Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces
The aim of this paper is to derive conditions under which the solution set of a non-local impulsive differential inclusions involving Atangana-Baleanu fractional derivative is a nonempty compact set in an infinite dimensional Banach spaces. Existence results for solutions in the presence of instanta...
Saved in:
| Published in: | AIMS mathematics Vol. 8; no. 5; pp. 11752 - 11780 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
01.01.2023
|
| Subjects: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The aim of this paper is to derive conditions under which the solution set of a non-local impulsive differential inclusions involving Atangana-Baleanu fractional derivative is a nonempty compact set in an infinite dimensional Banach spaces. Existence results for solutions in the presence of instantaneous or non-instantaneous impulsive effect are given. We considered the case where the right hand side is either a single valued function, or a multifunction. This generalizes recent results to the case when there are impulses, the right hand side is a multifunction, and where the dimension of the space is infinite. Examples are given to illustrate the effectiveness of the established results. |
|---|---|
| AbstractList | The aim of this paper is to derive conditions under which the solution set of a non-local impulsive differential inclusions involving Atangana-Baleanu fractional derivative is a nonempty compact set in an infinite dimensional Banach spaces. Existence results for solutions in the presence of instantaneous or non-instantaneous impulsive effect are given. We considered the case where the right hand side is either a single valued function, or a multifunction. This generalizes recent results to the case when there are impulses, the right hand side is a multifunction, and where the dimension of the space is infinite. Examples are given to illustrate the effectiveness of the established results. |
| Author | Ibrahim, Ahmed Gamal Nuwairan, Muneerah Al |
| Author_xml | – sequence: 1 givenname: Muneerah Al surname: Nuwairan fullname: Nuwairan, Muneerah Al organization: Department of Mathematics, College of Sciences, King Faisal University, P. O. Box 400, Al-Ahsa 31982, Saudi Arabia – sequence: 2 givenname: Ahmed Gamal surname: Ibrahim fullname: Ibrahim, Ahmed Gamal organization: Department of Mathematics, College of Sciences, Cairo University, Egypt |
| BookMark | eNptkd1q3DAQhUVJIGmSuzyAH6BOZUm25cs09CcQ2pv22sxKM9sJWmkraRf6Bn3sendDKaUgkOZwzjeg81qcxRRRiNtO3ulJm7cbqN_vlFS6n_pX4lKZUbfDZO3ZX-8LcVPKs5RSdcqo0VyKX59TDMlBaHiz3YXCe2w8E2HGWHmR8ccOKqdYGoi-4ejCrhxHjvsU9hzXzX2FuIYI7TsICHHXUAZ3yCxxj5n3C2DBclwOceR6WLHBWE6WsgWH5VqcE4SCNy_3lfj24f3Xh0_t05ePjw_3Ty3oUddWaxodjKT02JP0NEFP_WrsyCogVLZDOaCXZvDGQe8705sJOztoWpH1o9ZX4vHE9Qme523mDeSfcwKej0LK6xlyZRdwRo2D8RNaayZj9GDtioaOEI201uNqYb05sVxOpWSkP7xOzodS5kMp80spi139Y3dcj59bM3D4f-g3qFiXXw |
| CitedBy_id | crossref_primary_10_3390_fractalfract8050289 crossref_primary_10_3390_math12172755 crossref_primary_10_1515_math_2023_0143 crossref_primary_10_1371_journal_pone_0301338 crossref_primary_10_3390_fractalfract8030144 crossref_primary_10_3390_fractalfract8080475 |
| Cites_doi | 10.1515/ijnsns-2019-0179 10.12785/pfda/010201 10.1016/j.physa.2019.123516 10.1155/9789775945501 10.2118/104009-PA 10.1186/s13660-017-1400-5 10.1016/j.jfranklin.2017.02.002 10.1515/jmbm-2017-0012 10.1142/2574 10.1142/8072 10.1073/pnas.90.24.11698 10.1155/2021/5675789 10.1186/s13662-020-03196-6 10.1016/j.chaos.2018.10.006 10.1515/9783110870893 10.2298/TSCI160111018A 10.1186/s13662-016-0949-5 10.30495/JME.SI.2021.2128 10.1016/j.jmaa.2006.05.061 10.1007/BF02783044 10.3934/math.2022101 10.1007/978-3-319-66384-5 10.1016/S0362-546X(03)00041-5 10.1007/978-3-642-14574-2 10.1186/s13662-021-03551-1 10.1016/j.aej.2020.02.033 10.1515/ms-2017-0207 10.3390/math10142420 10.22436/jnsa.010.03.20 10.1115/1.3167616 10.1006/jmaa.1993.1373 10.1016/j.csfx.2019.100013 10.1007/s12215-021-00622-w 10.1007/978-3-319-67944-0 10.1155/2022/1812445 10.1007/s40840-018-0665-2 10.1002/mma.6638 10.1002/rnc.5273 10.1088/978-0-7503-1704-7ch2 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2023595 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 11780 |
| ExternalDocumentID | oai_doaj_org_article_e3e64d9e8849443688bf61fee4088deb 10_3934_math_2023595 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a373t-33f7ca7f2375f0df9a5f5b71f82afe281e06ed046d4ca5d14549e1863fbf8d733 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972567200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:42:18 EDT 2025 Sat Nov 29 06:04:30 EST 2025 Tue Nov 18 21:45:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a373t-33f7ca7f2375f0df9a5f5b71f82afe281e06ed046d4ca5d14549e1863fbf8d733 |
| OpenAccessLink | https://doaj.org/article/e3e64d9e8849443688bf61fee4088deb |
| PageCount | 29 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e3e64d9e8849443688bf61fee4088deb crossref_primary_10_3934_math_2023595 crossref_citationtrail_10_3934_math_2023595 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2023595-20 key-10.3934/math.2023595-42 key-10.3934/math.2023595-21 key-10.3934/math.2023595-43 key-10.3934/math.2023595-22 key-10.3934/math.2023595-44 key-10.3934/math.2023595-23 key-10.3934/math.2023595-45 key-10.3934/math.2023595-24 key-10.3934/math.2023595-46 key-10.3934/math.2023595-25 key-10.3934/math.2023595-47 key-10.3934/math.2023595-26 key-10.3934/math.2023595-48 key-10.3934/math.2023595-27 key-10.3934/math.2023595-40 key-10.3934/math.2023595-41 key-10.3934/math.2023595-17 key-10.3934/math.2023595-39 key-10.3934/math.2023595-18 key-10.3934/math.2023595-19 key-10.3934/math.2023595-31 key-10.3934/math.2023595-10 key-10.3934/math.2023595-32 key-10.3934/math.2023595-11 key-10.3934/math.2023595-33 key-10.3934/math.2023595-12 key-10.3934/math.2023595-34 key-10.3934/math.2023595-13 key-10.3934/math.2023595-35 key-10.3934/math.2023595-14 key-10.3934/math.2023595-36 key-10.3934/math.2023595-15 key-10.3934/math.2023595-37 key-10.3934/math.2023595-16 key-10.3934/math.2023595-38 key-10.3934/math.2023595-30 key-10.3934/math.2023595-4 key-10.3934/math.2023595-5 key-10.3934/math.2023595-2 key-10.3934/math.2023595-3 key-10.3934/math.2023595-8 key-10.3934/math.2023595-9 key-10.3934/math.2023595-6 key-10.3934/math.2023595-7 key-10.3934/math.2023595-28 key-10.3934/math.2023595-29 key-10.3934/math.2023595-1 |
| References_xml | – ident: key-10.3934/math.2023595-19 – ident: key-10.3934/math.2023595-46 – ident: key-10.3934/math.2023595-8 doi: 10.1515/ijnsns-2019-0179 – ident: key-10.3934/math.2023595-25 doi: 10.12785/pfda/010201 – ident: key-10.3934/math.2023595-17 – ident: key-10.3934/math.2023595-28 doi: 10.1016/j.physa.2019.123516 – ident: key-10.3934/math.2023595-3 doi: 10.1155/9789775945501 – ident: key-10.3934/math.2023595-23 – ident: key-10.3934/math.2023595-18 doi: 10.2118/104009-PA – ident: key-10.3934/math.2023595-34 doi: 10.1186/s13660-017-1400-5 – ident: key-10.3934/math.2023595-9 doi: 10.1016/j.jfranklin.2017.02.002 – ident: key-10.3934/math.2023595-16 doi: 10.1515/jmbm-2017-0012 – ident: key-10.3934/math.2023595-7 – ident: key-10.3934/math.2023595-15 doi: 10.1142/2574 – ident: key-10.3934/math.2023595-22 doi: 10.1142/8072 – ident: key-10.3934/math.2023595-1 doi: 10.1073/pnas.90.24.11698 – ident: key-10.3934/math.2023595-38 doi: 10.1155/2021/5675789 – ident: key-10.3934/math.2023595-32 doi: 10.1186/s13662-020-03196-6 – ident: key-10.3934/math.2023595-33 doi: 10.1016/j.chaos.2018.10.006 – ident: key-10.3934/math.2023595-47 doi: 10.1515/9783110870893 – ident: key-10.3934/math.2023595-26 doi: 10.2298/TSCI160111018A – ident: key-10.3934/math.2023595-31 doi: 10.1186/s13662-016-0949-5 – ident: key-10.3934/math.2023595-36 doi: 10.30495/JME.SI.2021.2128 – ident: key-10.3934/math.2023595-45 doi: 10.1016/j.jmaa.2006.05.061 – ident: key-10.3934/math.2023595-44 doi: 10.1007/BF02783044 – ident: key-10.3934/math.2023595-10 doi: 10.3934/math.2022101 – ident: key-10.3934/math.2023595-5 doi: 10.1007/978-3-319-66384-5 – ident: key-10.3934/math.2023595-2 doi: 10.1016/S0362-546X(03)00041-5 – ident: key-10.3934/math.2023595-24 doi: 10.1007/978-3-642-14574-2 – ident: key-10.3934/math.2023595-35 doi: 10.1186/s13662-021-03551-1 – ident: key-10.3934/math.2023595-43 – ident: key-10.3934/math.2023595-20 – ident: key-10.3934/math.2023595-29 doi: 10.1016/j.aej.2020.02.033 – ident: key-10.3934/math.2023595-41 – ident: key-10.3934/math.2023595-13 doi: 10.1515/ms-2017-0207 – ident: key-10.3934/math.2023595-12 doi: 10.3390/math10142420 – ident: key-10.3934/math.2023595-30 doi: 10.22436/jnsa.010.03.20 – ident: key-10.3934/math.2023595-21 doi: 10.1115/1.3167616 – ident: key-10.3934/math.2023595-42 doi: 10.1006/jmaa.1993.1373 – ident: key-10.3934/math.2023595-37 doi: 10.1016/j.csfx.2019.100013 – ident: key-10.3934/math.2023595-40 doi: 10.1007/s12215-021-00622-w – ident: key-10.3934/math.2023595-11 doi: 10.1007/978-3-319-67944-0 – ident: key-10.3934/math.2023595-39 doi: 10.1155/2022/1812445 – ident: key-10.3934/math.2023595-6 doi: 10.1007/s40840-018-0665-2 – ident: key-10.3934/math.2023595-14 – ident: key-10.3934/math.2023595-27 doi: 10.1002/mma.6638 – ident: key-10.3934/math.2023595-48 doi: 10.1002/rnc.5273 – ident: key-10.3934/math.2023595-4 doi: 10.1088/978-0-7503-1704-7ch2 |
| SSID | ssj0002124274 |
| Score | 2.2776864 |
| Snippet | The aim of this paper is to derive conditions under which the solution set of a non-local impulsive differential inclusions involving Atangana-Baleanu... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 11752 |
| SubjectTerms | atangana-baleanu fractional derivative fractional differential inclusions instantaneous and noninstantaneous impulses measure of noncompactness |
| Title | Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces |
| URI | https://doaj.org/article/e3e64d9e8849443688bf61fee4088deb |
| Volume | 8 |
| WOSCitedRecordID | wos000972567200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBYldGiH0id9o6Gdiklsya8xKQkdmtChhWxG1qMYHCVN4oyd-7N7JzshHUqXgjHYnCxxOt1DPn1HyB3PFUQdofQgQA49DiLk5UwxL5K5iIQJU83cQeHneDRKxuP0ZavUF-aE1fDANePaQBtxleok4SlHuPQkN5FvtOawPpTOUfuC17MVTKEOBoXMId6qM91Zyngb_D_89xDgQdQfNmgLqt_ZlMEhOWicQdqtB3FEdrQ9JvvDDZLq4oR8jabW2RtaTGZVicnmdF3UBBZnSfVHDda9oMIqWlhZVgv3WFjQPLhdQLvgAL4LK7weWANhK2rm9XEGaK5AAlcO_BsawGUKdEKhiwlmtjsS0DmgTE7J26D_-vjkNdUTPMFitvQYM7EUsQlYHJqOMqkITZjHvkkCYXSQ-LoTaQXhseJShMrnMGfaTyJmcpOomLEz0rJTq88JDY1hUmnBIlzjPkTNrk4M-BZCRTroXJCHNT8z2UCLY4WLMoMQA7mfIfezhvsX5H5DPashNX6h6-HUbGgQCNu9APHIGvHI_hKPy__4yBXZwzHVOy_XpLWcV_qG7MrVsljMb53kwX342f8GVMDkTA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+impulsive+differential+equations+and+inclusions+involving+Atangana-Baleanu+fractional+derivative+in+infinite+dimensional+spaces&rft.jtitle=AIMS+mathematics&rft.au=Nuwairan%2C+Muneerah+Al&rft.au=Ibrahim%2C+Ahmed+Gamal&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=5&rft.spage=11752&rft.epage=11780&rft_id=info:doi/10.3934%2Fmath.2023595&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023595 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |