e06ed046d4ca5d14549e1863fbf8d733
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972567200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:42:18 EDT 2025
Sat Nov 29 06:04:30 EST 2025
Tue Nov 18 21:45:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a373t-33f7ca7f2375f0df9a5f5b71f82afe281e06ed046d4ca5d14549e1863fbf8d733
OpenAccessLink https://doaj.org/article/e3e64d9e8849443688bf61fee4088deb
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_e3e64d9e8849443688bf61fee4088deb
crossref_primary_10_3934_math_2023595
crossref_citationtrail_10_3934_math_2023595
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023595-20
key-10.3934/math.2023595-42
key-10.3934/math.2023595-21
key-10.3934/math.2023595-43
key-10.3934/math.2023595-22
key-10.3934/math.2023595-44
key-10.3934/math.2023595-23
key-10.3934/math.2023595-45
key-10.3934/math.2023595-24
key-10.3934/math.2023595-46
key-10.3934/math.2023595-25
key-10.3934/math.2023595-47
key-10.3934/math.2023595-26
key-10.3934/math.2023595-48
key-10.3934/math.2023595-27
key-10.3934/math.2023595-40
key-10.3934/math.2023595-41
key-10.3934/math.2023595-17
key-10.3934/math.2023595-39
key-10.3934/math.2023595-18
key-10.3934/math.2023595-19
key-10.3934/math.2023595-31
key-10.3934/math.2023595-10
key-10.3934/math.2023595-32
key-10.3934/math.2023595-11
key-10.3934/math.2023595-33
key-10.3934/math.2023595-12
key-10.3934/math.2023595-34
key-10.3934/math.2023595-13
key-10.3934/math.2023595-35
key-10.3934/math.2023595-14
key-10.3934/math.2023595-36
key-10.3934/math.2023595-15
key-10.3934/math.2023595-37
key-10.3934/math.2023595-16
key-10.3934/math.2023595-38
key-10.3934/math.2023595-30
key-10.3934/math.2023595-4
key-10.3934/math.2023595-5
key-10.3934/math.2023595-2
key-10.3934/math.2023595-3
key-10.3934/math.2023595-8
key-10.3934/math.2023595-9
key-10.3934/math.2023595-6
key-10.3934/math.2023595-7
key-10.3934/math.2023595-28
key-10.3934/math.2023595-29
key-10.3934/math.2023595-1
References_xml – ident: key-10.3934/math.2023595-19
– ident: key-10.3934/math.2023595-46
– ident: key-10.3934/math.2023595-8
  doi: 10.1515/ijnsns-2019-0179
– ident: key-10.3934/math.2023595-25
  doi: 10.12785/pfda/010201
– ident: key-10.3934/math.2023595-17
– ident: key-10.3934/math.2023595-28
  doi: 10.1016/j.physa.2019.123516
– ident: key-10.3934/math.2023595-3
  doi: 10.1155/9789775945501
– ident: key-10.3934/math.2023595-23
– ident: key-10.3934/math.2023595-18
  doi: 10.2118/104009-PA
– ident: key-10.3934/math.2023595-34
  doi: 10.1186/s13660-017-1400-5
– ident: key-10.3934/math.2023595-9
  doi: 10.1016/j.jfranklin.2017.02.002
– ident: key-10.3934/math.2023595-16
  doi: 10.1515/jmbm-2017-0012
– ident: key-10.3934/math.2023595-7
– ident: key-10.3934/math.2023595-15
  doi: 10.1142/2574
– ident: key-10.3934/math.2023595-22
  doi: 10.1142/8072
– ident: key-10.3934/math.2023595-1
  doi: 10.1073/pnas.90.24.11698
– ident: key-10.3934/math.2023595-38
  doi: 10.1155/2021/5675789
– ident: key-10.3934/math.2023595-32
  doi: 10.1186/s13662-020-03196-6
– ident: key-10.3934/math.2023595-33
  doi: 10.1016/j.chaos.2018.10.006
– ident: key-10.3934/math.2023595-47
  doi: 10.1515/9783110870893
– ident: key-10.3934/math.2023595-26
  doi: 10.2298/TSCI160111018A
– ident: key-10.3934/math.2023595-31
  doi: 10.1186/s13662-016-0949-5
– ident: key-10.3934/math.2023595-36
  doi: 10.30495/JME.SI.2021.2128
– ident: key-10.3934/math.2023595-45
  doi: 10.1016/j.jmaa.2006.05.061
– ident: key-10.3934/math.2023595-44
  doi: 10.1007/BF02783044
– ident: key-10.3934/math.2023595-10
  doi: 10.3934/math.2022101
– ident: key-10.3934/math.2023595-5
  doi: 10.1007/978-3-319-66384-5
– ident: key-10.3934/math.2023595-2
  doi: 10.1016/S0362-546X(03)00041-5
– ident: key-10.3934/math.2023595-24
  doi: 10.1007/978-3-642-14574-2
– ident: key-10.3934/math.2023595-35
  doi: 10.1186/s13662-021-03551-1
– ident: key-10.3934/math.2023595-43
– ident: key-10.3934/math.2023595-20
– ident: key-10.3934/math.2023595-29
  doi: 10.1016/j.aej.2020.02.033
– ident: key-10.3934/math.2023595-41
– ident: key-10.3934/math.2023595-13
  doi: 10.1515/ms-2017-0207
– ident: key-10.3934/math.2023595-12
  doi: 10.3390/math10142420
– ident: key-10.3934/math.2023595-30
  doi: 10.22436/jnsa.010.03.20
– ident: key-10.3934/math.2023595-21
  doi: 10.1115/1.3167616
– ident: key-10.3934/math.2023595-42
  doi: 10.1006/jmaa.1993.1373
– ident: key-10.3934/math.2023595-37
  doi: 10.1016/j.csfx.2019.100013
– ident: key-10.3934/math.2023595-40
  doi: 10.1007/s12215-021-00622-w
– ident: key-10.3934/math.2023595-11
  doi: 10.1007/978-3-319-67944-0
– ident: key-10.3934/math.2023595-39
  doi: 10.1155/2022/1812445
– ident: key-10.3934/math.2023595-6
  doi: 10.1007/s40840-018-0665-2
– ident: key-10.3934/math.2023595-14
– ident: key-10.3934/math.2023595-27
  doi: 10.1002/mma.6638
– ident: key-10.3934/math.2023595-48
  doi: 10.1002/rnc.5273
– ident: key-10.3934/math.2023595-4
  doi: 10.1088/978-0-7503-1704-7ch2
SSID ssj0002124274
Score 2.2776864
Snippet The aim of this paper is to derive conditions under which the solution set of a non-local impulsive differential inclusions involving Atangana-Baleanu...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 11752
SubjectTerms atangana-baleanu fractional derivative
fractional differential inclusions
instantaneous and noninstantaneous impulses
measure of noncompactness
Title Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces
URI https://doaj.org/article/e3e64d9e8849443688bf61fee4088deb
Volume 8
WOSCitedRecordID wos000972567200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBYldGiH0id9o6Gdiklsya8xKQkdmtChhWxG1qMYHCVN4oyd-7N7JzshHUqXgjHYnCxxOt1DPn1HyB3PFUQdofQgQA49DiLk5UwxL5K5iIQJU83cQeHneDRKxuP0ZavUF-aE1fDANePaQBtxleok4SlHuPQkN5FvtOawPpTOUfuC17MVTKEOBoXMId6qM91Zyngb_D_89xDgQdQfNmgLqt_ZlMEhOWicQdqtB3FEdrQ9JvvDDZLq4oR8jabW2RtaTGZVicnmdF3UBBZnSfVHDda9oMIqWlhZVgv3WFjQPLhdQLvgAL4LK7weWANhK2rm9XEGaK5AAlcO_BsawGUKdEKhiwlmtjsS0DmgTE7J26D_-vjkNdUTPMFitvQYM7EUsQlYHJqOMqkITZjHvkkCYXSQ-LoTaQXhseJShMrnMGfaTyJmcpOomLEz0rJTq88JDY1hUmnBIlzjPkTNrk4M-BZCRTroXJCHNT8z2UCLY4WLMoMQA7mfIfezhvsX5H5DPashNX6h6-HUbGgQCNu9APHIGvHI_hKPy__4yBXZwzHVOy_XpLWcV_qG7MrVsljMb53kwX342f8GVMDkTA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+impulsive+differential+equations+and+inclusions+involving+Atangana-Baleanu+fractional+derivative+in+infinite+dimensional+spaces&rft.jtitle=AIMS+mathematics&rft.au=Nuwairan%2C+Muneerah+Al&rft.au=Ibrahim%2C+Ahmed+Gamal&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=5&rft.spage=11752&rft.epage=11780&rft_id=info:doi/10.3934%2Fmath.2023595&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon