A generalized viscosity forward-backward splitting scheme with inertial terms for solving monotone inclusion problems and its applications
Our aim was to establish a novel generalized viscosity forward-backward splitting scheme that incorporates inertial terms for addressing monotone inclusion problems within a Hilbert space. By incorporating appropriate control conditions, we achieved strong convergence. The significance of this theor...
Uloženo v:
| Vydáno v: | AIMS mathematics Ročník 9; číslo 9; s. 23632 - 23650 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
AIMS Press
01.01.2024
|
| Témata: | |
| ISSN: | 2473-6988, 2473-6988 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Our aim was to establish a novel generalized viscosity forward-backward splitting scheme that incorporates inertial terms for addressing monotone inclusion problems within a Hilbert space. By incorporating appropriate control conditions, we achieved strong convergence. The significance of this theorem lies in its applicability to resolve convex minimization problems. To demonstrate the efficacy of our proposed algorithm, we conducted a comparative analysis of its convergence behavior against other algorithms. Finally, we showcased the performance of our proposed method through numerical experiments aimed at addressing image restoration problems. |
|---|---|
| AbstractList | Our aim was to establish a novel generalized viscosity forward-backward splitting scheme that incorporates inertial terms for addressing monotone inclusion problems within a Hilbert space. By incorporating appropriate control conditions, we achieved strong convergence. The significance of this theorem lies in its applicability to resolve convex minimization problems. To demonstrate the efficacy of our proposed algorithm, we conducted a comparative analysis of its convergence behavior against other algorithms. Finally, we showcased the performance of our proposed method through numerical experiments aimed at addressing image restoration problems. |
| Author | Artsawang, Natthaphon Ungchittrakool, Kasamsuk |
| Author_xml | – sequence: 1 givenname: Kasamsuk surname: Ungchittrakool fullname: Ungchittrakool, Kasamsuk organization: Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand, Research Center for Academic Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Phitsanulok 65000, Thailand – sequence: 2 givenname: Natthaphon surname: Artsawang fullname: Artsawang, Natthaphon organization: Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand, Research Center for Academic Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Phitsanulok 65000, Thailand |
| BookMark | eNpNkU1OwzAQhS0EEgW6ZO8LpDi2G9vLCvFTCYkNrCPHnrQuSVzZplU5AqfGoYBYzdPMm08zehfodPADIHRdkhlTjN_0Oq1nlFBellydoAnlghWVkvL0nz5H0xg3hBBaUk4Fn6DPBV7BAEF37gMs3rlofHTpgFsf9jrYotHmbRQ4bjuXkhtWOJo19ID3Lq2xy7vJ6Q4nCH0ct3D03W609X7wKR-ZPaZ7j84PeBt800H26cFil3LdZqrRKQ_jFTprdRdh-lMv0ev93cvtY_H0_LC8XTwVmgmaCiEqwezcMADBDBfcGlUyRoGSllZEWdlaIktNSFVSkK0ErrhUTJBGUDCGXaLlkWu93tTb4HodDrXXrv5u-LCqdf7JdFA3ujWVmpM5rTjnTSWt5owpYtu5tFUjM6s4skzwMQZo_3glqcdc6jGX-jcX9gUrb4YL |
| Cites_doi | 10.3934/math.20231453 10.1137/1021044 10.23952/jano.5.2023.2.06 10.37193/CJM.2024.01.11 10.1016/j.na.2003.10.010 10.1137/0329022 10.1023/A:1011253113155 10.1007/s10444-024-10156-1 10.1007/BF02761171 10.1007/s11075-019-00727-5 10.1137/0716071 10.1137/S1052623495290179 10.1137/0314056 10.1080/02331934.2019.1646742 10.1006/jmaa.1999.6615 10.3390/sym12050750 10.1007/BF03007664 10.1016/S0377-0427(02)00906-8 10.1112/S0024610702003332 10.1137/S0363012998338806 10.37193/CJM.2019.03.09 10.1016/0022-247X(79)90234-8 10.23952/jnfa.2023.19 10.1016/0041-5553(64)90137-5 10.69829/apna-024-0101-ta04 10.23952/jnva.7.2023.4.10 10.69829/oper-024-0101-ta05 10.1155/2012/109236 10.3390/math11132927 10.1080/00207160.2019.1649661 10.2140/pjm.1970.33.209 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.20241149 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 23650 |
| ExternalDocumentID | oai_doaj_org_article_bafc6950526444b68da43390df58d6b8 10_3934_math_20241149 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a372t-77673d5c3ee73c474dc91332e20f2609d8fd081a00612e8f8e49489370b72ecc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001286465300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:52:46 EDT 2025 Sat Nov 29 06:04:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a372t-77673d5c3ee73c474dc91332e20f2609d8fd081a00612e8f8e49489370b72ecc3 |
| OpenAccessLink | https://doaj.org/article/bafc6950526444b68da43390df58d6b8 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bafc6950526444b68da43390df58d6b8 crossref_primary_10_3934_math_20241149 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2024 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.20241149-12 key-10.3934/math.20241149-34 key-10.3934/math.20241149-13 key-10.3934/math.20241149-35 key-10.3934/math.20241149-10 key-10.3934/math.20241149-32 key-10.3934/math.20241149-11 key-10.3934/math.20241149-33 key-10.3934/math.20241149-16 key-10.3934/math.20241149-38 key-10.3934/math.20241149-17 key-10.3934/math.20241149-39 key-10.3934/math.20241149-14 key-10.3934/math.20241149-36 key-10.3934/math.20241149-15 key-10.3934/math.20241149-37 key-10.3934/math.20241149-9 key-10.3934/math.20241149-30 key-10.3934/math.20241149-31 key-10.3934/math.20241149-3 key-10.3934/math.20241149-4 key-10.3934/math.20241149-1 key-10.3934/math.20241149-2 key-10.3934/math.20241149-7 key-10.3934/math.20241149-8 key-10.3934/math.20241149-5 key-10.3934/math.20241149-6 key-10.3934/math.20241149-18 key-10.3934/math.20241149-19 key-10.3934/math.20241149-23 key-10.3934/math.20241149-24 key-10.3934/math.20241149-21 key-10.3934/math.20241149-22 key-10.3934/math.20241149-27 key-10.3934/math.20241149-28 key-10.3934/math.20241149-25 key-10.3934/math.20241149-26 key-10.3934/math.20241149-20 key-10.3934/math.20241149-40 key-10.3934/math.20241149-29 |
| References_xml | – ident: key-10.3934/math.20241149-22 doi: 10.3934/math.20231453 – ident: key-10.3934/math.20241149-40 doi: 10.1137/1021044 – ident: key-10.3934/math.20241149-29 doi: 10.23952/jano.5.2023.2.06 – ident: key-10.3934/math.20241149-34 – ident: key-10.3934/math.20241149-23 doi: 10.37193/CJM.2024.01.11 – ident: key-10.3934/math.20241149-6 doi: 10.1016/j.na.2003.10.010 – ident: key-10.3934/math.20241149-18 – ident: key-10.3934/math.20241149-9 doi: 10.1137/0329022 – ident: key-10.3934/math.20241149-16 – ident: key-10.3934/math.20241149-15 – ident: key-10.3934/math.20241149-14 doi: 10.1023/A:1011253113155 – ident: key-10.3934/math.20241149-31 doi: 10.1007/s10444-024-10156-1 – ident: key-10.3934/math.20241149-4 doi: 10.1007/BF02761171 – ident: key-10.3934/math.20241149-19 doi: 10.1007/s11075-019-00727-5 – ident: key-10.3934/math.20241149-1 doi: 10.1137/0716071 – ident: key-10.3934/math.20241149-8 doi: 10.1137/S1052623495290179 – ident: key-10.3934/math.20241149-10 doi: 10.1137/0314056 – ident: key-10.3934/math.20241149-21 – ident: key-10.3934/math.20241149-33 doi: 10.1080/02331934.2019.1646742 – ident: key-10.3934/math.20241149-5 doi: 10.1006/jmaa.1999.6615 – ident: key-10.3934/math.20241149-20 doi: 10.3390/sym12050750 – ident: key-10.3934/math.20241149-38 doi: 10.1007/BF03007664 – ident: key-10.3934/math.20241149-17 doi: 10.1016/S0377-0427(02)00906-8 – ident: key-10.3934/math.20241149-35 doi: 10.1112/S0024610702003332 – ident: key-10.3934/math.20241149-3 doi: 10.1137/S0363012998338806 – ident: key-10.3934/math.20241149-11 doi: 10.37193/CJM.2019.03.09 – ident: key-10.3934/math.20241149-37 doi: 10.1007/BF03007664 – ident: key-10.3934/math.20241149-12 – ident: key-10.3934/math.20241149-2 doi: 10.1016/0022-247X(79)90234-8 – ident: key-10.3934/math.20241149-28 doi: 10.23952/jnfa.2023.19 – ident: key-10.3934/math.20241149-13 doi: 10.1016/0041-5553(64)90137-5 – ident: key-10.3934/math.20241149-24 doi: 10.69829/apna-024-0101-ta04 – ident: key-10.3934/math.20241149-27 doi: 10.23952/jnva.7.2023.4.10 – ident: key-10.3934/math.20241149-30 doi: 10.69829/oper-024-0101-ta05 – ident: key-10.3934/math.20241149-36 doi: 10.1155/2012/109236 – ident: key-10.3934/math.20241149-25 doi: 10.3390/math11132927 – ident: key-10.3934/math.20241149-7 – ident: key-10.3934/math.20241149-32 doi: 10.1080/00207160.2019.1649661 – ident: key-10.3934/math.20241149-26 – ident: key-10.3934/math.20241149-39 doi: 10.2140/pjm.1970.33.209 |
| SSID | ssj0002124274 |
| Score | 2.2423875 |
| Snippet | Our aim was to establish a novel generalized viscosity forward-backward splitting scheme that incorporates inertial terms for addressing monotone inclusion... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 23632 |
| SubjectTerms | forward-backward algorithm inertial method monotone inclusion problem |
| Title | A generalized viscosity forward-backward splitting scheme with inertial terms for solving monotone inclusion problems and its applications |
| URI | https://doaj.org/article/bafc6950526444b68da43390df58d6b8 |
| Volume | 9 |
| WOSCitedRecordID | wos001286465300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx4QW9QkdmJ7LKgVSysGkLpFfgVFKgU1aSUY-AH8au6StMrGwpJYkRNZd47vu_P5O0JuDZikyEYqUCLSAdc2CUyiZKAt2PIkdiHPw7rYhJhO5WymnjqlvjAnrKEHbgQ3MDq3qcJya2C5uUml05yBo-7yRLrU1Md8AfV0nClcg2FB5uBvNaSaTDE-APyHew9gsCLkzewYoQ5Xf21UxofkoEWDdNiM4ojs-MUx2Z9sqVTLE_IzpK8NNXTx5R1dF6XFPKtPCmizzng1GIGDBi0BT9ZZzBQ8Vv_mKcZYKR7ug794TnENLvEtCtMNwwgUZuA7cnFDHztfYdiMtvVlSqoXjhYV3Dsb3KfkZTx6fngM2gIKgWYirgJk6mEuscx7wSwX3FkFPmns4zAHP0Y5mTuABLrGOV7m0iNZDACW0IgYdMvOSG8BwzgnlMFXuGAyzPOEp5JJDk2TCM-cdSZO--RuI9Hso-HJyMC_QNFnKPpsI_o-uUd5bzshvXX9AJSetUrP_lL6xX985JLs4aCaeMoV6VXLlb8mu3ZdFeXypp5PcJ18j34BvxvUAw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+viscosity+forward-backward+splitting+scheme+with+inertial+terms+for+solving+monotone+inclusion+problems+and+its+applications&rft.jtitle=AIMS+mathematics&rft.au=Kasamsuk+Ungchittrakool&rft.au=Natthaphon+Artsawang&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=9&rft.spage=23632&rft.epage=23650&rft_id=info:doi/10.3934%2Fmath.20241149&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bafc6950526444b68da43390df58d6b8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |