Discretization Errors in the Hybrid Finite Element Particle-in-cell Method
In computational geodynamics, the Finite Element (FE) method is frequently used. The method is attractive as it easily allows employment of body-fitted deformable meshes and a true free surface boundary condition. However, when a Lagrangian mesh is used, remeshing becomes necessary at large strains...
Saved in:
| Published in: | Pure and applied geophysics Vol. 171; no. 9; pp. 2165 - 2184 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
Springer Basel
01.09.2014
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0033-4553, 1420-9136 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In computational geodynamics, the Finite Element (FE) method is frequently used. The method is attractive as it easily allows employment of body-fitted deformable meshes and a true free surface boundary condition. However, when a Lagrangian mesh is used, remeshing becomes necessary at large strains to avoid numerical inaccuracies (or even wrong results) due to severely distorted elements. For this reason, the FE method is oftentimes combined with the particle-in-cell (PIC) method, where particles are introduced which track history variables and store constitutive information. This implies that the respective material properties have to be interpolated from the particles to the integration points of the finite elements. In numerical geodynamics, material parameters (in particular the viscosity) usually vary over a large range. This may be due to strongly temperature-dependent rheologies (which result in large but smooth viscosity variations) or material interfaces (which result in viscosity jumps). Here, we analyze the accuracy and convergence properties of velocity and pressure of the hybrid FE-PIC method in the presence of large viscosity variations. Standard interpolation schemes (arithmetic and harmonic) are compared to a more sophisticated interpolation scheme which is based on linear least squares interpolation for two types of elements (
Q
1
P
0
and
Q
2
P
-
1
). In the case of a smooth viscosity field, the accuracy and convergence is significantly improved by the new interpolation scheme. In the presence of viscosity jumps, the order of accuracy is strongly decreased. |
|---|---|
| AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) In computational geodynamics, the Finite Element (FE) method is frequently used. The method is attractive as it easily allows employment of body-fitted deformable meshes and a true free surface boundary condition. However, when a Lagrangian mesh is used, remeshing becomes necessary at large strains to avoid numerical inaccuracies (or even wrong results) due to severely distorted elements. For this reason, the FE method is oftentimes combined with the particle-in-cell (PIC) method, where particles are introduced which track history variables and store constitutive information. This implies that the respective material properties have to be interpolated from the particles to the integration points of the finite elements. In numerical geodynamics, material parameters (in particular the viscosity) usually vary over a large range. This may be due to strongly temperature-dependent rheologies (which result in large but smooth viscosity variations) or material interfaces (which result in viscosity jumps). Here, we analyze the accuracy and convergence properties of velocity and pressure of the hybrid FE-PIC method in the presence of large viscosity variations. Standard interpolation schemes (arithmetic and harmonic) are compared to a more sophisticated interpolation scheme which is based on linear least squares interpolation for two types of elements (... and ...). In the case of a smooth viscosity field, the accuracy and convergence is significantly improved by the new interpolation scheme. In the presence of viscosity jumps, the order of accuracy is strongly decreased.[PUBLICATION ABSTRACT] In computational geodynamics, the Finite Element (FE) method is frequently used. The method is attractive as it easily allows employment of body-fitted deformable meshes and a true free surface boundary condition. However, when a Lagrangian mesh is used, remeshing becomes necessary at large strains to avoid numerical inaccuracies (or even wrong results) due to severely distorted elements. For this reason, the FE method is oftentimes combined with the particle-in-cell (PIC) method, where particles are introduced which track history variables and store constitutive information. This implies that the respective material properties have to be interpolated from the particles to the integration points of the finite elements. In numerical geodynamics, material parameters (in particular the viscosity) usually vary over a large range. This may be due to strongly temperature-dependent rheologies (which result in large but smooth viscosity variations) or material interfaces (which result in viscosity jumps). Here, we analyze the accuracy and convergence properties of velocity and pressure of the hybrid FE-PIC method in the presence of large viscosity variations. Standard interpolation schemes (arithmetic and harmonic) are compared to a more sophisticated interpolation scheme which is based on linear least squares interpolation for two types of elements. In the case of a smooth viscosity field, the accuracy and convergence is significantly improved by the new interpolation scheme. In the presence of viscosity jumps, the order of accuracy is strongly decreased. In computational geodynamics, the Finite Element (FE) method is frequently used. The method is attractive as it easily allows employment of body-fitted deformable meshes and a true free surface boundary condition. However, when a Lagrangian mesh is used, remeshing becomes necessary at large strains to avoid numerical inaccuracies (or even wrong results) due to severely distorted elements. For this reason, the FE method is oftentimes combined with the particle-in-cell (PIC) method, where particles are introduced which track history variables and store constitutive information. This implies that the respective material properties have to be interpolated from the particles to the integration points of the finite elements. In numerical geodynamics, material parameters (in particular the viscosity) usually vary over a large range. This may be due to strongly temperature-dependent rheologies (which result in large but smooth viscosity variations) or material interfaces (which result in viscosity jumps). Here, we analyze the accuracy and convergence properties of velocity and pressure of the hybrid FE-PIC method in the presence of large viscosity variations. Standard interpolation schemes (arithmetic and harmonic) are compared to a more sophisticated interpolation scheme which is based on linear least squares interpolation for two types of elements ( Q 1 P 0 and Q 2 P - 1 ). In the case of a smooth viscosity field, the accuracy and convergence is significantly improved by the new interpolation scheme. In the presence of viscosity jumps, the order of accuracy is strongly decreased. |
| Author | Thielmann, M. May, D. A. Kaus, B. J. P. |
| Author_xml | – sequence: 1 givenname: M. surname: Thielmann fullname: Thielmann, M. email: marcel.thielmann@erdw.ethz.ch organization: Institut f. Geophysik, ETZ Zürich, Institute for Building Materials, ETH Zürich – sequence: 2 givenname: D. A. surname: May fullname: May, D. A. organization: Institut f. Geophysik, ETZ Zürich – sequence: 3 givenname: B. J. P. surname: Kaus fullname: Kaus, B. J. P. organization: Institute of Geosciences, Center for Computational Sciences & Center for Volcanoes, Atmospheres and Magmatic Open Systems, Johannes Gutenberg-Universität Mainz |
| BookMark | eNp9kD1PwzAQhi1UJNrCD2CLxMJiOMf58ohKS0FFMMBsOe6FukqdYrtD-fW4hAEhwWB5eZ-7954RGdjOIiHnDK4YQHntASDNKLD4KqioOCJDlqVABePFgAwBOKdZnvMTMvJ-DcDKMhdD8nBrvHYYzIcKprPJ1LnO-cTYJKwwme9rZ5bJzFgTMJm2uEEbkmflgtEtUmOpxrZNHjGsuuUpOW5U6_Hs-x-T19n0ZTKni6e7-8nNgipepoFmdV4Br5GVKLSoMWsKjaCEapjgGUJaLSFb8rwReVZppXXsiiUWKYDGplR8TC77uVvXve_QB7mJN8QeymK385LFKAPO4rFjcvEruu52zsZ2kuUFi7tEATHF-pR2nfcOG7l1ZqPcXjKQB7uytyujXXmwK0Vkyl-MNuFLYXDKtP-SaU_6uMW-ofvR6U_oE2W9jyU |
| CitedBy_id | crossref_primary_10_1002_2014GC005628 crossref_primary_10_1002_zamm_201400274 crossref_primary_10_1016_j_pepi_2017_10_004 crossref_primary_10_5194_se_15_945_2024 crossref_primary_10_1029_2019GC008688 crossref_primary_10_1002_2015GC005824 crossref_primary_10_1016_j_tecto_2019_228173 crossref_primary_10_1029_2018GC007508 crossref_primary_10_5194_se_13_229_2022 crossref_primary_10_1029_2020GC009349 crossref_primary_10_5194_se_11_1909_2020 crossref_primary_10_1016_j_pepi_2020_106637 crossref_primary_10_1029_2017JB015225 crossref_primary_10_1007_s40571_022_00530_5 crossref_primary_10_5194_se_13_583_2022 crossref_primary_10_5194_se_16_457_2025 crossref_primary_10_1007_s00024_016_1431_8 |
| Cites_doi | 10.1016/0031-9201(96)03163-9 10.1093/oso/9780198528678.001.0001 10.1029/97JB01353 10.1016/j.pepi.2007.06.009 10.1029/2000GL011789 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M 10.1016/j.pepi.2008.05.003 10.1006/jcph.1998.5892 10.1111/j.1365-246X.2012.05609.x 10.1007/978-3-642-59721-3_1 10.1016/j.cma.2009.02.025 10.1016/j.pepi.2010.04.007 10.1029/2001GC000214 10.1006/jcph.2000.6438 10.1029/2000GC000036 10.1111/j.1365-246X.1992.tb00117.x 10.1016/j.cma.2007.08.032 10.1111/j.1365-246X.1987.tb00731.x 10.1002/nme.862 10.1029/2007GC001719 10.1137/1.9780898717464 10.1002/nme.1230 10.1016/j.pepi.2008.06.023 10.1002/fld.2713 10.1016/S0021-9991(02)00031-1 10.1046/j.1365-246X.2003.02042.x 10.5194/sed-5-1771-2013 10.1137/S1064827596298245 10.1016/j.pepi.2003.09.006 10.1029/2011GC003567 10.1002/fld.1901 10.1002/nme.1620240209 10.1111/j.1365-246X.1996.tb06349.x 10.1016/j.pepi.2008.03.007 10.1017/CBO9780511791253 10.1002/nme.777 10.1016/j.pepi.2008.07.036 10.1007/b98879 10.1016/S0168-874X(00)00035-4 10.1080/03091929608208968 10.1002/nme.1788 10.1016/j.pepi.2008.06.028 |
| ContentType | Journal Article |
| Copyright | Springer Basel 2014 |
| Copyright_xml | – notice: Springer Basel 2014 |
| DBID | AAYXX CITATION 3V. 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M M2P P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U |
| DOI | 10.1007/s00024-014-0808-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1420-9136 |
| EndPage | 2184 |
| ExternalDocumentID | 3427379211 10_1007_s00024_014_0808_9 |
| Genre | Feature |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 67M 67Z 6NX 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ATCPS AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAS LK5 LLZTM M2P M4Y M7R MA- MBV N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8R Z8T Z8W ZMTXR ZY4 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7TG 7UA 7XB 8FD 8FK C1K F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI Q9U PUEGO |
| ID | FETCH-LOGICAL-a372t-4b5803be17e9c9be4f6ce0a9af1934e028d04d35f9548cacc001e7e6200cef7a3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341927200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0033-4553 |
| IngestDate | Thu Oct 02 04:45:22 EDT 2025 Tue Nov 04 22:02:25 EST 2025 Sat Nov 29 03:53:44 EST 2025 Tue Nov 18 21:56:28 EST 2025 Fri Feb 21 02:39:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Numerical modeling Finite element method Interpolation Particle-in-cell |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a372t-4b5803be17e9c9be4f6ce0a9af1934e028d04d35f9548cacc001e7e6200cef7a3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1561028960 |
| PQPubID | 54182 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_1620103155 proquest_journals_1561028960 crossref_primary_10_1007_s00024_014_0808_9 crossref_citationtrail_10_1007_s00024_014_0808_9 springer_journals_10_1007_s00024_014_0808_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20140900 2014-9-00 20140901 |
| PublicationDateYYYYMMDD | 2014-09-01 |
| PublicationDate_xml | – month: 9 year: 2014 text: 20140900 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationSubtitle | pageoph |
| PublicationTitle | Pure and applied geophysics |
| PublicationTitleAbbrev | Pure Appl. Geophys |
| PublicationYear | 2014 |
| Publisher | Springer Basel Springer Nature B.V |
| Publisher_xml | – name: Springer Basel – name: Springer Nature B.V |
| References | Ausas, Buscaglia, Idelsohn (CR2) 2012; 70 Schmid (CR36) 2003; 155 Dolbow, Devan (CR11) 2004; 59 CR19 CR39 CR37 CR14 CR13 CR12 Schmeling, Babeyko, Enns, Faccenna, Funiciello, Gerya, Golabek, Grigull, Kaus, Morra, Schmalholz, Hunen (CR35) 2008; 171 Deubelbeiss, Kaus (CR10) 2008; 171 CR33 Kronbichler, Heister, Bangerth (CR21) 2012; 191 CR32 Sussman, Fatemi (CR38) 1999; 20 CR31 Mourad, Dolbow, Harari (CR30) 2007; 69 Fish, Yuan (CR15) 2005; 62 Trompert, Hansen (CR40) 1996; 83 Cockburn, Shu (CR7) 1998; 141 Fries, Belytschko (CR17) 2010; 84 Zlotnik, Díez (CR43) 2009; 198 Revenaugh, Parsons (CR34) 1987; 90 CR3 Moresi, Zhong, Gurnis (CR27) 1996; 97 Moresi, Dufour, Mühlhaus (CR28) 2003; 184 CR5 CR8 Belytschko, Moës, Usui, Parimi (CR4) 2001; 50 CR29 Fries (CR16) 2009; 60 CR26 CR25 CR24 CR23 Dabrowski, Krotkiewski, Schmid (CR9) 2008; 9 Keken, King, Schmeling (CR300) 1997; 102 Chessa, Wang, Belytschko (CR6) 2003; 57 Legrain, Moës, Huerta (CR22) 2008; 197 Gerya (CR18) 2003; 140 CR20 CR42 CR100 CR200 Albers (CR1) 2000; 160 Zhong (CR41) 1996; 124 808_CR28 808_CR29 808_CR26 808_CR27 808_CR24 808_CR25 808_CR22 808_CR23 808_CR20 808_CR42 808_CR21 808_CR43 808_CR40 808_CR41 808_CR4 808_CR19 808_CR5 808_CR2 808_CR17 808_CR39 808_CR3 808_CR18 808_CR100 808_CR15 808_CR37 808_CR200 808_CR1 808_CR16 808_CR38 808_CR300 808_CR13 808_CR35 808_CR14 808_CR36 808_CR8 808_CR9 808_CR6 808_CR7 808_CR11 808_CR33 808_CR12 808_CR34 808_CR31 808_CR10 808_CR32 808_CR30 |
| References_xml | – volume: 160 start-page: 126 issue: 1 year: 2000 end-page: 150 ident: CR1 article-title: A Local Mesh Refinement Multigrid Method for 3-D Convection Problems with Strongly Variable Viscosity publication-title: Journal of Computational Physics – volume: 191 start-page: 12 year: 2012 end-page: 29 ident: CR21 article-title: High accuracy mantle convection simulation through modern numerical methods publication-title: Geophysical Journal International – ident: CR100 – volume: 124 start-page: 18 issue: 1 year: 1996 end-page: 28 ident: CR41 article-title: Analytic solutions for Stokes’ flow with lateral variations in viscosity publication-title: Geophysical Journal International – volume: 184 start-page: 476 issue: 2 year: 2003 end-page: 497 ident: CR28 article-title: A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials publication-title: Journal of Computational Physics – ident: CR14 – volume: 197 start-page: 1835 issue: 21 year: 2008 end-page: 1849 ident: CR22 article-title: Stability of incompressible formulations enriched with x-fem publication-title: Computer Methods in Applied Mechanics and Engineering – ident: CR39 – ident: CR37 – volume: 9 start-page: Q04 year: 2008 end-page: 030 ident: CR9 article-title: MILAMIN: MATLAB-based finite element method solver for large problems publication-title: Geochemistry Geophysics Geosystems – ident: CR12 – ident: CR33 – volume: 140 start-page: 293 year: 2003 end-page: 318 ident: CR18 article-title: Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties publication-title: Physics of the Earth and Planetary Interiors – volume: 83 start-page: 261 issue: 3–4 year: 1996 end-page: 291 ident: CR40 article-title: The application of a finite volume multigrid method to three-dimensional flow problems in a highly viscous fluid with a variable viscosity publication-title: Geophysical & Astrophysical Fluid Dynamics – ident: CR29 – volume: 141 start-page: 199 issue: 2 year: 1998 end-page: 224 ident: CR7 article-title: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems publication-title: Journal of Computational Physics – ident: CR8 – ident: CR25 – ident: CR42 – ident: CR23 – volume: 20 start-page: 1165 issue: 4 year: 1999 end-page: 1191 ident: CR38 article-title: An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow publication-title: SIAM Journal on Scientific Computing – volume: 60 start-page: 437 issue: 4 year: 2009 end-page: 471 ident: CR16 article-title: The intrinsic XFEM for two-fluid flows publication-title: International Journal for Numerical Methods in Fluids – volume: 59 start-page: 47 issue: 1 year: 2004 end-page: 67 ident: CR11 article-title: Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test publication-title: International journal for numerical methods in engineering – ident: CR19 – volume: 57 start-page: 1015 issue: 7 year: 2003 end-page: 1038 ident: CR6 article-title: On the construction of blending elements for local partition of unity enriched finite elements publication-title: International Journal for Numerical Methods in Engineering – ident: CR3 – volume: 198 start-page: 2329 issue: 30 year: 2009 end-page: 2338 ident: CR43 article-title: Hierarchical x-fem for n-phase flow (n>;2) publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 50 start-page: 993 issue: 4 year: 2001 end-page: 1013 ident: CR4 article-title: Arbitrary discontinuities in finite elements publication-title: International Journal for Numerical Methods in Engineering – volume: 171 start-page: 92 year: 2008 end-page: 111 ident: CR10 article-title: Comparison of Eulerian and Lagrangian numerical techniques for the Stokes equations in the presence of strongly varying viscosity publication-title: Physics of the Earth and Planetary Interiors – ident: CR31 – ident: CR13 – volume: 90 start-page: 349 issue: 2 year: 1987 end-page: 368 ident: CR34 article-title: Dynamic topography and gravity anomalies for fluid layers whose viscosity varies exponentially with depth publication-title: Geophysical Journal International – ident: CR32 – volume: 102 start-page: 22477 year: 1997 end-page: 22495 ident: CR300 article-title: A comparison of methods for the modeling of thermochemical convection publication-title: Journal of Geophysical Research – volume: 69 start-page: 772 issue: 4 year: 2007 end-page: 793 ident: CR30 article-title: A bubble-stabilized finite element method for dirichlet constraints on embedded interfaces publication-title: International journal for numerical methods in engineering – ident: CR200 – volume: 171 start-page: 198 year: 2008 end-page: 223 ident: CR35 article-title: A benchmark comparison of spontaneous subduction models-Towards a free surface publication-title: Physics of the Earth and Planetary Interiors – volume: 155 start-page: 269 year: 2003 end-page: 288 ident: CR36 article-title: Analytical solutions for deformable elliptical inclusions in general shear publication-title: Geophysical Journal International – volume: 70 start-page: 829 issue: 7 year: 2012 end-page: 850 ident: CR2 article-title: A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows publication-title: International Journal for Numerical Methods in Fluids – ident: CR5 – volume: 62 start-page: 1341 issue: 10 year: 2005 end-page: 1359 ident: CR15 article-title: Multiscale enrichment based on partition of unity publication-title: International Journal for Numerical Methods in Engineering – volume: 97 start-page: 83 issue: 1–4 year: 1996 end-page: 94 ident: CR27 article-title: The accuracy of finite element solutions of Stokes’s flow with strongly varying viscosity publication-title: Physics of the Earth and Planetary Interiors – volume: 84 start-page: 253 issue: 3 year: 2010 end-page: 304 ident: CR17 article-title: The extended/generalized finite element method: an overview of the method and its applications publication-title: International Journal for Numerical Methods in Engineering – ident: CR26 – ident: CR24 – ident: CR20 – ident: 808_CR27 doi: 10.1016/0031-9201(96)03163-9 – ident: 808_CR14 doi: 10.1093/oso/9780198528678.001.0001 – ident: 808_CR300 doi: 10.1029/97JB01353 – ident: 808_CR29 doi: 10.1016/j.pepi.2007.06.009 – ident: 808_CR19 doi: 10.1029/2000GL011789 – ident: 808_CR4 doi: 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M – ident: 808_CR5 doi: 10.1016/j.pepi.2008.05.003 – ident: 808_CR37 – ident: 808_CR7 doi: 10.1006/jcph.1998.5892 – ident: 808_CR21 doi: 10.1111/j.1365-246X.2012.05609.x – ident: 808_CR8 doi: 10.1007/978-3-642-59721-3_1 – ident: 808_CR43 doi: 10.1016/j.cma.2009.02.025 – ident: 808_CR20 doi: 10.1016/j.pepi.2010.04.007 – ident: 808_CR200 doi: 10.1029/2001GC000214 – ident: 808_CR1 doi: 10.1006/jcph.2000.6438 – ident: 808_CR39 doi: 10.1029/2000GC000036 – ident: 808_CR3 – ident: 808_CR100 doi: 10.1111/j.1365-246X.1992.tb00117.x – ident: 808_CR22 doi: 10.1016/j.cma.2007.08.032 – ident: 808_CR17 – ident: 808_CR42 – ident: 808_CR34 doi: 10.1111/j.1365-246X.1987.tb00731.x – ident: 808_CR11 doi: 10.1002/nme.862 – ident: 808_CR9 doi: 10.1029/2007GC001719 – ident: 808_CR24 doi: 10.1137/1.9780898717464 – ident: 808_CR15 doi: 10.1002/nme.1230 – ident: 808_CR10 doi: 10.1016/j.pepi.2008.06.023 – ident: 808_CR2 doi: 10.1002/fld.2713 – ident: 808_CR28 doi: 10.1016/S0021-9991(02)00031-1 – ident: 808_CR36 doi: 10.1046/j.1365-246X.2003.02042.x – ident: 808_CR33 doi: 10.5194/sed-5-1771-2013 – ident: 808_CR38 doi: 10.1137/S1064827596298245 – ident: 808_CR18 doi: 10.1016/j.pepi.2003.09.006 – ident: 808_CR13 doi: 10.1029/2011GC003567 – ident: 808_CR16 doi: 10.1002/fld.1901 – ident: 808_CR25 doi: 10.1002/nme.1620240209 – ident: 808_CR41 doi: 10.1111/j.1365-246X.1996.tb06349.x – ident: 808_CR32 doi: 10.1016/j.pepi.2008.03.007 – ident: 808_CR23 doi: 10.1017/CBO9780511791253 – ident: 808_CR6 doi: 10.1002/nme.777 – ident: 808_CR26 doi: 10.1016/j.pepi.2008.07.036 – ident: 808_CR31 doi: 10.1007/b98879 – ident: 808_CR12 doi: 10.1016/S0168-874X(00)00035-4 – ident: 808_CR40 doi: 10.1080/03091929608208968 – ident: 808_CR30 doi: 10.1002/nme.1788 – ident: 808_CR35 doi: 10.1016/j.pepi.2008.06.028 |
| SSID | ssj0017759 |
| Score | 2.1704068 |
| Snippet | In computational geodynamics, the Finite Element (FE) method is frequently used. The method is attractive as it easily allows employment of body-fitted... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) In computational geodynamics, the Finite Element (FE) method is frequently used.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2165 |
| SubjectTerms | Accuracy Boundary conditions Earth and Environmental Science Earth Sciences Finite element analysis Finite element method Free surfaces Geodynamics Geophysics Geophysics/Geodesy Interpolation Mathematical analysis Mathematical models Particle in cell technique Viscosity |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60KvjiLVarrOCTspB0N9nmUbSliJbiRd9CsplAQFJJWsF_72wuD1TQhzxlsglz7HybuQBOXNIBIZXLdUQnHYke8lDLiJNz8SJyMU4QF4XC12o06k0m3riq487rbPc6JFns1E2xmzFekzFBV88iK12EJfJ2PTOv4fbusQkdKOWUmFcILh1H1KHM75b47IzeEeaXoGjhawbr__rKDViroCU7L3VhExYw3YKVIsVT59twdZnQFoGzqvCS9bNsmuUsSRlhQDZ8NaVbbJAYDMr6ZVI5G1eKxZOUm1_87KYYOL0DD4P-_cWQV5MUeCBUd8Zl6PQsEaKt0NNeiDJ2NVqBF8SE3yQSxogsGQknNu3fdKA18REVumRCGmMViF1opdMU94BpYWPshmEcoS3DyPacrqIjWyw0kWptt8GqWerrqs24mXbx5DcNkgsW-cQi37DI99pw2jzyXPbY-I24U8vJr8wt922DAuno6FptOG5uk6EY1gQpTudE43bLmRZOG85q2X1Y4qcX7v-J-gBWu4XwTRZaB1qzbI6HsKxfZkmeHRWa-gZthOFp priority: 102 providerName: Springer Nature |
| Title | Discretization Errors in the Hybrid Finite Element Particle-in-cell Method |
| URI | https://link.springer.com/article/10.1007/s00024-014-0808-9 https://www.proquest.com/docview/1561028960 https://www.proquest.com/docview/1620103155 |
| Volume | 171 |
| WOSCitedRecordID | wos000341927200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1420-9136 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0017759 issn: 0033-4553 databaseCode: P5Z dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1420-9136 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0017759 issn: 0033-4553 databaseCode: PCBAR dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1420-9136 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0017759 issn: 0033-4553 databaseCode: PATMY dateStart: 20030501 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1420-9136 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0017759 issn: 0033-4553 databaseCode: BENPR dateStart: 20030501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1420-9136 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0017759 issn: 0033-4553 databaseCode: M2P dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1420-9136 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017759 issn: 0033-4553 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aF-SStGlDtnmgQk8porYlWetTyGOXUJrFpGkJvRhbHoMheFN7U-i_z0iWN22hufRgXSxbQjOj-UYzmgF4HxMPCKljbkqydCQmyAsjS07KJSlJxai8cheFP-vZbHx7m6T-wK3zYZXDnug26nJu7Bn5x9AqerIO4uDk_ge3VaOsd9WX0FiBNUI2oQ3puorSpRdBa9XDXyG4VEoMXs3AJREl7USGND3jgGT-T730BDb_8o86tTPd_t8Jv4QtDzjZac8hr-AFNjuw4QI_TfcaPl3UtHHgwl_HZJO2nbcdqxtGyJBd_rIXuti0tsiUTfpQc5Z6duN1w-3BP7tyZajfwNfp5Ob8kvv6CjwXOlpwWahxIAoMNSYmKVBWscEgT_KKUJ1EmnwZyFKoyiaFM7kxtKSoMSbBMljpXOzCajNvcA-YESFWcVFUJYayKMNERZoMuUoY6mpMOIJgWN3M-OTjtgbGXbZMm-wIkhFBMkuQLBnB8fKT-z7zxnOdDwYiZF4Iu-yJAiN4t3xN4mOXJm9w_kB94qivdKFG8GEg9W-_-NeAb58fcB82I8dbNhjtAFYX7QMewrr5uai79gjWziaz9PrIcSu1qfpO7fWXb49k-u-- |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RSkUvlEerbqHFSHABWU1iJ94cEEJlVwssqz2AxC0kzkSKVGUhWUD8qf5Gxk6yQKVy49BDTnFsxfN5Hp4XwHZAGBBSBVynZOlIDJEnWqachEuYkojx48wmCg_VaNS9vAzHc_CnzYUxYZUtT7SMOp1oc0f-0zWCnqyDwDm4vuGma5TxrrYtNGpYnOLDPZls1f7xEdF3x_P6vfNfA950FeCxUN6Uy8TvOiJBV2GowwRlFmh04jDOSJeRSGukjkyFn5lSaDrWmhg5KgwIThozFQua9x28l6aymAkV9MYzr4VSfq1uC8Gl74vWi-rYoqUkDclwp6frEI95KQeflNu__LFWzPU__W8btAxLjULNDusTsAJzWKzCBxvYqqs1ODnKiTHitEk3Zb2ynJQVywtGmi8bPJiENdbPjebNenUoPRs3x4nnBTeODXZm22x_hos3-ZEvMF9MCvwKTAsXsyBJshRdmaRu6HuKDNVMaBqqtdsBp6VmpJvi6qbHx-9oVhbaAiAiAEQGAFHYgd3ZJ9d1ZZHXBm-0RI8aJlNFTxTvwNbsNbEHszVxgZNbGhN4dScPvwN7LbSeTfGvBb-9vuAmLA7Oz4bR8Hh0ug4fPYtrE3i3AfPT8ha_w4K-m-ZV-cOeEAZXb424R5k7SkM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61hVZcyqNULC1gJLhQWU1iO94cKoTYXbW0rPYAUsUlJM5YioSyJdm26l_j13XsJFtAorceOOQUJ1bsz9_MZF4Ab2LCgJA65qYgS0digjw3suAkXJKCRIzKrE8UPtHT6fD0NJmtwK8-F8aFVfac6Im6mBv3j3w_dIKerIM42LddWMRsNHl_9pO7DlLO09q302ghcoxXl2S-NQdHI9rrt1E0GX_5eMi7DgM8EzpacJmrYSByDDUmJslR2thgkCWZJb1GIs1XBLIQyrqyaCYzhkgdNcYELYNWZ4Leuwr3NNmYLpxwpr4tPRhaq1b1FoJLpUTvUQ18AVOSjGTE0zUMiG_-lIk3iu5fvlkv8iYP_-fFegSbnaLNPrQn4zGsYPUE1n3Aq2m24NOoJMLERZeGysZ1Pa8bVlaMNGJ2eOUS2dikdBo5G7ch9mzWHTNeVtw5PNhn3377KXy9kw_ZhrVqXuEzYEaEaOM8twWGMi_CREWaDFgrDA01JhxA0O9sarqi6673x490WS7agyElMKQODGkygHfLR87aiiO3Dd7tAZB25NOkN7s_gNfL20QbbmmyCufnNCaO2g4fagB7Pcx-e8W_Jnx--4SvYIOAlp4cTY934EHkIe7i8XZhbVGf4wu4by4WZVO_9IeFwfe7Btw1cO1TLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discretization+Errors+in+the+Hybrid+Finite+Element+Particle-in-cell+Method&rft.jtitle=Pure+and+applied+geophysics&rft.au=Thielmann%2C+M&rft.au=May%2C+D+A&rft.au=Kaus%2C+B+J%3B+P&rft.date=2014-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0033-4553&rft.eissn=1420-9136&rft.volume=171&rft.issue=9&rft.spage=2165&rft_id=info:doi/10.1007%2Fs00024-014-0808-9&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3427379211 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-4553&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-4553&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-4553&client=summon |