Lithofacies classification of a geothermal reservoir in Denmark and its facies-dependent porosity estimation from seismic inversion

•A novel system combining ANN and HMM is proposed to classify lithofacies of a potential geothermal reservoir in Denmark.•Depositional rules and complex data distributions are considered at the same time.•The classified lithofacies are then used as constraints for the prediction of porosity.•Differe...

Full description

Saved in:
Bibliographic Details
Published in:Geothermics Vol. 87; p. 101854
Main Authors: Feng, Runhai, Balling, Niels, Grana, Dario
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.09.2020
Elsevier Science Ltd
Subjects:
ISSN:0375-6505, 1879-3576
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel system combining ANN and HMM is proposed to classify lithofacies of a potential geothermal reservoir in Denmark.•Depositional rules and complex data distributions are considered at the same time.•The classified lithofacies are then used as constraints for the prediction of porosity.•Different regression neural networks are trained and applied within each type of lithofacies. Characterization of geothermal reservoirs is an important step for exploration and development of geothermal energy, which is reliable and sustainable for the future. Based on the inversion results of seismic reflection data, lithofacies and porosity are predicted beyond well locations on a potential geothermal reservoir in the north of Copenhagen, onshore Denmark. To classify the lithofacies, a new system of Artificial Neural Networks-Hidden Markov Models is proposed to consider the complex spatial distribution of rock properties and the intrinsic depositional rules. Artificial Neural Networks can overcome the common Gaussian assumption for the distribution of rock properties. At the same time, the transition matrix in Hidden Markov Models provides the conditional probability for the lithofacies transitions along the vertical direction. After classification, the resulting lithofacies are used to constrain the porosity prediction, in which the Artificial Neural Networks is trained and applied within each type of lithofacies, as a regression process. The novelty of this approach is in the integration of statistics and computer science algorithms that allows capturing hidden and complex relations in the data that cannot be explained by traditionally deterministic geophysical equations. This workflow could also improve the prediction accuracy and the uncertainty quantification of the porosity distribution given rock properties.
AbstractList •A novel system combining ANN and HMM is proposed to classify lithofacies of a potential geothermal reservoir in Denmark.•Depositional rules and complex data distributions are considered at the same time.•The classified lithofacies are then used as constraints for the prediction of porosity.•Different regression neural networks are trained and applied within each type of lithofacies. Characterization of geothermal reservoirs is an important step for exploration and development of geothermal energy, which is reliable and sustainable for the future. Based on the inversion results of seismic reflection data, lithofacies and porosity are predicted beyond well locations on a potential geothermal reservoir in the north of Copenhagen, onshore Denmark. To classify the lithofacies, a new system of Artificial Neural Networks-Hidden Markov Models is proposed to consider the complex spatial distribution of rock properties and the intrinsic depositional rules. Artificial Neural Networks can overcome the common Gaussian assumption for the distribution of rock properties. At the same time, the transition matrix in Hidden Markov Models provides the conditional probability for the lithofacies transitions along the vertical direction. After classification, the resulting lithofacies are used to constrain the porosity prediction, in which the Artificial Neural Networks is trained and applied within each type of lithofacies, as a regression process. The novelty of this approach is in the integration of statistics and computer science algorithms that allows capturing hidden and complex relations in the data that cannot be explained by traditionally deterministic geophysical equations. This workflow could also improve the prediction accuracy and the uncertainty quantification of the porosity distribution given rock properties.
Characterization of geothermal reservoirs is an important step for exploration and development of geothermal energy, which is reliable and sustainable for the future. Based on the inversion results of seismic reflection data, lithofacies and porosity are predicted beyond well locations on a potential geothermal reservoir in the north of Copenhagen, onshore Denmark. To classify the lithofacies, a new system of Artificial Neural Networks-Hidden Markov Models is proposed to consider the complex spatial distribution of rock properties and the intrinsic depositional rules. Artificial Neural Networks can overcome the common Gaussian assumption for the distribution of rock properties. At the same time, the transition matrix in Hidden Markov Models provides the conditional probability for the lithofacies transitions along the vertical direction. After classification, the resulting lithofacies are used to constrain the porosity prediction, in which the Artificial Neural Networks is trained and applied within each type of lithofacies, as a regression process. The novelty of this approach is in the integration of statistics and computer science algorithms that allows capturing hidden and complex relations in the data that cannot be explained by traditionally deterministic geophysical equations. This workflow could also improve the prediction accuracy and the uncertainty quantification of the porosity distribution given rock properties.
ArticleNumber 101854
Author Feng, Runhai
Balling, Niels
Grana, Dario
Author_xml – sequence: 1
  givenname: Runhai
  surname: Feng
  fullname: Feng, Runhai
  email: r.feng@geo.au.dk
  organization: Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, 8000 Aarhus C, Denmark
– sequence: 2
  givenname: Niels
  surname: Balling
  fullname: Balling, Niels
  organization: Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, 8000 Aarhus C, Denmark
– sequence: 3
  givenname: Dario
  surname: Grana
  fullname: Grana, Dario
  organization: Department of Geology and Geophysics, University of Wyoming, 1000 E. University Ave., Laramie, USA
BookMark eNqNkE1LJDEQhoO44Kj7HyKee0zSH-k-iYyfMLCX9RzSSUVrnEnGJA549o9vtHdB9jSngqLqqbeeY3LogwdCzjibc8a7i9X8CUJ-hrhBk-aCia9-3zYHZMZ7OVR1K7tDMmO1bKuuZe0ROU5pxRiTrWQz8rHE_BycNgiJmrVOCR0anTF4GhzV9B9er2mEBHEXMFL09Br8RscXqr2lmBOdEJWFLXgLPtNtiCFhfqeQMm4moothQxNgKmkLZAcxlfYp-eH0OsHPv_WEPN7e_F7cV8tfdw-Lq2WlaylyZQY-St61vHP1yHQjxm6U_dC48qLVnOux7qGB0dqmt7IVpue9qN0wDp22w2jqE3I-cbcxvL6VWGoV3qIvJ5UoZqToeibK1DBNmZI_RXBqG0v--K44U5_O1Up9c64-navJedm9_G_XYP56PUeN670Ii4kARcQOIapUvHoDFiOYrGzAPSh_AHTfq5s
CitedBy_id crossref_primary_10_1016_j_chaos_2022_112007
crossref_primary_10_1016_j_ijggc_2022_103583
crossref_primary_10_1016_j_geothermics_2025_103477
crossref_primary_10_1016_j_energy_2024_133947
crossref_primary_10_1016_j_cageo_2021_104763
crossref_primary_10_1016_j_geothermics_2023_102719
crossref_primary_10_1016_j_seta_2023_103532
crossref_primary_10_1007_s12517_022_09780_2
crossref_primary_10_1016_j_petsci_2025_09_008
crossref_primary_10_1007_s12665_023_10749_x
crossref_primary_10_1016_j_jngse_2022_104470
crossref_primary_10_1016_j_geothermics_2023_102651
crossref_primary_10_1016_j_petrol_2020_107995
crossref_primary_10_1007_s11004_025_10198_1
crossref_primary_10_1016_j_gete_2021_100282
crossref_primary_10_1002_gj_4604
crossref_primary_10_1038_s41598_022_21444_5
crossref_primary_10_1080_10916466_2021_1983600
crossref_primary_10_1016_j_energy_2024_130320
crossref_primary_10_1016_j_petsci_2022_03_001
crossref_primary_10_1016_j_acags_2025_100273
crossref_primary_10_1016_j_petrol_2021_108816
crossref_primary_10_1190_geo2020_0609_1
crossref_primary_10_1190_geo2022_0363_1
crossref_primary_10_1016_j_geothermics_2023_102702
crossref_primary_10_1016_j_geothermics_2022_102406
crossref_primary_10_1016_j_geothermics_2022_102401
crossref_primary_10_1109_TGRS_2020_3049012
crossref_primary_10_1190_geo2020_0424_1
crossref_primary_10_1016_j_geothermics_2020_101974
crossref_primary_10_1007_s12145_023_01079_4
crossref_primary_10_1016_j_gsf_2021_101311
Cites_doi 10.1016/j.geothermics.2019.02.006
10.34194/geusb.v20.4890
10.1016/j.geothermics.2013.09.007
10.1109/TGRS.2018.2841059
10.1016/0005-2795(75)90109-9
10.1190/1.3587220
10.1190/1.6241045.1
10.1130/0016-7606(1973)84<979:JWLOTC>2.0.CO;2
10.1007/s11004-015-9604-z
10.1190/1.1444923
10.1016/j.marpetgeo.2018.03.004
10.1016/j.geothermics.2019.06.008
10.1016/j.geothermics.2009.11.003
10.1023/A:1011044812133
10.1190/geo2019-0405.1
10.1190/geo2014-0233.1
10.34194/geusb.v4.4771
10.1190/1.3483770
10.1016/j.geothermics.2019.101722
10.1190/1.1438908
10.1109/5.18626
10.34194/geusb.v35.4633
10.1016/j.geothermics.2019.07.005
10.1190/geo2017-0670.1
10.1109/TIT.1967.1054010
10.1007/s11004-016-9671-9
10.34194/geusb.v1.4681
10.1007/s10044-019-00807-1
10.1016/j.geothermics.2015.06.001
10.1016/j.geothermics.2019.04.003
10.2118/10011-PA
10.1190/geo2014-0502.1
10.1190/1.1487078
10.1016/j.geothermics.2016.09.003
10.1190/1.1635051
10.34194/geusb.v38.4393
10.1190/1.1468618
10.1190/INT-2019-0184.1
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Sep 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Sep 2020
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1016/j.geothermics.2020.101854
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-3576
ExternalDocumentID 10_1016_j_geothermics_2020_101854
S0375650519304961
GeographicLocations Denmark
GeographicLocations_xml – name: Denmark
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JARJE
KOM
LY3
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSR
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
8FD
AGCQF
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-a372t-c91b716516f3b0a42b6b7894f357da11ab38e4ebdd48d752c81823f9b96ad9bc3
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551469800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0375-6505
IngestDate Wed Aug 13 06:50:10 EDT 2025
Sat Nov 29 07:20:30 EST 2025
Tue Nov 18 20:49:28 EST 2025
Fri Feb 23 02:47:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Geothermal reservoir characterization
Markov priors
Lithofacies classification
Artificial Neural Networks
Porosity prediction
Seismic inversion results
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a372t-c91b716516f3b0a42b6b7894f357da11ab38e4ebdd48d752c81823f9b96ad9bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2505726802
PQPubID 2047465
ParticipantIDs proquest_journals_2505726802
crossref_primary_10_1016_j_geothermics_2020_101854
crossref_citationtrail_10_1016_j_geothermics_2020_101854
elsevier_sciencedirect_doi_10_1016_j_geothermics_2020_101854
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Geothermics
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Elfeki, Dekking (bib0060) 2001; 33
Grana (bib0095) 2018; 83
Nielsen, Mathiesen, Bidstrup (bib0180) 2004; 4
Edgar, van der Baan (bib0050) 2011; 76
Mallick, Adhikari (bib0150) 2015; 80
Kumar, Sugianto, Li, Patel, Land (bib0125) 2014
Fang, Yang (bib0065) 2015; 80
Lindberg, Grana (bib0130) 2015; 47
Scales, Snieder (bib0205) 1997; 62
Balling, Hvid, Mahler, Møller, Mathiesen, Bidstrup, Nielsen (bib0025) 2002
Eidesgaard, Schovsbo, Boldreel, Ólavsdóttir (bib0055) 2019; 82
Rosenkjaer, Gasperikova, Newman, Arnason, Lindsey (bib0195) 2015; 57
Bredesen, Dalgaard, Mathiesen, Rasmussen, Balling (bib0035) 2020; 8
Vosgerau, Mathiesen, Andersen, Boldreel, Leth Hjuler, Kamla, Kristensen, Brogaard Pedersen, Pjetursson, Nielsen (bib0220) 2016; 35
Calvo-Zaragoza, Toselli, Vidal (bib0040) 2019; 22
Vosgerau, Gregersen, Kristensen (bib0225) 2017; 38
Feng, Luthi, Gisolf, Angerer (bib0080) 2018; 56
Goodfellow, Bengio, Courville (bib0090) 2016
Kristensen, Hjuler, Frykman, Olivarius, Weibel, Nielsen, Mathiesen (bib0120) 2016; 4
Krawczyk, Stiller, Bauer, Norden, Henninges, Ivanova, Huenges (bib0115) 2019; 7
Mathiesen, Nielsen, Bidstrup (bib0155) 2010; 20
Ars, Tarits, Hautot, Bellanger, Coutant, Maia (bib0010) 2019; 80
Maithya, Fujimitsu (bib0145) 2019; 81
Feng (bib0070) 2020
Mukerji, Jørstad, Avseth, Mavko, Granli (bib0170) 2001; 66
Viterbi (bib0215) 1967; 13
Avseth, Mukerji, Mavko (bib0015) 2005
Avseth, Mukerji, Mavko, Dvorkin (bib0020) 2010; 75
Weibel, Olivarius, Kristensen, Friis, Hjuler, Kjøller, Mathiesen, Nielsen (bib0230) 2017; 65
Grana, Azevedo, Liu (bib0105) 2020
Fuchs, Balling, Mathiesen (bib0085) 2020; 83
Keelan (bib0110) 1982; 34
Matthews (bib0160) 1975; 405
Feng, Luthi, Gisolf, Angerer (bib0075) 2018; 93
Aki, Richards (bib0005) 2002
Rabiner (bib0185) 1989; 77
Zwaan, Longa (bib0235) 2019; 82
Lindsay, Koughnet (bib0135) 2001; 20
Lüschen, Wolfgramm, Fritzer, Dussel, Thomas, Schulz (bib0140) 2014; 50
Grana, Fjeldstad, Omre (bib0100) 2017; 49
Casini, Ciuffi, Fiordelisi, Mazzotti, Stucchi (bib0045) 2010; 39
Saggaf, Toksöz, Mustafa (bib0200) 2003; 68
Nielsen (bib0175) 2003; 1
Ulrych, Sacchi, Woodbury (bib0210) 2001; 66
Middleton (bib0165) 1973; 84
Røgen, Ditlefsen, Vangkilde-Pedersen, Nielsen, Mahler (bib0190) 2015
Bosch, Zamora, Utama (bib0030) 2002; 67
Calvo-Zaragoza (10.1016/j.geothermics.2020.101854_bib0040) 2019; 22
Krawczyk (10.1016/j.geothermics.2020.101854_bib0115) 2019; 7
Edgar (10.1016/j.geothermics.2020.101854_bib0050) 2011; 76
Feng (10.1016/j.geothermics.2020.101854_bib0080) 2018; 56
Balling (10.1016/j.geothermics.2020.101854_bib0025) 2002
Kristensen (10.1016/j.geothermics.2020.101854_bib0120) 2016; 4
Vosgerau (10.1016/j.geothermics.2020.101854_bib0225) 2017; 38
Saggaf (10.1016/j.geothermics.2020.101854_bib0200) 2003; 68
Røgen (10.1016/j.geothermics.2020.101854_bib0190) 2015
Maithya (10.1016/j.geothermics.2020.101854_bib0145) 2019; 81
Feng (10.1016/j.geothermics.2020.101854_bib0070) 2020
Nielsen (10.1016/j.geothermics.2020.101854_bib0175) 2003; 1
Lindsay (10.1016/j.geothermics.2020.101854_bib0135) 2001; 20
Mukerji (10.1016/j.geothermics.2020.101854_bib0170) 2001; 66
Rosenkjaer (10.1016/j.geothermics.2020.101854_bib0195) 2015; 57
Avseth (10.1016/j.geothermics.2020.101854_bib0015) 2005
Casini (10.1016/j.geothermics.2020.101854_bib0045) 2010; 39
Fang (10.1016/j.geothermics.2020.101854_bib0065) 2015; 80
Grana (10.1016/j.geothermics.2020.101854_bib0095) 2018; 83
Rabiner (10.1016/j.geothermics.2020.101854_bib0185) 1989; 77
Fuchs (10.1016/j.geothermics.2020.101854_bib0085) 2020; 83
Grana (10.1016/j.geothermics.2020.101854_bib0105) 2020
Vosgerau (10.1016/j.geothermics.2020.101854_bib0220) 2016; 35
Lüschen (10.1016/j.geothermics.2020.101854_bib0140) 2014; 50
Weibel (10.1016/j.geothermics.2020.101854_bib0230) 2017; 65
Lindberg (10.1016/j.geothermics.2020.101854_bib0130) 2015; 47
Ulrych (10.1016/j.geothermics.2020.101854_bib0210) 2001; 66
Feng (10.1016/j.geothermics.2020.101854_bib0075) 2018; 93
Kumar (10.1016/j.geothermics.2020.101854_bib0125) 2014
Grana (10.1016/j.geothermics.2020.101854_bib0100) 2017; 49
Matthews (10.1016/j.geothermics.2020.101854_bib0160) 1975; 405
Nielsen (10.1016/j.geothermics.2020.101854_bib0180) 2004; 4
Middleton (10.1016/j.geothermics.2020.101854_bib0165) 1973; 84
Goodfellow (10.1016/j.geothermics.2020.101854_bib0090) 2016
Avseth (10.1016/j.geothermics.2020.101854_bib0020) 2010; 75
Keelan (10.1016/j.geothermics.2020.101854_bib0110) 1982; 34
Viterbi (10.1016/j.geothermics.2020.101854_bib0215) 1967; 13
Scales (10.1016/j.geothermics.2020.101854_bib0205) 1997; 62
Mallick (10.1016/j.geothermics.2020.101854_bib0150) 2015; 80
Ars (10.1016/j.geothermics.2020.101854_bib0010) 2019; 80
Bosch (10.1016/j.geothermics.2020.101854_bib0030) 2002; 67
Bredesen (10.1016/j.geothermics.2020.101854_bib0035) 2020; 8
Elfeki (10.1016/j.geothermics.2020.101854_bib0060) 2001; 33
Eidesgaard (10.1016/j.geothermics.2020.101854_bib0055) 2019; 82
Aki (10.1016/j.geothermics.2020.101854_bib0005) 2002
Zwaan (10.1016/j.geothermics.2020.101854_bib0235) 2019; 82
Mathiesen (10.1016/j.geothermics.2020.101854_bib0155) 2010; 20
References_xml – volume: 84
  start-page: 979
  year: 1973
  end-page: 988
  ident: bib0165
  article-title: Johannes Walther’s law of the correlation of facies
  publication-title: GSA Bull.
– volume: 66
  start-page: 55
  year: 2001
  end-page: 69
  ident: bib0210
  article-title: A Bayes tour of inversion: a tutorial
  publication-title: Geophysics
– volume: 34
  start-page: 2483
  year: 1982
  end-page: 2491
  ident: bib0110
  article-title: Core analysis for aid in reservoir description
  publication-title: J. Pet. Technol.
– start-page: 15
  year: 2002
  end-page: 16
  ident: bib0025
  article-title: Denmark
  publication-title: Atlas of Geothermal Resources in Europe. Publication No. EUR 17811
– volume: 20
  start-page: 188
  year: 2001
  end-page: 191
  ident: bib0135
  article-title: Sequential Backus Averaging: upscaling well logs to seismic wavelengths
  publication-title: Lead. Edge
– volume: 4
  start-page: 2
  year: 2016
  end-page: 27
  ident: bib0120
  article-title: Pre-drilling assessments of average porosity and permeability in the geothermal reservoirs of the Danish area
  publication-title: Geotherm. Energy
– year: 2005
  ident: bib0015
  article-title: Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib0185
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
– volume: 57
  start-page: 258
  year: 2015
  end-page: 274
  ident: bib0195
  article-title: Comparison of 3D MT inversions for geothermal exploration: casestudies for Krafla and Hengill geothermal systems in Iceland
  publication-title: Geothermics
– year: 2014
  ident: bib0125
  article-title: Using relative seismic impedance to predict porosity in the Eagle Ford shale
  publication-title: SEG Annual Meeting
– volume: 80
  start-page: 45
  year: 2015
  end-page: 59
  ident: bib0150
  article-title: Amplitude-variation-with-offset and prestackwaveform inversion: a direct comparison using a real data example from the Rock Springs Uplift, Wyoming, USA
  publication-title: Geophysics
– volume: 75
  start-page: A31
  year: 2010
  end-page: A47
  ident: bib0020
  article-title: Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks — a review of selected models and suggested work flows
  publication-title: Geophysics
– volume: 76
  start-page: V59
  year: 2011
  end-page: V68
  ident: bib0050
  article-title: How reliable is statistical wavelet estimation?
  publication-title: Geophysics
– volume: 82
  start-page: 203
  year: 2019
  end-page: 211
  ident: bib0235
  article-title: Integrated assessment projections for global geothermal energy use
  publication-title: Geothermics
– volume: 67
  start-page: P573
  year: 2002
  end-page: P581
  ident: bib0030
  article-title: Lithology discrimination from physical rock properties
  publication-title: Geophysics
– volume: 22
  start-page: 1573
  year: 2019
  end-page: 1584
  ident: bib0040
  article-title: Hybrid hidden Markov models and artificial neural networks for handwritten music recognition in mensural notation
  publication-title: Pattern Anal. Appl.
– year: 2015
  ident: bib0190
  article-title: Geothermal energy use, 2015 country update for Denmark
  publication-title: Proceedings, World Geothermal Congress 2015
– year: 2020
  ident: bib0070
  article-title: A Bayesian approach in machine learning for lithofacies classification and its uncertainty analysis
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2002
  ident: bib0005
  article-title: Quantitative Seismology
– volume: 83
  start-page: M15
  year: 2018
  end-page: M24
  ident: bib0095
  article-title: Joint facies and reservoir properties inversion
  publication-title: Geophysics
– year: 2016
  ident: bib0090
  article-title: Deep Learning
– volume: 80
  start-page: 56
  year: 2019
  end-page: 68
  ident: bib0010
  article-title: Joint inversion of gravity and surface wave data constrained by magnetotelluric: application to deep geothermal exploration of crustal fault zone in felsic basement
  publication-title: Geothermics
– volume: 82
  start-page: 296
  year: 2019
  end-page: 314
  ident: bib0055
  article-title: Shallow geothermal energy system in fractured basalt: a case study from Kollafjørður, Faroe Islands, NE-Atlantic Ocean
  publication-title: Geothermics
– volume: 68
  start-page: 1969
  year: 2003
  end-page: 1983
  ident: bib0200
  article-title: Estimation of reservoir properties from seismic data by smooth neural networks
  publication-title: Geophysics
– volume: 62
  start-page: 1045
  year: 1997
  end-page: 1046
  ident: bib0205
  article-title: To Bayes or not Bayes?
  publication-title: Geophysics
– volume: 83
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib0085
  article-title: Deep basin temperature and heat-flow field in Denmark – new insights from borehole analysis and 3D geothermal modelling
  publication-title: Geothermics
– volume: 50
  start-page: 167
  year: 2014
  end-page: 179
  ident: bib0140
  article-title: 3D seismic survey explores geothermal targets for reservoir characterization at Unterhaching, Munich, Germany
  publication-title: Geothermics
– volume: 47
  start-page: 719
  year: 2015
  end-page: 752
  ident: bib0130
  article-title: Petro-elastic log-facies classification using the expectation-maximization algorithm and hidden Markov models
  publication-title: Math. Geosci.
– volume: 20
  start-page: 19
  year: 2010
  end-page: 22
  ident: bib0155
  article-title: Identifying potential geothermal reservoirs in Denmark
  publication-title: Geol. Survey Denmark Greenl. Bull.
– volume: 81
  start-page: 12
  year: 2019
  end-page: 31
  ident: bib0145
  article-title: Analysis and interpretation of magnetotelluric data in characterization ofgeothermal resource in Eburru geothermalfield, Kenya
  publication-title: Geothermics
– volume: 35
  start-page: 23
  year: 2016
  end-page: 26
  ident: bib0220
  article-title: A WebGIS portal for exploration of deep geothermal energy based on geological and geophysical data
  publication-title: Geol. Survey Denmark Greenl. Bull.
– volume: 4
  start-page: 17
  year: 2004
  end-page: 20
  ident: bib0180
  article-title: Geothermal energy in Denmark
  publication-title: Geol. Survey Denmark Greenl. Bull.
– volume: 80
  start-page: R265
  year: 2015
  end-page: R280
  ident: bib0065
  article-title: Inversion of reservoir porosity, saturation, and permeability based on a robust hybrid genetic algorithm
  publication-title: Geophysics
– volume: 7
  start-page: 1
  year: 2019
  end-page: 18
  ident: bib0115
  article-title: 3-D seismic exploration across the deep geothermal research platform Groß Schönebeck north of Berlin/Germany
  publication-title: Geotherm. Energy
– volume: 66
  start-page: 988
  year: 2001
  end-page: 1001
  ident: bib0170
  article-title: Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: seismic inversions and statistical rock physics
  publication-title: Geophysics
– volume: 1
  start-page: 459
  year: 2003
  end-page: 526
  ident: bib0175
  article-title: Late Triassic – Jurassic development of the Danish basin and the Fennoscandian border zone, southern Scandinavia
  publication-title: Geol. Survey Denmark Greenl. Bull.
– volume: 8
  start-page: T275
  year: 2020
  end-page: T291
  ident: bib0035
  article-title: Seismic characterization of geothermal sedimentary reservoirs: a field example from the Copenhagen area, Denmark
  publication-title: Interpretation
– volume: 49
  start-page: 493
  year: 2017
  end-page: 515
  ident: bib0100
  article-title: Bayesian Gaussian mixture linear inversion for geophysical inverse problems
  publication-title: Math. Geosci.
– volume: 38
  start-page: 29
  year: 2017
  end-page: 32
  ident: bib0225
  article-title: Towards a geothermal exploration well in the Gassum Formation in Copenhagen
  publication-title: Geol. Survey Denmark Greenl. Bull.
– volume: 405
  start-page: 442
  year: 1975
  end-page: 451
  ident: bib0160
  article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme
  publication-title: Biochim. Biophys. Acta (BBA) - Protein Struct.
– volume: 93
  start-page: 218
  year: 2018
  end-page: 229
  ident: bib0075
  article-title: Reservoir lithology classification based on seismic inversion results by Hidden Markov Models: applying prior geological information
  publication-title: Mar. Pet. Geol.
– year: 2020
  ident: bib0105
  article-title: A comparison of deep machine learning and Monte Carlo methods for facies classification from seismic data
  publication-title: Geophysics
– volume: 65
  start-page: 135
  year: 2017
  end-page: 157
  ident: bib0230
  article-title: Predicting permeability of low enthalpy geothermal reservoirs: a case study from the Upper Triassic−Lower Jurassic Gassum Formation, Norwegian–Danish Basin
  publication-title: Geothermics
– volume: 56
  start-page: 6663
  year: 2018
  end-page: 6673
  ident: bib0080
  article-title: Reservoir lithology determination by hidden Markov random fields based on a Gaussian mixture model
  publication-title: IEEE Trans. Geosci. Remot. Sens.
– volume: 39
  start-page: 4
  year: 2010
  end-page: 12
  ident: bib0045
  article-title: Results of a 3D seismic survey at the Travale (Italy) test site
  publication-title: Geothermics
– volume: 13
  start-page: 260
  year: 1967
  end-page: 269
  ident: bib0215
  article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
  publication-title: IEEE Trans. Inf. Theory
– volume: 33
  start-page: 569
  year: 2001
  end-page: 589
  ident: bib0060
  article-title: A markov chain model for subsurface characterization: theory and applications
  publication-title: Math. Geol.
– volume: 80
  start-page: 56
  year: 2019
  ident: 10.1016/j.geothermics.2020.101854_bib0010
  article-title: Joint inversion of gravity and surface wave data constrained by magnetotelluric: application to deep geothermal exploration of crustal fault zone in felsic basement
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2019.02.006
– volume: 20
  start-page: 19
  year: 2010
  ident: 10.1016/j.geothermics.2020.101854_bib0155
  article-title: Identifying potential geothermal reservoirs in Denmark
  publication-title: Geol. Survey Denmark Greenl. Bull.
  doi: 10.34194/geusb.v20.4890
– volume: 50
  start-page: 167
  year: 2014
  ident: 10.1016/j.geothermics.2020.101854_bib0140
  article-title: 3D seismic survey explores geothermal targets for reservoir characterization at Unterhaching, Munich, Germany
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2013.09.007
– volume: 56
  start-page: 6663
  issue: 11
  year: 2018
  ident: 10.1016/j.geothermics.2020.101854_bib0080
  article-title: Reservoir lithology determination by hidden Markov random fields based on a Gaussian mixture model
  publication-title: IEEE Trans. Geosci. Remot. Sens.
  doi: 10.1109/TGRS.2018.2841059
– volume: 405
  start-page: 442
  issue: 2
  year: 1975
  ident: 10.1016/j.geothermics.2020.101854_bib0160
  article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme
  publication-title: Biochim. Biophys. Acta (BBA) - Protein Struct.
  doi: 10.1016/0005-2795(75)90109-9
– volume: 76
  start-page: V59
  issue: 4
  year: 2011
  ident: 10.1016/j.geothermics.2020.101854_bib0050
  article-title: How reliable is statistical wavelet estimation?
  publication-title: Geophysics
  doi: 10.1190/1.3587220
– volume: 62
  start-page: 1045
  issue: 4
  year: 1997
  ident: 10.1016/j.geothermics.2020.101854_bib0205
  article-title: To Bayes or not Bayes?
  publication-title: Geophysics
  doi: 10.1190/1.6241045.1
– volume: 84
  start-page: 979
  issue: 3
  year: 1973
  ident: 10.1016/j.geothermics.2020.101854_bib0165
  article-title: Johannes Walther’s law of the correlation of facies
  publication-title: GSA Bull.
  doi: 10.1130/0016-7606(1973)84<979:JWLOTC>2.0.CO;2
– volume: 47
  start-page: 719
  issue: 6
  year: 2015
  ident: 10.1016/j.geothermics.2020.101854_bib0130
  article-title: Petro-elastic log-facies classification using the expectation-maximization algorithm and hidden Markov models
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-015-9604-z
– volume: 66
  start-page: 55
  issue: 1
  year: 2001
  ident: 10.1016/j.geothermics.2020.101854_bib0210
  article-title: A Bayes tour of inversion: a tutorial
  publication-title: Geophysics
  doi: 10.1190/1.1444923
– volume: 93
  start-page: 218
  year: 2018
  ident: 10.1016/j.geothermics.2020.101854_bib0075
  article-title: Reservoir lithology classification based on seismic inversion results by Hidden Markov Models: applying prior geological information
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2018.03.004
– start-page: 15
  year: 2002
  ident: 10.1016/j.geothermics.2020.101854_bib0025
  article-title: Denmark
– volume: 82
  start-page: 203
  year: 2019
  ident: 10.1016/j.geothermics.2020.101854_bib0235
  article-title: Integrated assessment projections for global geothermal energy use
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2019.06.008
– volume: 39
  start-page: 4
  issue: 1
  year: 2010
  ident: 10.1016/j.geothermics.2020.101854_bib0045
  article-title: Results of a 3D seismic survey at the Travale (Italy) test site
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2009.11.003
– volume: 33
  start-page: 569
  issue: 5
  year: 2001
  ident: 10.1016/j.geothermics.2020.101854_bib0060
  article-title: A markov chain model for subsurface characterization: theory and applications
  publication-title: Math. Geol.
  doi: 10.1023/A:1011044812133
– year: 2020
  ident: 10.1016/j.geothermics.2020.101854_bib0105
  article-title: A comparison of deep machine learning and Monte Carlo methods for facies classification from seismic data
  publication-title: Geophysics
  doi: 10.1190/geo2019-0405.1
– volume: 7
  start-page: 1
  issue: 15
  year: 2019
  ident: 10.1016/j.geothermics.2020.101854_bib0115
  article-title: 3-D seismic exploration across the deep geothermal research platform Groß Schönebeck north of Berlin/Germany
  publication-title: Geotherm. Energy
– volume: 80
  start-page: 45
  issue: 2
  year: 2015
  ident: 10.1016/j.geothermics.2020.101854_bib0150
  article-title: Amplitude-variation-with-offset and prestackwaveform inversion: a direct comparison using a real data example from the Rock Springs Uplift, Wyoming, USA
  publication-title: Geophysics
  doi: 10.1190/geo2014-0233.1
– volume: 4
  start-page: 17
  year: 2004
  ident: 10.1016/j.geothermics.2020.101854_bib0180
  article-title: Geothermal energy in Denmark
  publication-title: Geol. Survey Denmark Greenl. Bull.
  doi: 10.34194/geusb.v4.4771
– volume: 75
  start-page: A31
  issue: 5
  year: 2010
  ident: 10.1016/j.geothermics.2020.101854_bib0020
  article-title: Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks — a review of selected models and suggested work flows
  publication-title: Geophysics
  doi: 10.1190/1.3483770
– year: 2015
  ident: 10.1016/j.geothermics.2020.101854_bib0190
  article-title: Geothermal energy use, 2015 country update for Denmark
– volume: 83
  start-page: 1
  year: 2020
  ident: 10.1016/j.geothermics.2020.101854_bib0085
  article-title: Deep basin temperature and heat-flow field in Denmark – new insights from borehole analysis and 3D geothermal modelling
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2019.101722
– volume: 20
  start-page: 188
  issue: 2
  year: 2001
  ident: 10.1016/j.geothermics.2020.101854_bib0135
  article-title: Sequential Backus Averaging: upscaling well logs to seismic wavelengths
  publication-title: Lead. Edge
  doi: 10.1190/1.1438908
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.geothermics.2020.101854_bib0185
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.18626
– volume: 35
  start-page: 23
  year: 2016
  ident: 10.1016/j.geothermics.2020.101854_bib0220
  article-title: A WebGIS portal for exploration of deep geothermal energy based on geological and geophysical data
  publication-title: Geol. Survey Denmark Greenl. Bull.
  doi: 10.34194/geusb.v35.4633
– volume: 82
  start-page: 296
  year: 2019
  ident: 10.1016/j.geothermics.2020.101854_bib0055
  article-title: Shallow geothermal energy system in fractured basalt: a case study from Kollafjørður, Faroe Islands, NE-Atlantic Ocean
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2019.07.005
– year: 2016
  ident: 10.1016/j.geothermics.2020.101854_bib0090
– volume: 83
  start-page: M15
  issue: 3
  year: 2018
  ident: 10.1016/j.geothermics.2020.101854_bib0095
  article-title: Joint facies and reservoir properties inversion
  publication-title: Geophysics
  doi: 10.1190/geo2017-0670.1
– year: 2002
  ident: 10.1016/j.geothermics.2020.101854_bib0005
– volume: 13
  start-page: 260
  issue: 2
  year: 1967
  ident: 10.1016/j.geothermics.2020.101854_bib0215
  article-title: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1054010
– volume: 49
  start-page: 493
  issue: 4
  year: 2017
  ident: 10.1016/j.geothermics.2020.101854_bib0100
  article-title: Bayesian Gaussian mixture linear inversion for geophysical inverse problems
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-016-9671-9
– volume: 1
  start-page: 459
  year: 2003
  ident: 10.1016/j.geothermics.2020.101854_bib0175
  article-title: Late Triassic – Jurassic development of the Danish basin and the Fennoscandian border zone, southern Scandinavia
  publication-title: Geol. Survey Denmark Greenl. Bull.
  doi: 10.34194/geusb.v1.4681
– volume: 22
  start-page: 1573
  year: 2019
  ident: 10.1016/j.geothermics.2020.101854_bib0040
  article-title: Hybrid hidden Markov models and artificial neural networks for handwritten music recognition in mensural notation
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00807-1
– volume: 57
  start-page: 258
  year: 2015
  ident: 10.1016/j.geothermics.2020.101854_bib0195
  article-title: Comparison of 3D MT inversions for geothermal exploration: casestudies for Krafla and Hengill geothermal systems in Iceland
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2015.06.001
– volume: 4
  start-page: 2
  issue: 6
  year: 2016
  ident: 10.1016/j.geothermics.2020.101854_bib0120
  article-title: Pre-drilling assessments of average porosity and permeability in the geothermal reservoirs of the Danish area
  publication-title: Geotherm. Energy
– year: 2014
  ident: 10.1016/j.geothermics.2020.101854_bib0125
  article-title: Using relative seismic impedance to predict porosity in the Eagle Ford shale
  publication-title: SEG Annual Meeting
– volume: 81
  start-page: 12
  year: 2019
  ident: 10.1016/j.geothermics.2020.101854_bib0145
  article-title: Analysis and interpretation of magnetotelluric data in characterization ofgeothermal resource in Eburru geothermalfield, Kenya
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2019.04.003
– volume: 34
  start-page: 2483
  issue: 11
  year: 1982
  ident: 10.1016/j.geothermics.2020.101854_bib0110
  article-title: Core analysis for aid in reservoir description
  publication-title: J. Pet. Technol.
  doi: 10.2118/10011-PA
– volume: 80
  start-page: R265
  issue: 5
  year: 2015
  ident: 10.1016/j.geothermics.2020.101854_bib0065
  article-title: Inversion of reservoir porosity, saturation, and permeability based on a robust hybrid genetic algorithm
  publication-title: Geophysics
  doi: 10.1190/geo2014-0502.1
– volume: 66
  start-page: 988
  issue: 4
  year: 2001
  ident: 10.1016/j.geothermics.2020.101854_bib0170
  article-title: Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: seismic inversions and statistical rock physics
  publication-title: Geophysics
  doi: 10.1190/1.1487078
– volume: 65
  start-page: 135
  year: 2017
  ident: 10.1016/j.geothermics.2020.101854_bib0230
  article-title: Predicting permeability of low enthalpy geothermal reservoirs: a case study from the Upper Triassic−Lower Jurassic Gassum Formation, Norwegian–Danish Basin
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2016.09.003
– volume: 68
  start-page: 1969
  issue: 6
  year: 2003
  ident: 10.1016/j.geothermics.2020.101854_bib0200
  article-title: Estimation of reservoir properties from seismic data by smooth neural networks
  publication-title: Geophysics
  doi: 10.1190/1.1635051
– year: 2020
  ident: 10.1016/j.geothermics.2020.101854_bib0070
  article-title: A Bayesian approach in machine learning for lithofacies classification and its uncertainty analysis
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 38
  start-page: 29
  year: 2017
  ident: 10.1016/j.geothermics.2020.101854_bib0225
  article-title: Towards a geothermal exploration well in the Gassum Formation in Copenhagen
  publication-title: Geol. Survey Denmark Greenl. Bull.
  doi: 10.34194/geusb.v38.4393
– year: 2005
  ident: 10.1016/j.geothermics.2020.101854_bib0015
– volume: 67
  start-page: P573
  issue: 2
  year: 2002
  ident: 10.1016/j.geothermics.2020.101854_bib0030
  article-title: Lithology discrimination from physical rock properties
  publication-title: Geophysics
  doi: 10.1190/1.1468618
– volume: 8
  start-page: T275
  issue: 2
  year: 2020
  ident: 10.1016/j.geothermics.2020.101854_bib0035
  article-title: Seismic characterization of geothermal sedimentary reservoirs: a field example from the Copenhagen area, Denmark
  publication-title: Interpretation
  doi: 10.1190/INT-2019-0184.1
SSID ssj0007570
Score 2.4266691
Snippet •A novel system combining ANN and HMM is proposed to classify lithofacies of a potential geothermal reservoir in Denmark.•Depositional rules and complex data...
Characterization of geothermal reservoirs is an important step for exploration and development of geothermal energy, which is reliable and sustainable for the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101854
SubjectTerms Algorithms
Artificial Neural Networks
Classification
Conditional probability
Geothermal energy
Geothermal power
Geothermal reservoir characterization
Lithofacies classification
Markov chains
Markov priors
Neural networks
Porosity
Porosity prediction
Properties (attributes)
Reservoirs
Rock properties
Rocks
Seismic inversion results
Seismic surveys
Spatial distribution
Statistical analysis
Workflow
Title Lithofacies classification of a geothermal reservoir in Denmark and its facies-dependent porosity estimation from seismic inversion
URI https://dx.doi.org/10.1016/j.geothermics.2020.101854
https://www.proquest.com/docview/2505726802
Volume 87
WOSCitedRecordID wos000551469800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3576
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007570
  issn: 0375-6505
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYhHdteyq60azc02Ftw8V0S7KVs3Y1RxtZB3oxuad01dknckPf98R1Zku1lFDLGXpxgIyvx9-nonONzQehVkmYKrK48EFIy47qJApEqHsDaknmsQ65l2DabIKendDplX0ajtc-FWV2RqqLrNbv-r1DDOQDbpM7-BdzdTeEEfAfQ4Qiww3Er4D-XzUU947BmlxNpdGMTDNQphnxyrtukq3lb0d_4ZOvShKSD5KnmfPGje5tgbxH4LrnNBDT1uo3gMIU55i5I0WSnLHW5NCH2ZbWy3rehxvveTTeIqofH1QqYrzfVBS97X2pbHtzS0xZ59rncNm_tLZj19dBLASapD8NyrjOfPtPHKrUpWyQLQEW0r7W1lcCUsCDJbFMYL6LtnvyHtLeOh8uj8_6fHJnJzRVqa1NvFNP-ZqY0M4LeCraRsZt3YpIxOkY7xx9Ppp-6XZxkbaPB7ifeRS_72MBbJrxNt9nY5VvV5ewB2nU2Bz62XHmIRrp6hO4BMLZa-WP0c8AZ_DtncD3DHPecwR1ncFlhxxkMnMHAGbzJGew5g3vOYMMZ7DiDO848Qd_fnZy9-RC47hwBT0jcBJJFAoztLMpniQh5GotcEMrSGYCneBRxkVCdaqFUShXJYgmqYZzMmGA5V0zI5CkaV3Wl9xAmIjS97yTseBoMdiUUfJJUCskoJ0ruI-qfayFd6XrTQeWq8DGKl8UAksJAUlhI9lHcDb229Vu2GfTag1c4RdQqmAUwb5vhhx7wwgkGuG48AXFOw_jZv939AN3vF9ghGjeLG_0c3ZGrplwuXjga_wIZmcXd
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithofacies+classification+of+a+geothermal+reservoir+in+Denmark+and+its+facies-dependent+porosity+estimation+from+seismic+inversion&rft.jtitle=Geothermics&rft.au=Feng%2C+Runhai&rft.au=Balling%2C+Niels&rft.au=Grana%2C+Dario&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0375-6505&rft.eissn=1879-3576&rft.volume=87&rft_id=info:doi/10.1016%2Fj.geothermics.2020.101854&rft.externalDocID=S0375650519304961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-6505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-6505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-6505&client=summon