A generalized viscosity forward-backward splitting scheme with inertial terms for solving monotone inclusion problems and its applications

Our aim was to establish a novel generalized viscosity forward-backward splitting scheme that incorporates inertial terms for addressing monotone inclusion problems within a Hilbert space. By incorporating appropriate control conditions, we achieved strong convergence. The significance of this theor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 9; číslo 9; s. 23632 - 23650
Hlavní autoři: Ungchittrakool, Kasamsuk, Artsawang, Natthaphon
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2024
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Our aim was to establish a novel generalized viscosity forward-backward splitting scheme that incorporates inertial terms for addressing monotone inclusion problems within a Hilbert space. By incorporating appropriate control conditions, we achieved strong convergence. The significance of this theorem lies in its applicability to resolve convex minimization problems. To demonstrate the efficacy of our proposed algorithm, we conducted a comparative analysis of its convergence behavior against other algorithms. Finally, we showcased the performance of our proposed method through numerical experiments aimed at addressing image restoration problems.
AbstractList Our aim was to establish a novel generalized viscosity forward-backward splitting scheme that incorporates inertial terms for addressing monotone inclusion problems within a Hilbert space. By incorporating appropriate control conditions, we achieved strong convergence. The significance of this theorem lies in its applicability to resolve convex minimization problems. To demonstrate the efficacy of our proposed algorithm, we conducted a comparative analysis of its convergence behavior against other algorithms. Finally, we showcased the performance of our proposed method through numerical experiments aimed at addressing image restoration problems.
Author Artsawang, Natthaphon
Ungchittrakool, Kasamsuk
Author_xml – sequence: 1
  givenname: Kasamsuk
  surname: Ungchittrakool
  fullname: Ungchittrakool, Kasamsuk
  organization: Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand, Research Center for Academic Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Phitsanulok 65000, Thailand
– sequence: 2
  givenname: Natthaphon
  surname: Artsawang
  fullname: Artsawang, Natthaphon
  organization: Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand, Research Center for Academic Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Phitsanulok 65000, Thailand
BookMark eNpNkU1OwzAQhS0EEgW6ZO8LpDi2G9vLCvFTCYkNrCPHnrQuSVzZplU5AqfGoYBYzdPMm08zehfodPADIHRdkhlTjN_0Oq1nlFBellydoAnlghWVkvL0nz5H0xg3hBBaUk4Fn6DPBV7BAEF37gMs3rlofHTpgFsf9jrYotHmbRQ4bjuXkhtWOJo19ID3Lq2xy7vJ6Q4nCH0ct3D03W609X7wKR-ZPaZ7j84PeBt800H26cFil3LdZqrRKQ_jFTprdRdh-lMv0ev93cvtY_H0_LC8XTwVmgmaCiEqwezcMADBDBfcGlUyRoGSllZEWdlaIktNSFVSkK0ErrhUTJBGUDCGXaLlkWu93tTb4HodDrXXrv5u-LCqdf7JdFA3ujWVmpM5rTjnTSWt5owpYtu5tFUjM6s4skzwMQZo_3glqcdc6jGX-jcX9gUrb4YL
Cites_doi 10.3934/math.20231453
10.1137/1021044
10.23952/jano.5.2023.2.06
10.37193/CJM.2024.01.11
10.1016/j.na.2003.10.010
10.1137/0329022
10.1023/A:1011253113155
10.1007/s10444-024-10156-1
10.1007/BF02761171
10.1007/s11075-019-00727-5
10.1137/0716071
10.1137/S1052623495290179
10.1137/0314056
10.1080/02331934.2019.1646742
10.1006/jmaa.1999.6615
10.3390/sym12050750
10.1007/BF03007664
10.1016/S0377-0427(02)00906-8
10.1112/S0024610702003332
10.1137/S0363012998338806
10.37193/CJM.2019.03.09
10.1016/0022-247X(79)90234-8
10.23952/jnfa.2023.19
10.1016/0041-5553(64)90137-5
10.69829/apna-024-0101-ta04
10.23952/jnva.7.2023.4.10
10.69829/oper-024-0101-ta05
10.1155/2012/109236
10.3390/math11132927
10.1080/00207160.2019.1649661
10.2140/pjm.1970.33.209
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20241149
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 23650
ExternalDocumentID oai_doaj_org_article_bafc6950526444b68da43390df58d6b8
10_3934_math_20241149
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a372t-77673d5c3ee73c474dc91332e20f2609d8fd081a00612e8f8e49489370b72ecc3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001286465300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:52:46 EDT 2025
Sat Nov 29 06:04:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a372t-77673d5c3ee73c474dc91332e20f2609d8fd081a00612e8f8e49489370b72ecc3
OpenAccessLink https://doaj.org/article/bafc6950526444b68da43390df58d6b8
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_bafc6950526444b68da43390df58d6b8
crossref_primary_10_3934_math_20241149
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20241149-12
key-10.3934/math.20241149-34
key-10.3934/math.20241149-13
key-10.3934/math.20241149-35
key-10.3934/math.20241149-10
key-10.3934/math.20241149-32
key-10.3934/math.20241149-11
key-10.3934/math.20241149-33
key-10.3934/math.20241149-16
key-10.3934/math.20241149-38
key-10.3934/math.20241149-17
key-10.3934/math.20241149-39
key-10.3934/math.20241149-14
key-10.3934/math.20241149-36
key-10.3934/math.20241149-15
key-10.3934/math.20241149-37
key-10.3934/math.20241149-9
key-10.3934/math.20241149-30
key-10.3934/math.20241149-31
key-10.3934/math.20241149-3
key-10.3934/math.20241149-4
key-10.3934/math.20241149-1
key-10.3934/math.20241149-2
key-10.3934/math.20241149-7
key-10.3934/math.20241149-8
key-10.3934/math.20241149-5
key-10.3934/math.20241149-6
key-10.3934/math.20241149-18
key-10.3934/math.20241149-19
key-10.3934/math.20241149-23
key-10.3934/math.20241149-24
key-10.3934/math.20241149-21
key-10.3934/math.20241149-22
key-10.3934/math.20241149-27
key-10.3934/math.20241149-28
key-10.3934/math.20241149-25
key-10.3934/math.20241149-26
key-10.3934/math.20241149-20
key-10.3934/math.20241149-40
key-10.3934/math.20241149-29
References_xml – ident: key-10.3934/math.20241149-22
  doi: 10.3934/math.20231453
– ident: key-10.3934/math.20241149-40
  doi: 10.1137/1021044
– ident: key-10.3934/math.20241149-29
  doi: 10.23952/jano.5.2023.2.06
– ident: key-10.3934/math.20241149-34
– ident: key-10.3934/math.20241149-23
  doi: 10.37193/CJM.2024.01.11
– ident: key-10.3934/math.20241149-6
  doi: 10.1016/j.na.2003.10.010
– ident: key-10.3934/math.20241149-18
– ident: key-10.3934/math.20241149-9
  doi: 10.1137/0329022
– ident: key-10.3934/math.20241149-16
– ident: key-10.3934/math.20241149-15
– ident: key-10.3934/math.20241149-14
  doi: 10.1023/A:1011253113155
– ident: key-10.3934/math.20241149-31
  doi: 10.1007/s10444-024-10156-1
– ident: key-10.3934/math.20241149-4
  doi: 10.1007/BF02761171
– ident: key-10.3934/math.20241149-19
  doi: 10.1007/s11075-019-00727-5
– ident: key-10.3934/math.20241149-1
  doi: 10.1137/0716071
– ident: key-10.3934/math.20241149-8
  doi: 10.1137/S1052623495290179
– ident: key-10.3934/math.20241149-10
  doi: 10.1137/0314056
– ident: key-10.3934/math.20241149-21
– ident: key-10.3934/math.20241149-33
  doi: 10.1080/02331934.2019.1646742
– ident: key-10.3934/math.20241149-5
  doi: 10.1006/jmaa.1999.6615
– ident: key-10.3934/math.20241149-20
  doi: 10.3390/sym12050750
– ident: key-10.3934/math.20241149-38
  doi: 10.1007/BF03007664
– ident: key-10.3934/math.20241149-17
  doi: 10.1016/S0377-0427(02)00906-8
– ident: key-10.3934/math.20241149-35
  doi: 10.1112/S0024610702003332
– ident: key-10.3934/math.20241149-3
  doi: 10.1137/S0363012998338806
– ident: key-10.3934/math.20241149-11
  doi: 10.37193/CJM.2019.03.09
– ident: key-10.3934/math.20241149-37
  doi: 10.1007/BF03007664
– ident: key-10.3934/math.20241149-12
– ident: key-10.3934/math.20241149-2
  doi: 10.1016/0022-247X(79)90234-8
– ident: key-10.3934/math.20241149-28
  doi: 10.23952/jnfa.2023.19
– ident: key-10.3934/math.20241149-13
  doi: 10.1016/0041-5553(64)90137-5
– ident: key-10.3934/math.20241149-24
  doi: 10.69829/apna-024-0101-ta04
– ident: key-10.3934/math.20241149-27
  doi: 10.23952/jnva.7.2023.4.10
– ident: key-10.3934/math.20241149-30
  doi: 10.69829/oper-024-0101-ta05
– ident: key-10.3934/math.20241149-36
  doi: 10.1155/2012/109236
– ident: key-10.3934/math.20241149-25
  doi: 10.3390/math11132927
– ident: key-10.3934/math.20241149-7
– ident: key-10.3934/math.20241149-32
  doi: 10.1080/00207160.2019.1649661
– ident: key-10.3934/math.20241149-26
– ident: key-10.3934/math.20241149-39
  doi: 10.2140/pjm.1970.33.209
SSID ssj0002124274
Score 2.2423875
Snippet Our aim was to establish a novel generalized viscosity forward-backward splitting scheme that incorporates inertial terms for addressing monotone inclusion...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 23632
SubjectTerms forward-backward algorithm
inertial method
monotone inclusion problem
Title A generalized viscosity forward-backward splitting scheme with inertial terms for solving monotone inclusion problems and its applications
URI https://doaj.org/article/bafc6950526444b68da43390df58d6b8
Volume 9
WOSCitedRecordID wos001286465300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx4QW9QkdmJ7LKgVSysGkLpFfgVFKgU1aSUY-AH8au6StMrGwpJYkRNZd47vu_P5O0JuDZikyEYqUCLSAdc2CUyiZKAt2PIkdiHPw7rYhJhO5WymnjqlvjAnrKEHbgQ3MDq3qcJya2C5uUml05yBo-7yRLrU1Md8AfV0nClcg2FB5uBvNaSaTDE-APyHew9gsCLkzewYoQ5Xf21UxofkoEWDdNiM4ojs-MUx2Z9sqVTLE_IzpK8NNXTx5R1dF6XFPKtPCmizzng1GIGDBi0BT9ZZzBQ8Vv_mKcZYKR7ug794TnENLvEtCtMNwwgUZuA7cnFDHztfYdiMtvVlSqoXjhYV3Dsb3KfkZTx6fngM2gIKgWYirgJk6mEuscx7wSwX3FkFPmns4zAHP0Y5mTuABLrGOV7m0iNZDACW0IgYdMvOSG8BwzgnlMFXuGAyzPOEp5JJDk2TCM-cdSZO--RuI9Hso-HJyMC_QNFnKPpsI_o-uUd5bzshvXX9AJSetUrP_lL6xX985JLs4aCaeMoV6VXLlb8mu3ZdFeXypp5PcJ18j34BvxvUAw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+viscosity+forward-backward+splitting+scheme+with+inertial+terms+for+solving+monotone+inclusion+problems+and+its+applications&rft.jtitle=AIMS+mathematics&rft.au=Kasamsuk+Ungchittrakool&rft.au=Natthaphon+Artsawang&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=9&rft.spage=23632&rft.epage=23650&rft_id=info:doi/10.3934%2Fmath.20241149&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bafc6950526444b68da43390df58d6b8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon